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Abstract

Functional connectivity between brain regions during swallowing tasks is still not well understood. Understanding these
complex interactions is of great interest from both a scientific and a clinical perspective. In this study, functional magnetic
resonance imaging (fMRI) was utilized to study brain functional networks during voluntary saliva swallowing in twenty-two
adult healthy subjects (all females, 23:1+1:52 years of age). To construct these functional connections, we computed mean
partial correlation matrices over ninety brain regions for each participant. Two regions were determined to be functionally
connected if their correlation was above a certain threshold. These correlation matrices were then analyzed using graph-
theoretical approaches. In particular, we considered several network measures for the whole brain and for swallowing-
related brain regions. The results have shown that significant pairwise functional connections were, mostly, either local and
intra-hemispheric or symmetrically inter-hemispheric. Furthermore, we showed that all human brain functional network,
although varying in some degree, had typical small-world properties as compared to regular networks and random
networks. These properties allow information transfer within the network at a relatively high efficiency. Swallowing-related
brain regions also had higher values for some of the network measures in comparison to when these measures were
calculated for the whole brain. The current results warrant further investigation of graph-theoretical approaches as a
potential tool for understanding the neural basis of dysphagia.
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Introduction

Dysphagia (swallowing difficulties) may arise from the entry of

foreign matter into respiratory pathways [1]. It is a serious

condition that often accompanies acute stroke, acquired brain

damage, and neuro-degenerative illnesses [2]. Patients with

swallowing difficulties are vulnerable to the entry of foreign

matter into the respiratory tract. This foreign matter will greatly

increases the occurrence of severe respiratory problems among

dysphagia patients. Therefore, understanding the neural basis of

dysphagia is one of the paramount steps needed to develop future

rehabilitation procedures.

The human brain is considered to be a large-scale robust and

interactive biological system with non-trivial topological properties

[3], such as hierarchy and small-world properties [4]. The human

brain is considered to be one of the most complex networks found

in nature. This biological system responds to external stimuli by

transporting signals between specialized brain regions. Therefore,

the study of brain functional connectivity contributes greatly to the

understanding of brain functions and pathology.

Previous studies on graph theory suggested the possibility of

performing network analysis on the human brain [4]. Using

network analysis, the large variability of the brain structure could

be abstractly reduced to a collection of nodes and links (edges). For

functional networks, brain regions are represented by nodes and

connections between regions are represented by links. By utilizing

graph-theoretical approaches, the differences and similarities in

the structure of brain functional networks can be easily identified.

Also, the brain network shows consistent topology so that

properties, such as small-worldness, could generally be identified

in all human brain networks [5]. Furthermore, given that network

nodes stand for brain regions and links stand for connections

between them, comparison between different kinds of networks

become fairly feasible [5].

Recent neuroimaging studies have consistently demonstrated

evidence that swallowing is associated with activation in multiple

regions of the human brain [6], [7], [8], [9], [10], [11], [12], [13],

[14]. Previous analyses of brain functions during swallowing

revealed activation clusters in the supplementary motor area,

anterior cingulate and paracingulate gyri, pre- and postcentral

gyrus [15]. Several other regions have also been found related to

swallowing, including the posterior insula [16], basal ganglia,

thalamus, and cerebellum. Despite these findings, interactions

between different swallowing-related brain regions are still not well

understood. Therefore, the study of brain functional connectivity

during swallowing will contribute greatly to the understanding of

brain integration and segregation. To accomplish this task,

previous studies suggested graph theory as a valuable tool for

performing network analysis on human brain neuroimaging

studies [4], [5]. The graph-theoretical approaches enable us to

accomplish a comparison between different kinds of networks [5].
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The goal of this study is to use graph-theoretic approaches to

examine the interaction between brain regions during voluntary

saliva swallowing in healthy young adults and compare network

properties between and within subjects. To be specific, we aim to

determine inter- and intra- hemispherical connections during

swallowing tasks. Furthermore, differences between the whole-

brain network and various regions of interest (ROIs) on computed

network measures will be studied.

Materials and Methods

Data Acquisition
Twenty-two healthy young-adult subjects, all females

(23:1+1:52 years), participated in this study after providing

written, informed consent. The study protocol was approved by

the University of South Carolina Institutional Review Board.

All functional magnetic resonance scans of the brain were

acquired on a Siemens Magnetom Tesla Trio Tim scanner with a

32-channel RF-receive head coil at the McCausland Center for

Brain Imaging, University of South Carolina, Columbia, SC,

USA. These blood oxygen level dependent (BOLD) images were

acquired using an echo planar imaging sequence in 36 axial slices

(TR = 2200 ms, TE = 35 ms, flip angle = 900, FOV = 192 mm,

3 mm thickness) during swallowing. During our experiment,

participants were instructed to swallow their accumulated saliva

every 44 seconds (every 20 volumes acquired). They were directed

to move as little as possible. They were also instructed not to

produce exaggerated oral movements to increase or manipulate

the accumulation of saliva. The saliva should be accumulated

passively prior to swallowing. A comfortable custom-built restraint

was applied during fMRI scans to minimize head movement. A

high-resolution T1-weighted MRI sequence was also performed

during the data collection (3D MP-RAGE, 176 axial slices with

1 mm slice thickness, a 256 | 256 matrix, and 256 mm |

256 mm FOV).

Data Preprocessing Steps
fMRI Data Preprocessing. All data in the study were

preprocessed using Statistical Parametric Mapping (SPM) software

[17]. For each subject 350 volumes of the scans were acquired,

and the first 10 scans were discarded for magnetic equilibrium.

The remaining each of the 340 volumes underwent the following

four preprocessing steps sequentially: realignment, coregistration,

normalization, and smoothing. Excess motion defined as greater

than 4.0 mm of translation/rotation was eliminated in any of the

task-free scans.

Specifically, the fMRI scans for each subject were first adjusted

for time delay between different scans. Second, for each subject

the images were realigned to the first slices among all slices using a

least squares fitting algorithm and a 6 parameter rigid body

transformation [18] to correct for head motion. The following

formula for head movement calculates the group difference in

translation and rotation [19]:

Headmotion=Rotation~
1

M{1

XM

i~2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jxi{xi{1j2zjyi{yi{1j2zjzi{zi{1j2

q ð1Þ

where M~340 represents the length of the time series. The xi, yi

and zi are the translations or rotations magnitude in the x, y and z

directions at i{th time point, respectively.

After removing the movement interference in fMRI images, the

fMRI images further underwent the coregistration step during

which the mean fMRI scans were overlayed on a high resolution

anatomical image to maximize the mutual information. Therefore,

all other functional images were resliced to align with the reference

image.

Then, to make inter-individual comparisons, normalization was

then performed to warp the images to fit a standard MNI (Montreal

Neurological Institute) template. Finally, smoothing was applied

with Gaussian kernel with a 4-mm full-width at half maximum to

suppress noise and effects due to residual differences [17].

Anatomic Parcellation. The choice of nodes and links

greatly influences the results of network connectivity analysis

[20]. We chose the parcellation (segmentation) scheme that has

been used previously in many network studies (e.g., [21], [19],

[22], [23]). Therefore, the preprocessed fMRI datasets were

parcellated into 116 anatomical ROIs via the automated

anatomical labeling (AAL) template [24]. The AAL parcellation

scheme segments the cerebrum into 90 cortical and subcortical

anatomical ROIs (45 ROIs in each hemisphere) [24]. It divides the

cerebellum into 26 ROIs (8 in the vermis and 18 in the cerebellar

hemisphere, 9 in each side of the cerebellar hemisphere). This

study considered the 90 cerebrum regions summarized in Table 1.

This parcellation scheme provides non-overlapping segmentation

of the entire brain volume such that each brain area depicted in

AAL only points to one brain region in Table 1. These individual

anatomical ROIs were parcellated from the whole brain by the

MarsBaR toolbox [25]. Therefore, for each subject, we generated

90 time series for all the 90 anatomical ROIs in Table 1. The

mean time series is the average of voxels for every time point in the

time series over all 22 subjects in the study. This procedure

generated the mean time series with 340 time points. These 90

mean time series were then correlated with each other to establish

a 90 | 90 brain functional connectivity matrix.

Graph Theory Analysis
Graphs are sets of nodes and links. Nodes are the most basic

element in functional network analysis. Links can be used as

undirected paths, meaning that it can go both directions. Links can

also be directed, meaning a node can traverse the network either

forward or backward but never reverse direction [5]. For brain

functional networks, nodes may represent neurons, cortical areas

or brain regions whereas links may represent correlations.

Therefore, links could depict activity patterns between nodes

and form functional connectivity among nodes [5].

Network Measures. Using a graph-theoretical definition, a

network is a collection of sets of nodes and links, where a node is

considered as the most essential element of the network [20]. A

graph theory based approach can quantitatively and analytically

depict a wide variety of measures for brain networks. However,

various measurements can describe a network in an effective way.

Therefore, only some of the measurements that were used in

previous connectivity studies are discussed here.

For binary undirected networks, we use aij to represent the

connection status in the network between node i and j. aij = 0

when no connection exists between two nodes and aij = 1 when the

connection is present between two nodes. For weighted undirected

networks, wij is the connection between nodes i and j, and it has

range 0vwijv1. Because of the limitation of current fMRI

neuroimaging techniques, the weighted directed network cannot

be constructed in this study.

The node degree describes the number of direct connections a

node has with the rest of the nodes in the network. The node

degree is considered to be the most fundamental network measure.

Brain Networks and Swallowing
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It is also a foundation for most of the network measures in this

study. The summation of all the node degrees in a set in the

network derives a degree distribution [26]. In a random network,

connections are distributed randomly and uniformly with a

symmetrical Gaussian shape and centered degree distribution

[27]. A brain functional network, however, has a non-Gaussian

distribution with a tendency to spread towards higher degrees

[26]. Thus, we later introduce the rank-sum test to discuss the

difference between two different groups.

The degree Di of a node i is the number of nodes directly

connected to the ith node. For a binary network, the node degree

is defined as ki~
X

j[N
aij and for a weighted network it is

defined as ki~
X

j[N
wij , where N is the set of all nodes in a

collection, and n is the number of nodes in the collection. Given

that the whole brain was parcellated into 90 ROIs, therefore, n is

equal to 90, and N is the set of different possibilities (e.g.,

N[f1,2,3:::90g. The degree of the entire network, therefore, is

calculated by averaging all the nodes in the network:

D~
1

n

X
i[N

Di: ð2Þ

The clustering coefficient Ci of a node i calculates the ratio

between the number of existing connections and the maximum

number of connections in a set of nodes [28]. The existing

connections here are defined as the links between the direct

neighbors of the node i. Connections in random networks are

uniformly and randomly distributed so that clustering coefficients

are relatively low for a random network, whereas complex

networks contain densely connected clusters leading to a higher

clustering coefficient [27]. For a binary network, the clustering

coefficient CB
i of the node i is calculated as [29]:

CB
i ~

Ei

Di(Di{1)=2
ð3Þ

in which Ei is the number of links in ith set of nodes Ni (Ni5N),

and Di is the degree of node i mentioned above. The clustering

coefficient CW
i of a node i in a weighted network is calculated as

[29]:

CW
i ~

1

Si(Di{1)

X
j,h

wijzwih

2
aijaihajh ð4Þ

where the normalizing factor Si(Di{1) assures that 0ƒCW
i ƒ1;

Si~
XN

j~1
aijwij ; Di is the degree of a node i. aij is the connection

Table 1. Cortical and sub-cortical regions (45 in each cerebral hemisphere; 90 in total) as anatomically defined in the AAL template
and their corresponding abbreviations used in this study.

Region Abbreviation Region Abbreviation

Precentral gyrus PreCG Supramarginal gyrus SMG

Postcentral gyrus PosCG Precuneus PCUN

Rolandic operculum ROL Superior occipital gyrus SOG

Superior frontal gyrus,
dorsolateral

SFGdor Middle occipital gyrus MOG

Middle frontal gyrus MFG Inferior occipital gyrus IOG

Inferior frontal gyrus, opercular part IFGoper Cuneus CUN

Inferior frontal gyrus, triangular part IFGtri Calcarine fissure and surrounding cortex CAL

Superior frontal gyrus, medial SFGmed Lingual gyrus LING

Supplementary motor area SMA Fusiform gyrus FFG

Paracentral lobule PCL Temporal pole: superior temporal gyrus TPOstg

Superior frontal gyrus,
orbital part

SFGorb Temporal pole: middle temporal gyrus TPO

Superior frontal gyrus, medial orbital SFGmedorb Anterior cingulate and paracingulate gyri ACP

Middle frontal gyrus, orbital part MFGorb Median cingulate and paracingulate gyri MCP

Inferior frontal gyrus, orbital part IFGorb Posterior cingulate gyrus PCG

Gyrus rectus GRE Hippocampus HIP

Olfactory cortex OLF Parahippocampal gyrus PHG

Superior temporal gyrus STG Insula INS

Heschl gyrus HES Amygdala AMY

Middle temporal gyrus MTG Caudate nucleus CAU

Inferior temporal gyrus ITG Lenticular nucleus, putamen PUT

Superior parietal gyrus SPG Lenticular nucleus, pallidum PAL

Inferior parietal, but supramarginal
and angular gyri

IPL Thalamus THA

Angular gyrus ANG

doi:10.1371/journal.pone.0073577.t001
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status between node i and node j. The value of aij is 1 if there is a

link connecting node i and node j, and it is equal to 0 if no

connection is presented. This applies to aih and ajh as well.

Therefore, the clustering coefficient of a n-nodes network is

calculated as [20]:

C~
1

n

X
i[N

Ci ð5Þ

where Ci~CB
i for binary networks and Ci~CW

i for weighted

networks.

The shortest path length Li is given by the shortest distance

from the node i to another node. The shortest path between two

nodes could consist of multiple in-between connections when there

is no direct connection between them. In comparison to regular

networks, complex and random networks generally have short

path lengths [26]. The definition of complex, random and regular

networks can be found in [4]. The mean path length for a node i is

defined as [20]:

Li~
1

n{1

X
i,j[N,i=j

dij ð6Þ

where dij is the shortest distance between node i and node j. In a

binary network, the value of every existing link is 1. dij is thus the

number of links connecting node i and node j. However, for a

weighted network, the shortest path length is not necessarily the

optimal value, as the weighted network also contains information

about connection strength (thickness of link) between nodes [20].

To differentiate the strength of these connections in a weighted

network, the strength of every link between node i and node j is

associated with weight indices wij . This weight index value was

normalized to a range from 0 to 1 [29]. To calculate the weight

indices in a weighted network, we followed the approach given by

Boccaletti et al. [30]. Let the length between nodes i and j be

inversely proportional to the weight indices wij :

lij~
1

wij

ð7Þ

For the weighted network, dij = lij . Then the mean shortest

absolute path length of the network is the average of shortest

absolute path length of all nodes [20]:

L~
1

n

X
i[N

Li ð8Þ

The global efficiency of a network, Eglob, measures the average

inverse shortest path length [31]. It is inversely related to the

characteristic path length, and it is an alternative way to indicate

the parallel information transfer efficiency in the network [4], [32].

It can also be used to describe the connectivity of the network [32],

[33]. In comparison to the characteristic path length, the global

efficiency makes quantifying disconnected networks possible [20].

Mathematically, for both binary and weighted functional net-

works, the global efficiency for a node i is calculated as [29]:

Eglob,i~
1

n{1

X
i,j[N,i=j

d{1
ij : ð9Þ

In comparison to the mean path length (eqn. 6), the global

efficiency of a node i calculates the inverse of the harmonic mean

of the minimum absolute path length between node i and others

[32]. The global efficiency of the network is the average of global

efficiency for all nodes and is calculated as:

Eglob~
1

n

X
i[N

Eglob,i ð10Þ

For binary networks, the local efficiency of the ith node is

calculated as:

EB
loc,i~

1

Di(Di{1)

X
j,h[N,i=j

aijaih½djh(Ni)�{1 ð11Þ

where djh(Ni) is the shortest path length between j and h that

contains only neighbors of i. For weighted networks, the local

efficiency of the node i is defined as:

EW
loc,i~

1

Di(Di{1)

X
j,h[N,i=j

(wijwih½dw
jh(Ni)�{1

)1=3 ð12Þ

Analysis of Whole-Brain Network Small-World Attri-

butes. Small-world measurements (e.g., [4]) involve a mean

cluster coefficient C and a mean characteristic path length L. To

be specific, the parameter C is the average of the clustering

coefficient over all nodes in the functional network. It quantifies

the level of cliquishness (local interconnectivity) of a typical

neighborhood [4]. The parameter L of a network is reflected by

the harmonic mean distance between pairs proposed by [34],

which is defined as the reciprocal of the average of the reciprocals:

L{1~
1

1
2

n(nz1)

X
i§j

d{1
ij ð13Þ

A high clustering coefficient and a short characteristic path

length suggests the network is described by optimal small-world

attributes [4], [33], [35]. In other words, a network has less than

optimal organization if the absolute path length is relatively short

and the absolute clustering coefficient is relatively low [19].

Mathematically, a network would be classified as a small-world

network if it satisfies the following two conditions [3]:

c~
C

Crand

&1 ð14Þ

and

l~
L

Lrand

&1 ð15Þ

in which Crand indicates the mean clustering coefficient of a

random network and Lrand indicates the mean characteristic path

Brain Networks and Swallowing
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length of a random network. The random network preserves the

same amount of nodes, links and degree distribution as the

functional network. The Crand and Lrand values are calculated by

generating many random networks for each individual’s functional

network. Note that the small-worldness parameter might vary with

the change of the sparsity threshold value. When a more rigorous

sparsity threshold is chosen, fewer connections will likely exist,

leading to a sparser network [36]. Mathematically, the small-

worldness is calculated as:

S~
C=Crand

L=Lrand

ð16Þ

Analysis of Whole-Brain Network Hierarchy. In addition

to small-world attributes, the hierarchy was used to characterize

topological properties of the human brain [37], as it offered an

alternative view on the topological properties of complex networks

[38]. The hierarchy of the networks was interpreted by the

coefficient b, which described the relationship between clustering

coefficient C and node degree k of the network [38] using a power

law approach: C*k{b. Networks with a high hierarchy value are

characterized by a higher degree k and low clustering coefficient

C, and vice versa. The networks with hierarchical structures

contain interconnected clusters, which are the combination of

smaller and more densely connected clusters [38].

Construction of Functional Connectivity Networks
Functional connectivity networks share various significant

common ground with anatomical and structural connectivity

networks [39], but they also have obvious differences. For

example, in structural connectivity networks, connection weights

indicate the amount of fibers between regions, the degree of

myelination, the probability of connection between two nodes, or

the amount of dye that traverse between two nodes, while in

functional connectivity studies weights indicate the correlation in

the time course of signals of different nodes [5].

Partial correlation could measure the inter-regional functional

connectivity by attenuating the contribution of other sources of

covariance [40]. A partial correlation matrix is a symmetrical

matrix derived from the fMRI time series of each participant. In

the correlation matrix, each off-diagonal entry is the correlation

between a pair of variables (brain regions) while attenuating their

correlation with other variables [19]. In this case, given 90 regions

defined in the study in Table 1, a symmetric partial correlation

matrix of 90|90 was obtained for each subject. Correlation

between any two regions of interest reduced the indirect

dependencies of the other 88 regions. When the time series of

two brain regions are highly correlated, it implies that the two

regions are active at the same time. Using this approach, the mean

correlation matrix for all subjects was computed. A sample

processing procedure is shown in Figure 1.

The individual partial correlation matrices were thresholded to

ensure that each node in the network is not too densely clustered,

nor too sparsely connected. In other words, thresholding was used

in the study to eliminate the links that were likely to attenuate the

effect of important connections [20]. The selection of threshold

values significantly affected the topological properties of the

thresholded networks, as a different number of links in functional

networks may represent a different magnitude of correlational

interactions. Therefore, to ensure that the partial correlation

matrix for each subject had the same number of links, we followed

the method proposed by Supekar et al. [33]. Individual partial

correlation matrices were thresholded such that each network after

thresholding had on average K links per node. This approach

ensured that both groups had the same number of links per node

so that the topological properties of the networks were consistent.

Moreover, we selected a conservative K to prevent the generated

network from disconnecting or containing non-significant connec-

tions. As shown in Figure 2, selecting 60 edges per node produced

excessive connections, while selecting 36 edges per node lost

important connectivity information. Therefore, as suggested in

[33], [41], we selected a K value equal to 48. All networks

constructed according to this approach had 2160 edges

( = 48|90/2).

To understand the small-world properties of the obtained

networks, the value of C and L from the functional network were

compared with those of 1000 random networks generated by a

Markov-chain algorithm [38]. In the random matrix generated by

Markov-chain algorithm, if node i1 was linked to j1 and node i2
was linked to j2, then the link between node i1 and j1 was removed

while a link between node i2 and j2 was added [42]. Then the

matrix was randomly permuted such that the random matrix and

original matrix had equivalent node degree. We repeated this

procedure over 1,000 random matrix generated by Markov-chain

algorithm to obtain mean Crand and mean Lrand values for every

degree and threshold value. In order to study the influence of

thresholding, we calculated several network properties as a

function of the sparsity thresholds. In order to calculate Crand

and Lrand , we followed the methodology outlined in [19].

In our study, we examined hierarchy values derived from both

whole-brain functional networks and also swallowing related

regions. These two connectivity matrices were constructed by

thresholding the correlation matrix such that each node in the

resulting network generally had 48 connections. The threshold

values ranged from 0 to 1, with an increment of 0.05. In order to

calculate hierarchy, the clustering coefficient C and node degree k
had to be computed for every node in the network. In order to

model the relationship between C and k, we fitted a fifth order

linear regression curve to express the relationship between log(C)
and log(k).

Comparison Between the Whole Brain and Swallowing-

Related Regions. In our analysis, we compared the network

measures calculated for the whole brain and for the previously

identified regions activated during swallowing (e.g., [7], [12], [13],

[15]), which are listed in Table 2. We examined whether these

network measures were affected by the selected regions.

Network Toolboxes. In this study, we used an open source

Brain Connectivity Toolbox (BCT) [20] for calculation of various

network properties. The toolbox provided functions for a number

of network measures. In addition, the toolbox enabled the network

manipulation such as thresholding.

Statistical Tests. To distinguish the difference between

swallowing related regions to whole brain metrics we used the

non-parametric Mann-Whitney Wilcoxon rank-sum test [43].

Results

Binary and weighted functional networks were created for all

subjects using the outlined approach. These functional networks

were sensitive to threshold values as shown in Figure 2, which

depicted the effects of thresholding the partial correlation matrices

such that each node in the resultant network had on average K
connections. A summary of our results can be found below.

Network Features
Figure 3 demonstrated significant differences between the

whole-brain matrices and swallowing ROIs for some of the

Brain Networks and Swallowing

PLOS ONE | www.plosone.org 5 August 2013 | Volume 8 | Issue 8 | e73577



network properties. No obvious difference in node degree was

discovered between the two groups (pw0:29). However, global

efficiency was higher when considering swallowing ROIs and

sparsity threshold values lower than 0.35, but it did not reach

statistical significance for all values (pv0:07). The path length L of

the binary and weighted network were significantly shorter in the

Figure 1. A flowchart for yielding brain connectivity data and network starts with functional (1) and anatomic (2) magnetic
resonance imaging scans. In order to establish functional connectivity, a time series of brain activity in different voxels or regions can be derived.
These images were later warped to the template (3) to register the location of brain regions. Once scans were registered, the brain regions were
parcellated (4) according to the anatomical parcellation scheme described in [24] and 90 regional time series were extracted (5). In order to establish
functional connectivity, time series of each brain region were derived and correlations between the time series of different voxels or brain regions
were calculated and represented as a correlation matrix. The correlation matrix can be either directly interpreted as a binary network (6) or the
weighted network (7). The weighted and binary network can be graphically represented by 3-dimensional connectivity network (8).
doi:10.1371/journal.pone.0073577.g001

Brain Networks and Swallowing
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whole-brain metric compared to swallowing related regions

(pv0:05) when the threshold value was within the range of 0.60

to 0.85. The local efficiency values were significantly higher when

considering swallowing ROIs and threshold values within the

range of 0 to 0.03 (pv0:05). Interestingly, we found that clustering

coefficient value has slightly increased when we applied thresholds

between 0.5 to 0.63. The rank-sum test showed that significant

differences (pv0:05) had been found when comparing the whole

brain and swallowing ROIs. The observed differences in the

clustering coefficient were even greater in this interval in

comparison to low threshold values. This has never been found

in other network measurement parameters. As shown in Figure 3

(f), the hierarchy values for swallowing ROIs and the whole brain

were not statistically different (pw0:45).

Our study demonstrated the brain functional networks are

characterized by small-world attributes. First of all, the mean

network clustering coefficient C calculated was 0.45 and the mean

minimum path length L was 0.32. Second, the parameters C and

L for a random graph with same number of nodes, links and

degree distributions were also calculated, and the values were

Crand = 0.0116 and Lrand = 0.0119. From the above calculation,

we observed that the ratio of local clustering of connections in the

brain functional network over the random network was approx-

imately 40 (
C

Crand

~38:71 ); whereas, the ratio of path length

between any two brain regions was approximately 25

(
L

Lrand

~26:93 ).

Inter-Regional Functional Connectivity
Figure 4 showed the mean inter-regional functional connectivity

map. It was derived by averaging across the weighted connectivity

matrices of all 22 subjects. The map is a 90 | 90 symmetric

matrix. These 90 regions were classified into six major locations as

suggested by Salvador et al. [22]. Each entry in the map

represented the percentage of the connectivity strength between

the corresponding pair of regions. The value of each entry ranged

from 0 (deep blue color in the map) to 1 (dark red color in the

map), whereas 0 means no connection at all and 1 means that two

corresponding regions were firmly connected.

As we can see in Figure 4, a lot of the connections were long-

distance inter-hemispheric connections between bilaterally homol-

ogous brain regions. The uniqueness and importance of bilaterally

symmetric inter-hemispheric connections can be highlighted in the

study of functional network. One reason being that previous

multivariate-analyses based brain anatomical network studies were

uni-hemispheric, it limits the connections only within a single

hemisphere, which were inter-regional connections within left or

right hemisphere [22].

Figure 2. The effects of maintaining different node degrees on the connectivity matrix: (a) K~36; (b) K~48; and (c) K~60.
doi:10.1371/journal.pone.0073577.g002

Table 2. Regions of brain activation associated with voluntary saliva swallowing.

Structure Hemisphere Structure Hemisphere

Anterior cingulate and paracingulate
gyri

LH/RH Paracentral lobule LH/RH

Median cingulate and paracingulate
gyri

LH/RH Inferior parietal, but supramarginal and
angular gyri

LH/RH

Posterior cingulate gyrus LH/RH Superior parietal gyrus LH/RH

Cuneus LH/RH Postcentral gyrus LH

Middle frontal gyrus LH/RH Precentral gyrus RH

Superior frontal gyrus, dorsolateral LH/RH Precuneus LH/RH

Fusiform gyrus LH Lenticular nucleus, putamen LH

Hippocampus LH/RH Supplementary motor area LH/RH

Insula LH/RH Supramarginal gyrus LH/RH

Lingual gyrus LH/RH Superior tempotal gyrus LH/RH

Middle occipital gyrus LH/RH Thalamus LH/RH

Superior occipital gyrus LH/RH

LH: Left Hemisphere. RH: Right Hemisphere.
doi:10.1371/journal.pone.0073577.t002
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Discussion

We believe that our study is the first one to use novel graph

theoretical approaches to report brain functional connectivity

during voluntary saliva swallowing. By utilizing the graph

theoretical approaches, we are able to study the alteration of

functional connectivity at both the global scale as well as the

divisional scale.

Our results highlighted that the spatial topological connectivity

in swallowing related regions are significantly distinguished

compared to whole-brain properties, as can be reflected on

various network measurement parameters. Furthermore, our

results reported the advantage of applying functional connectivity

analysis rather than anatomical connectivity analysis, which is the

importance of bilaterally symmetric inter-hemispheric connec-

tions. This finding from functional connectivity during swallowing

tasks has not been clearly demonstrated by previous studies using

anatomical connectivity approaches.

Network Measures
Network measures for weighted networks in this study consisted

of characteristic path length (L), local efficiency (Eloc), global

efficiency (Eglob), clustering coefficient (C), node degree (k),

hierarchy (b), as well as the small-world attributes of the network

(l and c). The average value of these network properties across all

the 22 subjects were demonstrated in Figure 3. Also, small-world

properties, although varying in some degree, were generally found

in the weighted networks of every subject in the study. The small-

world attributes and hierarchical organization for whole-brain and

swallowing ROIs were similar. However, global efficiency,

characteristic path length, clustering coefficient and local efficiency

Figure 3. Comparison of networks measures for the swallowing ROIs and the whole brain: (a) global efficiency Eglobal (b)
characteristic path length Lp (c) node degree K (d) clustering coefficient C (e) mean local efficiency Eglobal (f) hierarchy b.
doi:10.1371/journal.pone.0073577.g003
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shows higher value within the swallowing ROIs in comparison to

the whole brain.

The characteristic path length was short in both whole-brain

matrices and swallowing-related regions, which indicates that the

distance between distinct brain regions are short during swallow-

ing. Although both whole-brain matrices and swallowing-related

regions were showing low values, significant differences between

these two groups were observed. We have observed that during

swallowing the path lengths were significantly different in

threshold interval from 0.60 to 0.85, which may suggest the

threshold range to use when solely comparing characteristic path

length for two different groups. The whole brain had a lower path

length than swallowing related regions. This finding suggested that

the entire brain functional network during swallowing consists of

various short paths between nodes, which provides faster

information transfer routes.

A clustering coefficient is defined as the proportion of the

number of established connections in direct neighbors of the node

to all their possible connections [5]. It can also denote the local

efficiency of a network or the network’s fault-tolerance [35]. Our

study found that the whole-brain values were lower in comparison

to the values obtained for the swallowing related regions. To be

more specific, we showed that the most significant differences were

observed between threshold values 0.5 and 0.63 suggesting that

more information was interpreted during swallowing.

Our study also reported small global efficiency values

(Eglob*0:5) compared to the random network (Eglob,rand*1);

although compared to other network measurements, the difference

was not as pronounced between two groups. The smaller Eglob

values in functional brain networks compared to random networks

showed that the functional brain networks are characterized by

small-world properties indicated by [4]. In addition, higher global

efficiency values in swallowing-related regions suggest optimal

information transfer efficiency of swallowing-related regions in

comparison to the whole brain.

Small-Worldness
Our study revealed that the brain functional network associated

with swallowing is a large complex network with efficient small-

world properties. The small-world parameters calculated for this

study were consistent with small-world attributes for brain

functional networks. This further implies that distinct small-world

properties are generally found in the weighted networks of every

subject in the study. As we have calculated, the clustering

coefficient in the brain network was generally 40 times larger

than in the random network. That is to say, the brain network is

about forty times as clustered when compared to a random

network. Also, between any two brain regions in the network, the

path length was approximately twenty times longer compared to

the random network. A higher absolute clustering coefficient and

shorter absolute path length in the functional brain network

Figure 4. Mean map of the weighted connectivity matrixes averaged across the 22 subjects. LH: Left Hemisphere. RH: Right Hemisphere.
doi:10.1371/journal.pone.0073577.g004
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suggests an optimal small-world profile [41], which benefits the

local segregation and global integration within the brain functional

network [19].

Inter-Regional Functional Connectivity
The average functional brain network, shown in Figure 4,

primarily consisted of strong connections between closely neigh-

boring brain regions. This demonstrated that anatomically related

regions are also likely to be functionally connected. However,

functionally connected regions do not necessarily have anatomical

connections. Other than intra-hemispheric connections, our data

highlighted the bilaterally homologous long-range connections

(e.g. PHG.L to PHG.R, SFGmed.L to SFGmed.R, SMA.L to

SMA.R and etc). These inter-hemispheric connections were strong

in connectivity strength (wijw0:55) and have not been previously

reported according to their anatomical distances [29], which

clearly showed the advantage of performing functional network

analysis on human brain networks. The importance of bilaterally

symmetric inter-hemispheric connections can be highlighted in the

study of functional networks. One reason being that previous

anatomical connectivity studies on which multivariate analyses

have been based were uni-hemispheric; it summarizes inter-

regional connections only within a single (right or left) hemisphere

[22]. In addition to inter-hemispheric homologus connections, our

results demonstrated few non-symmetrical bilaterally inter-hemi-

spheric connections that also have not been reported before, such

as SMA.R to PosCG.L, STG.R to HES.L, etc, as shown in

Figure 4. These connections were strongly correlated (wijw0:70)

during swallowing tasks.

Compare to previous functional network studies on various

tasks, the functional networks during swallowing shows some

unique connections. Wang et al. [44] performed functional

connectivity analysis during memory encoding and recognition

tasks. Their study showed strong functional connectivity between

anatomical adjacent regions. However, the bilaterally homologous

long-range connections show relatively low connectivity strength

(wijv0:25), and the unique connections (PosCG.L to SMA.R,

HIP.L to THA.R) did not exist in this study. We also referred to

other functional connectivity studies [33], [41], and neither of the

studies has shown bilaterally homologous long-range connections,

which further convinced us of the unique connectivity pattern

during swallowing.

Also, the higher degree and stronger strength of functional

connectivity in swallowing ROIs (as can be seen in Figure 4) not

only demonstrated a more densely connected network during

swallowing, but also indicated an increased activation of function-

ally related brain regions during swallowing.

Correlation between swallowing-related regions in the function-

al connectivity matrices suggested that this approach could be

helpful in understanding the inner connections among regions

during swallowing. This approach can also be used as a

visualization tool of functional connectivity.

Conclusion

In this study, we successfully reconstructed the weighted

functional networks during swallowing based on fMRI recordings

from 22 subjects. We utilized graph-theoretical approaches to

produce a set of measures that quantified properties for

swallowing-related ROIs and whole-brain metrics of a brain

functional network. The main findings in the study were: (1)

Swallowing regions and the whole-brain metrics showed a similar

node degree distribution and optimal small-world properties. (2)

Swallowing-related areas had distinct inter-regional connectivity

patterns. (3) The network properties of large-scale brain connec-

tivity differs significantly between swallowing-related areas and the

whole brain. Collectively, these and other findings reported in this

study provided new insights into how graph-theoretical approach-

es can be utilized to describe the brain functional network during

swallowing and thus provided new clues for understanding the

mechanism of swallowing.

Acknowledgments

The authors are very grateful to the participants for their time.

Author Contributions

Conceived and designed the experiments: PS ES. Performed the

experiments: PS. Analyzed the data: BL ES. Contributed reagents/

materials/analysis tools: BL PS ES. Wrote the paper: BL PS ES.

References

1. Mbonda E, Claus D, Bonnier C, Evrard P, Gadisseux JF, et al. (1995) Prolonged
dysphagia caused by congenital pharyngeal dysfunction. The Journal of

Pediatrics 126: 923–927.

2. Sejdić E, Steele CM, Chau T (2009) Segmentation of dual-axis swallowing
accelerometry signals in healthy subjects with analysis of anthropometric effects

on duration of swallowing activities. IEEE Transactions on Biomedical

Engineering 56: 1090–1097.

3. Sporns O, Zwi J (2004) The small world of the cerebral cortex. Neuroinformatics
2: 145–162.

4. Watts DJ, Strogatz SH (1998) Collective dynamics of ’small-world’ networks.
Nature 393: 440–442.

5. Kaiser M (2011) A tutorial in connectome analysis: Topological and spatial
features of brain networks. NeuroImage 57: 892–907.

6. Hamdy S, Mikulis DJ, Crawley A, Xue S, Lau H, et al. (1999) Cortical

activation during human volitional swallowing: an event-related fMRI study.

American Journal of Physiology – Gastrointestinal and Liver Physiology 277:
G219-1-G225-7.

7. Kern MK, Jaradeh S, Arndorfer RC, Shaker R (2001) Cerebral cortical

representation of reexive and volitional swallowing in humans. American

Journal of Physiology – Gastrointestinal and Liver Physiology 280: G354-1-
G360-7.

8. Dziewas R, Sörös P, Ishii R, Chau W, Henningsen H, et al. (2003)

Neuroimaging evidence for cortical involvement in the preparation and in the

act of swallowing. NeuroImage 20: 135–144.

9. Martin RE, MacIntosh BJ, Smith RC, Barr AM, Stevens TK, et al. (2004)
Cerebral areas processing swallowing and tongue movement are overlapping but

distinct: A functional magnetic resonance imaging study. Journal of Neuro-

physiology 92: 2428–2493.

10. Martin RE, Barr AM, MacIntosh B, Smith RC, Stevens T, et al. (2007) Cerebral

cortical processing of swallowing in older adults. Experimental Brain Research
176: 12–22.

11. Lowell SY, Poletto CJ, Knorr-Chung BR, Reynolds RC, Simonyan K, et al.

(2008) Sensory stimulation activates both motor and sensory components of the

swallowing system. NeuroImage 42: 285–295.

12. Martin RE, Goodyear BG, Gati JS, Menon RS (2001) Cerebral cortical

representation of automatic and volitional swallowing in humans. Journal of

Neurophysiology 85: 938–950.

13. Mosier KM, Liu WC, Maldjian JA, Shah R, Modi B (1999) Lateralization of

cortical function in swallowing: A functional MR imaging study. American

Journal of Neuroradiology 20: 1520–1526.

14. Zald DH, Pardo JV (1999) The functional neuroanatomy of voluntary

swallowing. Annals of Neurology 46: 281–286.

15. Sörös P, Inamoto Y, Martin RE (2009) Functional brain imaging of swallowing:
an activation likelihood estimation meta-analysis. Human Brain Mapping 30:

2426–39.

16. Sörös P, Al-Otaibi F,Wong SWH, Shoemaker JK, Mirsattari SM, et al. (2011)
Stuttered swallowing: Electric stimulation of the right insula interferes with water

swallowing. a case report. BMC Neurology 11: 20.

17. Friston KJ, Ashburner JT, Kiebel SJ, Nichols TE, Penny WD, editors (2006)
Statistical Parametric Mapping : The Analysis of Functional Brain Images.

Jordan Hill, GBR: Academic Press.

18. Friston KJ, Frith CD, Frackowiak RSJ, Turner R (1995) Characterizing

dynamic brain responses with fMRI: A multivariate approach. NeuroImage 2:
166–172.

19. Liu Y, Liang M, Zhou Y, He Y, Hao Y, et al. (2008) Disrupted small-world

networks in schizophrenia. Brain 131: 945–961.

Brain Networks and Swallowing

PLOS ONE | www.plosone.org 10 August 2013 | Volume 8 | Issue 8 | e73577



20. Rubinov M, Sporns O (2010) Complex network measures of brain connectivity:

Uses and interpretations. NeuroImage 52: 1059–1069.
21. Achard S, Salvador R, Whitcher B, Suckling J, Bullmore E (2006) A resilient,

low-frequency, small-world human brain functional network with highly

connected association cortical hubs. The Journal of Neuroscience 26: 63–72.
22. Salvador R, Suckling J, Coleman MR, Pickard JD, Menon D, et al. (2005)

Neurophysiological architecture of functional magnetic resonance images of
human brain. Cerebral Cortex 15: 1332–1342.

23. Zeng LL, Shen H, Liu L, Wang L, Li B, et al. (2012) Identifying major

depression using whole-brain functional connectivity: a multivariate pattern
analysis. Brain 135: 1498–1507.

24. Tzourio-Mazoyer N, Landeau B, Papathanassiou D, Crivello F, Etard O, et al.
(2002) Automated anatomical labeling of activations in SPM using a

macroscopic anatomical parcellation of the MNI MRI single-subject brain.
NeuroImage 15: 273–289.

25. Brett M, Anton JL, Valabregue R, Poline JB (2002) Region of interest analysis

using an SPM toolbox. In: 8th International Conference on Functional Mapping
of the Human Brain. Sendai, Japan.

26. Bullmore E, Sporns O (2009) Complex brain networks: graph theoretical
analysis of structural and functional systems. Nature Reviews Neuroscience 10:

186–198.

27. Barabasi AL, Albert R, Jeong H (2000) Scale-free characteristics of random
networks: the topology of the world-wide web. Physica A: Statistical Mechanics

and its Applications 281: 69–77.
28. Sporns O, Chialvo DR, Kaiser M, Hilgetag CC (2004) Organization,

development and function of complex brain networks. Trends in Cognitive
Sciences 8: 418–425.

29. Li Y, Liu Y, Li J, Qin W, Li K, et al. (2009) Brain anatomical network and

intelligence. PLOS Computational Biology 5: e1000395-1-17.
30. Boccaletti S, Latora V, Moreno Y, Chavez M, Hwang DU (2006) Complex

networks: Structure and dynamics. Physics Reports 424: 175–308.
31. Latora V, Marchiori M (2001) Efficient behavior of small-world networks.

Physical Review Letters 87: 198701-1-4.

32. Achard S, Bullmore E (2007) Efficiency and cost of economical brain functional

networks. PLoS Computational Biology 3: e17-0174-0183.

33. Supekar K, Musen M, Menon V (2009) Development of large-scale functional

brain networks in children. PLoS Biology 7: e1000157-1-15.

34. Newman MEJ (2003) The structure and function of complex networks. SIAM

Review 45: 167–256.

35. Strogatz SH (2001) Exploring complex networks. Nature 410: 268–276.

36. Gong G, He Y, Concha L, Lebel C, Gross DW, et al. (2009) Mapping

anatomical connectivity patterns of human cerebral cortex using in vivo diffusion

tensor imaging tractography. Cerebral Cortex 19: 524–536.

37. Bassett DS, Bullmore E, Verchinski BA, Mattay VS, Weinberger DR, et al.

(2008) Hierarchical organization of human cortical networks in health and

schizophrenia. The Journal of Neuroscience 28: 9239–9248.

38. Ravasz E, Barabási AL (2003) Hierarchical organization in complex networks.

Physical Review E 67: 026112-1-7.

39. Honey CJ, Sporns O, Cammoun L, Gigandet X, Thiran JP, et al. (2009)

Predicting human resting-state functional connectivity from structural connec-

tivity. Proceedings of the National Academy of Sciences 106: 2035–2040.

40. Whittaker J (1992) Graphical models in applied multivariate statistics. Journal of

Classification 9: 159–160.

41. Supekar K, Menon V, Rubin D, Musen M, Greicius MD (2008) Network

analysis of intrinsic functional brain connectivity in Alzheimer’s disease. PLoS

Computational Biology 4: e1000100-1-11.

42. Liao W, Zhang Z, Pan Z, Mantini D, Ding J, et al. (2010) Altered functional

connectivity and small-world in mesial temporal lobe epilepsy. PloS one 5:

e8525.

43. Mann HB, Whitney DR (1947) On a test of whether one of two random

variables is stochastically larger than the other. Analysis of Mathematical

Statistics 18: 50–60.

44. Wang L, Li Y, Metzak P, He Y, Woodward TS (2010) Age-related changes in

topological patterns of large-scale brain functional networks during memory

encoding and recognition. NeuroImage 50: 862–872.

Brain Networks and Swallowing

PLOS ONE | www.plosone.org 11 August 2013 | Volume 8 | Issue 8 | e73577


