
The Effect of Primer Choice and Short Read Sequences
on the Outcome of 16S rRNA Gene Based Diversity
Studies
Jonas Ghyselinck1*., Stefan Pfeiffer2*., Kim Heylen1, Angela Sessitsch2, Paul De Vos1

1 Laboratory of Microbiology, Department of Biochemistry and Microbiology, Ghent University, Ghent, Belgium, 2 Department of Health and Environment, Bioresources

Unit, AIT Austrian Institute of Technology GmbH, Tulln, Austria

Abstract

Different regions of the bacterial 16S rRNA gene evolve at different evolutionary rates. The scientific outcome of short read
sequencing studies therefore alters with the gene region sequenced. We wanted to gain insight in the impact of primer
choice on the outcome of short read sequencing efforts. All the unknowns associated with sequencing data, i.e. primer
coverage rate, phylogeny, OTU-richness and taxonomic assignment, were therefore implemented in one study for ten well
established universal primers (338f/r, 518f/r, 799f/r, 926f/r and 1062f/r) targeting dispersed regions of the bacterial 16S rRNA
gene. All analyses were performed on nearly full length and in silico generated short read sequence libraries containing 1175
sequences that were carefully chosen as to present a representative substitute of the SILVA SSU database. The 518f and 799r
primers, targeting the V4 region of the 16S rRNA gene, were found to be particularly suited for short read sequencing
studies, while the primer 1062r, targeting V6, seemed to be least reliable. Our results will assist scientists in considering
whether the best option for their study is to select the most informative primer, or the primer that excludes interferences by
host-organelle DNA. The methodology followed can be extrapolated to other primers, allowing their evaluation prior to the
experiment.
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Introduction

Next generation sequencing (NGS) platforms have allowed

microbiologists to gain new insights in microbial ecology [1].

Through high-throughput amplicon sequencing of specific target

genes such as the 16S rRNA gene, researchers have been enabled

to get a glimpse of microbial communities in environments of

interest [2]. However, a number of steps, which include sampling,

DNA extraction and PCR, may hamper the objective of obtaining

results truly representing the environment studied [3]. One

essential aspect demanding careful consideration is primer choice.

Particular genes, such as the 16S rRNA gene in bacteria, contain

regions that have evolved at different evolutionary rates, and as

such the scientific outcome may vary with the gene region

sequenced [4,5,6,7]. The 16S rRNA gene consists of fast evolving,

structural parts that are defined as variable regions V1-V9, and

that allow the identification of bacteria. The term ‘hypervariable

region’ was designated to those regions of the 16S rRNA gene of

which the evolutionary rate exceeds the mean evolutionary rate of

all nucleotides in the molecule [8]. However, there are clear

differences in base heterogeneity and phylogenetic discriminatory

power between the different regions [9,10]. The important issue of

primer universality has been discussed previously [11,12,13]. The

16S rRNA gene contains several conserved stretches that are

shared amongst almost all known bacteria [13,14], and that are

used to develop universal primers. However, the coverage rates of

such primers differ with the location of their target in the 16S

rRNA gene. Online matching tools such as SILVA Test Probe

[12] and RDP probe match [15] have been specifically developed

to address this problem. Furthermore, Berry et al. [16] have

reported biases introduced with barcode-tagging of primers that

translate into less reproducible data sets, while Wu and colleagues

[17] extensively mentioned the problems of preferential amplifi-

cation.

The analysis of bacterial communities associated with hosts,

such as plants and weeds, may be hampered by the interference of

host organelles. In order to efficiently extract the bacterial DNA

pool from a host matrix, bacteria ought to be released from the

host matrix prior to, or during DNA extraction. This often

requires a vigorous DNA extraction, which will also release

organelle DNA. As a consequence, microbial community studies

that are based on high-throughput amplicon sequencing of the

16S rRNA gene may experience problems due to the undesired

co-amplification of mitochondrial 18S and chloroplast 16S rRNA.

As plant organelles sometimes outnumber bacterial cells, it is

desirable to specifically amplify prokaryotic genes. The 799 primer

[18] could be of special interest for studying microbial commu-

nities obtained from host matrices. The 799 primer is known to
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allow the exclusion of host derived chloroplast sequences by

targeting the bacterial 16S rRNA gene, while failing to target the

gene in chloroplasts [18]. Moreover, if used in the forward

direction, and in combination with a well-chosen reverse primer, a

mitochondrial amplicon will be generated that is larger than the

corresponding bacterial amplicon [18], which allows their

separation by gel electrophoresis.

Several studies have focused on coverage rates of primers

targeting different regions of the bacterial 16S rRNA gene [12,13],

while others have analyzed the phylogenetic information that is

contained within short reads [10]. Schloss et al. [4] analyzed the

effects of different data processing approaches on alpha- and beta-

diversity for different regions of the bacterial 16S rRNA gene,

while others studied the results of taxonomic assignments with

reads generated from different 16S rRNA gene targeting primers

[5,6,19,20]. However, uniformity between each of these studies,

which provided very useful insights into the advantages and

limitations of the short read sequencing approach, is lacking.

Therefore, it can be difficult to e.g. be aware of the phylogenetic

information that is contained within reads that were generated

from a primer with a well documented coverage rate, and what the

effect of its use will be on OTU richness and taxonomic

assignment. To account for this shortcoming, we implemented

the unknowns that are associated with primer choice, i.e. primer

coverage rate, OTU-richness, taxonomic assignment, and phy-

logeny, in one study for ten different primers, including the 799

primer, targeting dispersed regions of the bacterial 16S rRNA

gene. Our motivation was to get a clear picture of the intrinsic

information loss that is associated with sequencing of short reads

compared to their parent nearly full length (NFL) sequences

covering the V1-V9 variable regions. The results of this study will

allow researchers to select primers based on the objectives of their

research, and will assist them with the interpretation of their

results. Moreover, the approach followed will allow scientists to

evaluate new primers before using them in short read sequencing

based experiments.

Materials and Methods

Primer selection and coverage rate
For this study, we chose well established universal 16S rRNA

gene primers (Table 1), each of which target conserved stretches

between the hypervariable regions V1–V9 of the 16S rRNA gene

that were described by Van de Peer et al [8]. Primer coverage

rates were calculated both at the domain and phylum level by

using the tool ‘‘SILVA Test Probe’’ [12]. SILVA [21] provides

chimera checked, aligned sequences which form todays standard

SSU rRNA database. The primers and their reverse complements

were matched against the non redundant (NR) SILVA SSU Ref

dataset 113 [22], allowing no mismatches.

Selection of sequences and generation of the nearly full
length library

To obtain a practicable but representative subset of the

complete SILVA SSU reference dataset, NFL sequences were

selected from the NR SILVA SSU reference database 102 [21].

The database in question contains ,262 000 sequences that were

chimera and quality checked, and redundancy filtered with the

UCLUST tool [23]. In the frame of ‘The All Species Living Tree

Project’ (LTP) [24,25], a Maximum-Likelihood (ML) tree was

constructed with RaxML [26] containing all UCLUST quality

checked sequences. This allowed the display of the whole database

in a tree format in the ARB software package [27]. We used this

tree as a baseline for sequence selection, and thus for the

construction of the practicable but representative sequence subset.

In ARB, all eukaryotic and archaeal entries were removed, and the

remaining bacterial tree was screened for phylogenetically distinct

bacterial clades. Within each clade all except the entry containing

the longest sequence were removed. Ideally, clades would contain

members of the same genus, so that representatives per clade

would represent the group of type strains within that clade.

However, reality is different, as a number of genera are very

closely related based on their 16S rRNA gene sequences. As a

result, intrageneric phylogenetic distances within some genera

sometimes exceed intergeneric distances between closely related

genera (many genera of the Enterobacteriaceae for instance). In such

cases, one sequence was selected per clade. Similarly, a number of

bacterial genera such as for instance Bacillus and Pseudomonas, are

known to harbour a high intrageneric diversity, containing distinct

phylogenetic lineages. For such genera, sequences of several

members of one genus were selected. For clades that only

contained sequences from uncharacterized cultivation-indepen-

dent sequence data, one full length, high quality 16S rRNA

sequence entry was kept. The resulting tree contained 1186 16S

rRNA gene sequences instead of the initial 262 000, while the

original SSU Ref 102 LTP tree’s branching pattern and

phylogenetic distances were conserved. All 1186 sequences were

exported in a fasta file. The end-points of all sequences were

trimmed with the MEGA 5 software [28] as to obtain maximum

overlap between the sequences. Subsequently, the library was

analyzed in RAxML v7.3.2 to exclude identical sequences and

gap-only characters in the alignment. As a consequence, the

dataset was further reduced to 1175 sequences. All sequences of

the NFL library contained the V1-V9 variable regions of the

bacterial 16S rRNA gene.

Generation of short read libraries
Ten short read (SR) libraries were constructed in MEGA 5 [28];

one library for each of the primers analyzed (Table 1). To do so,

the NFL library was used as a seed by first locating the respective

primers in the NFL library, and then trimming the sequences

280 bp upstream and downstream of the start of each primer

(conform to unidirectional sequencing). The length of 280 bp for

our SR libraries was based on suggestions made by Schloss and

Quince. Although 454 amplicon sequencers generate reads with

an average length of 400–700 bp, most quality checked sequences

dont exceed 280 bp due to quality assignments by leading

packages Mothur [29] and QIIME [30]. Conversely, other NGS

platforms, such as the Illumina sequencers, are now capable of

generating longer reads. Therefore, the length of 280 bp, which

was applied in this study, makes the results obtained applicable for

a variety of NGS sequencers. After trimming primer sequences,

libraries were ready for downstream analyses.

Generation of short read and full length 16S rRNA gene
trees

Each of the libraries was imported in RAxML v7.3.5 and a ML

search was performed with the gamma parameter [31], in

combination with rapid bootstrapping, which uses the CAT

approximation [32]. The substitution model used was GTR.

Bootstrapping was performed with 500 replicates. The command

line used for the tree search was the following: raxmlHPC-

PHTREADS-SSE3 –T ,number of processors. -fa -m

GTRGAMMA -N ,replicates. -x ,seed1. -p ,seed2. -s

,filename. -n ,outputfile.. The best scoring ML tree was

exported in newick format. Patristic distances, which are defined

as the sum of the branch-lengths in the shortest path connecting a
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pair of taxa in a phylogenetic tree, were calculated for all pairs of

taxa within the tree [10].

Branch length based comparison of phylogenetic trees
The Pearson correlation between branch lengths of a pair

of phylogenetic trees. In order to calculate the correlation

between two ML trees, patristic distances between corresponding

pairs of sequences in each of the trees were made into a tuple,

which formed the coordinate of a point in a plot. This was

performed for all pairs of sequences in each of the trees being

compared. For each plot, the Pearson correlation was calculated

and used as one measure to study the phylogenetic relation

between two regions of the bacterial 16S rRNA gene. In order to

present the data in a graph, branch-length distances were

normalized to a maximum value of one and were ordered for

the NFL tree. For each NFL distance interval of 0.01 we

calculated the averages and standard deviations of corresponding

patristic distances in the SR tree. Averaged NFL distances (over a

0.01 distance interval) and corresponding averaged SR distances

were then plotted in a graph, and the standard deviations on the

averaged SR distances were superimposed (as error bars) on the

chart.

The degree of fit between a pair of phylogenetic trees

using the vCEED approach. Patristic distance matrices were

generated from the ML trees by using the PHYLOCOM software

[33]. Distance matrices for each of the trees under comparison

were used as inputs for the vCEED script that was written in

Matlab by Choi and colleagues [34]. Using a distance matrix as an

input, each sequence is mapped to a Euclidean space via metric

multidimensional scaling (MDS). This produces a multidimen-

sional plot in which each point represents one sequence (or taxon)

within the phylogenetic tree (e.g. the NFL tree). The same

procedure is then repeated for a second distance matrix,

representing the phylogenetic tree we want to compare to the

first one (e.g. the SR tree). Subsequently, one embedded point

pattern is superimposed on the other and the degree of fit is

calculated. The degree of fit is expressed by the weighted Root

Mean Square Deviation (wRMSD). A decreasing wRMSD

indicates an increasing degree of fit, and thus a higher similarity

between trees. In addition, regions of high similarity as well as

incongruent regions between the trees can be identified.

Topology based comparison of phylogenetic trees
The Robinson Foulds distance between a pair of

phylogenetic trees. The Robinson Foulds (RF) metric [35]

was used to compare topologies of a pair of unrooted

phylogenetic trees. It counts the number of bipartitions that

occur in one tree but not in the other. The lower the RF value,

the more similar both trees are with respect to tree topology. The

weighted Robinson Foulds (WRF) metric, however, takes into

account the bootstrap support values of the bipartitions instead of

looking at their presence or absence only [36]. A bipartition with

a bootstrap value of 0.6 counts 0.6 instead of 1, and as such the

WRF metric penalizes less for lower supported bifurcations.

Similarly, another metric was calculated that was derived from

the WRF metric, and which we will refer to as WRF2. WRF2

not only includes the support value on each unique bipartition,

but additionally includes the differing bootstrap support values of

shared bipartitions. This provides additional information on the

topological distance between a pair of trees. For this study, the

RF and both WRF distances were calculated using RAxML

v.7.4.2. Gui [26,37].

Sliding window analysis on the nearly full length

alignment. A sliding window analysis was performed with

RAxML v7.3.5 to supplement the RF calculations between NFL

and SR based trees. It tests for each sequence within the NFL

library where the taxon would be placed in the best NFL tree,

using only data contained within a sliding window of a given size.

For our analysis, the size of the sliding window corresponded with

the length of the short read sequences, i.e. 280 bp. After replacing

the taxon in the tree based on the information contained within

the sliding window, the software measures the distance in terms of

nodes to the original placement. Hence, the sliding window

analysis expresses the distance between the original NFL tree and

the NFL tree that was modified according to the information that

would be available if only short sequences were considered.

The Pearson correlation between pairwise distances in a
pair of sequence libraries and the effect on OTU richness

Pairwise distances were calculated between all pairs of

sequences in each sequence library with RAxML v7.3.2. Pairwise

distances between corresponding pairs of sequences in each of two

libraries under comparison were made into a tuple, which then

formed the coordinate of a point in a plot. For each plot, the

Table 1. Primer sequences and their domain specific coverage rates.

Primera Sequence (59–.39) E. coli Position Coverage (%)b
Reference

Eukarya Bacteria Archaea Total

338r GCTGCCTCCCGTAGGAGT 355–338 - 88,4 - 75,6 Suzuki (1996) [44]

518r ATTACCGCGGCTGCTGG 542–518 88,3 85,1 0,4 82,2 Muyzer (1993) [45]

799f AACMGGATTAGATACCCKG 781–799 - 78,5 71,7 69,4 Chelius & Triplett
(2001) [18]

926f AACTCAAAGGAATTGACGG 908–926 - 77,4 - 65,7 Lane (1991) [46]

1062r CTCACRRCACGAGCTGAC 1081–1064 - 89,5 2,4 77,1 Allen (2005) [47]

a, Primer names according to first description; primer names indicate both position and direction.
b, According to SILVA SSU Ref 113 NR database.
doi:10.1371/journal.pone.0071360.t001
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Pearson Correlation was calculated. To present the data

graphically, the same binning step was followed as for the

branch-length distance correlation plots. To study the effect of

pairwise distances altering with the region of the 16S rRNA gene

sequenced on a-diversity, OTU richness was calculated for each

SR library and for the NFL library. OTU richness was calculated

using the Mothur v1.27.0 software [29] with the average neighbor

clustering algorithm (i.e. UPGMA) and a hard cutoff [38]. Results

obtained from the SR libraries were compared with results

obtained from the NFL library by calculating the ratio of the

number of OTUs obtained with each SR library to the number of

OTUs obtained with the NFL library.

Taxonomic assignment of sequences
In silico generated reads and the NFL sequences were assigned

taxonomically using the Mothur v1.27.0 software, using the

classify.seqs() tool. The RDP v9 training set [39] was used as a

reference database. The bootstrap cutoff for assigning a sequence

to a specific taxon was set at 80% based on suggestions made by

Schloss.

Results

Primer Coverage Rate
With a total coverage rate of 82.2%, primer 518f/r showed the

highest coverage amongst all primers investigated. The high value

obtained was not only due to a high coverage within the domain

Bacteria, but also due to a high coverage of eukaryotic 16S rRNA

sequences (Table 1). This non-specificity, however, should be

taken into consideration for bacterial community sequencing in

many habitats, as it could cause contamination with eukaryotic

16S rRNA gene sequences. Primer 799f/r covered 78.5% of

bacterial and 71.7% of archaeal sequences in the database.

Primers 338f/r, 926f/r and 1062f/r showed almost no homology

with sequences within the domains Eukarya and Archaea, which

makes them almost exclusive for Bacteria.

Because total coverage rates bias towards large bacterial phyla

such as the Proteobacteria and Firmicutes, non-coverage rates were

calculated per phylum (Fig. 1). Non-coverage rates reflect the

percentage of sequences that will not be covered by the primer

investigated. Of the better represented phyla in the database,

primer 799f/r was found to discriminate against almost all

sequences of Cyanobacteria, against about 80% of Planctomycetes

and Verrucomicrobia and against more than 50% of Acidobacteria. As

chloroplasts are classified within the phylum Cyanobacteria, primer

799f/r can be considered to be of special interest for host-

associated bacterial community studies. The lowest total coverage

rate that was observed for the 926f/r primer (Table 1) seemed to

be attributed to a low coverage of proteobacterial 16S rRNA gene

sequences (Fig. 1). The highest total coverage rate in Bacteria was

attributed to primer 1062f/r; its non-coverage rate did not exceed

40% in any of the phyla studied (Fig. 1). The non-coverage rates of

primers 338f/r and 518f/r were generally low for the best

represented phyla in the database. However, they were found to

discriminate against specific taxonomic groups such as the

Verrucomicrobia (Fig. 1).

Phylogenetic content of short reads
Jeraldo et al. [10] reasoned that the branch length based

correlation between trees generated from different tree searches on

the same library can be used as a measure for the amount of

phylogenetic information contained in a SR. A high Pearson

Correlation will be obtained if sequences that are found to be

closely together in the SR(1) tree are also found to be closely

together in the SR(2) tree. Correlation values close to zero indicate

the opposite, i.e. that sequences positioned closely together in the

SR(1) tree are not necessarily found to be closely together in the

SR(2) tree, meaning that the tree generated has high uncertainty

with respect to branch lengths. Low correlations thus indicate that

the information within the reads is too limited to calculate

unequivocal branch lengths for a given sequence library, and as

such is insufficient to solve the ML problem. To gain more insight

in this matter, we calculated the correlation between two trees

generated from the same library for the different libraries

investigated. Since full length 16S rRNA gene sequences are the

benchmark for constructing phylogenies [40], it was expected that

the Pearson Correlation between different tree searches for NFL

sequences would be the maximum correlation possible. However,

the correlation between two tree searches from one NFL sequence

library was 0.93 (Table 2) instead of the theoretically expected

value of 1.00. This can be explained by the fact that ML trees are

calculated using a heuristic method, and therefore there is no

guarantee that the tree calculated best represents the sequence

data, and thus is the best tree. Representation of sequence data in

a phylogenetic tree which is based on heuristics is prone to

uncertainties in tree structure, and therefore different tree searches

for one and the same sequence library will unavoidably lead to

differences in tree structure to some extent. Moreover, the random

order in which sequences are added to a maximum parsimony

starting tree in RAxML [41] is likely to generate several different

starting trees for every new analysis that is started [42], again

having implications for the ‘‘best tree’’. Regardless, as the

construction of ML trees from sequence data can only be as good

as the phylogenetic information which it is generated from (i.e. the

sequence data), we expect that the correlation between trees from

different tree searches will be higher as more information is

contained within the read. Surprisingly, a higher correlation was

observed between two trees that were generated from the same

518f library (i.e. 0.97 (Table 2)). However, as explained above, ML

is an approximation and there is no guarantee that the NFL tree

calculated best represents the sequence data. As such, the

possibility exists that the true NFL tree was ‘overlooked’. It is

possible, although difficult to tell, that increasing the number of

NFL starting trees during the ML calculation process would have

resulted in higher correlations between trees obtained from

different tree searches. The search for the best-known ML tree

would in that case have started at different points in the vast search

space and would have followed different trajectories, thus

increasing chances of obtaining ML trees with higher likelihood

values. Another possibility is that the initial sampling (two trees on

the NFL alignment and two trees on the SR alignment) was too

small, and that the higher correlation obtained for 518f reads

happened by chance. This considered, we decided to generate five

trees for all SR libraries investigated, and three for the NFL

library. Table 2 shows a correlation of 0.98 between NFL(1) and

NFL(3), which shows that our assumption was true and also

confirms the upper-limit statement made earlier. Table 2 also

shows that the high correlation values were maintained with a

higher number of tree searches for the 518f library. Still, the

upper-limit of 0.98 was not reached; correlation values ranged

from 0.93 to 0.97 (coefficient of variation 0.015). This clearly

shows that any tree constructed from the 518f reads is very robust

with respect to patristic distances. Similarly, high correlations were

obtained and maintained for different tree searches from 799r

reads (coefficient of variation 0.019) (Table 2). These results

indicate that any tree constructed from libraries targeting the V4

region of the bacterial 16S rRNA gene (i.e. 799r and 518f) is very

stable with respect to branch-lengths. The V6-targeting 1062r
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read library on the other hand, showed the lowest correlation

between trees generated from different tree searches, indicating its

low reproducibility and thus phylogenetic content.

Since comparing phylogenetic trees based on correlations

between patristic distances is known to have its weaknesses [34],

we strengthened our study by additionally applying the recently

published vCEED approach [34]. A statistically significant

negative correlation was found between results obtained with the

vCEED approach (in terms of wRMSD), and those obtained with

the Pearson Correlation method for comparisons of trees obtained

from different tree searches on the same library (R = 20.93,

p,0.0005). Similar to the Pearson Correlation approach, the

highest degree of fit was found for NFL(1) vs NFL(3). Amongst the

SR libraries, the highest degree of fit was observed for the 518f

library, followed by the 799r and 1062f libraries. Supporting the

observations obtained with the Pearson Correlation approach, the

averaged wRMSD and the corresponding coefficients of variation

were slightly lower for 799r reads than for 1062f reads (i.e. 0.0103

versus 0.0106, with coefficients of variation being 0.113 and 0.191

respectively) indicating its higher phylogenetic content. The V6

targeting 1062r read library again showed the largest variation

among tree searches, which reflects its rather low phylogenetic

content.

Conservation of tree topology with different tree
searches

To answer the question whether differences in branch length

conservation amongst the different SR libraries investigated can be

extrapolated to conservation of the tree’s branching pattern,

differences in topologies between trees generated from different

tree searches on each SR library were calculated. Still, topological

accuracy of a phylogenetic tree is not only a function of sequence

length. The required sequence length to reach a given topological

accuracy also depends on tree height, deviation from ultrame-

tricity and the number of taxa included in the analysis [43].

Unweighted RF distance calculations showed that the 518f SR

trees had the most consistent tree topology, followed by 799r and

1062f reads. Still, the RF distance was around two times higher

than the RF distance between trees from different tree searches on

the NFL library. The most variant tree topology was calculated for

trees generated from the 1062r library, which confirmed the

results obtained with patristic distances (Table 2).

The difference between RF and WRF values for a given tree

comparison provides insight in the nature of differences in tree

topology [10]. If the WRF value approximates the RF value,

differences mainly occur in high-supported sub-trees, while a WRF

value that is much lower than the corresponding RF value

indicates that differences mainly occur on less supported

bipartitions. Comparing tree topology conservation of the 518f

and 799r tree sets with tree topology conservation of the 1062f tree

set indicated that the topologies of the former were more

conserved than topologies between trees generated from the

1062f library (Table 2). However, if penalized for the lower

supported clades, trees generated from the 1062f library were

more consistent with respect to tree topology conservation.

Therefore, differences between the trees generated from different

trees searches on the 518f and 799r SR libraries seem to occur on

better supported branches than for trees that were generated from

the 1062f SR library.

Do SR reflect NFL phylogeny?
With respect to patristic distances. The Pearson Correla-

tion between corresponding patristic distances in trees generated

from NFL and SR libraries was used to investigate if a read can be

used to infer 16S rRNA gene based phylogeny. The correlation

plots (Fig. 2) show that with the exception of the 1062r read

library, there seemed to be no significant deviation from a straight

line behavior, which is reflected by the correlation values given in

Table 3. This indicates that all reads, with the exception of 1062r,

can be used to study 16S rRNA gene based phylogeny. However,

in most cases a scattering is observed for large NFL patristic

distances, indicating a rather poor association between distant

sequences in the SR and NFL trees. Table S1 in File S1 shows that

correlations between SR and NFL trees fluctuate with different

tree searches. These fluctuations are the combined effect of

differences occurring in branch lengths between trees generated

from different tree searches on NFL and SR libraries, which, as

mentioned in the previous paragraph, can be related to the

phylogenetic content of the reads.

A strong statistically significant negative correlation (R = 20.93,

p,0.0005) indicated that the vCEED approach confirmed the

results obtained with the Pearson Correlation method for

comparisons between SR and NFL trees. The highest degree of

fit was obtained for the 518f and 1062f libraries, closely followed

by the 799r library.

With respect to tree topology. To find out whether branch

length correlations were conform with consistency of the tree’s

branching pattern, RF and WRF distances were calculated

between NFL and SR trees. The SR libraries that best conserved

NFL tree topology were the 518f, 799r and 926r libraries

(Table 3). The SR libraries that least conserved NFL tree

topology were those targeting the V6 region, i.e. 1062r and

926f (Table 3). Despite the relatively large RF distances

between NFL and 1062r SR trees, the WRF1 and WRF2

distances were relatively small, in the same range of 338f/NFL and

518f/NFL distances. This indicates that a large part of the

bipartitions that are unique in the 1062r or NFL tree have a low

support value. The 1062f trees, which had the lowest WRF

values between trees generated from different tree searches

amongst the SR libraries investigated (WRF1, Table 2), showed

a relatively low conservation of NFL tree topology (RF, Table 3).

Similarly, the WRF1 and WRF2 distances between 1062f SR trees

and NFL trees were high (Table 3). These observations show that

trees generated from the 1062f library did not conserve NFL

topology.

The sliding window analysis allowed quantifying the congru-

ence of each alignment site with the overall NFL tree topology.

The result of the analysis is given in Fig. 3. The alignment position

(x-axis) marks the position of the first base within the sliding

window; the node distance (y-axis) expresses the distance between

the best tree generated from the NFL sequences and a tree

modified starting from the NFL tree based on information as

available from short read sequence data. The better the 280 bp

window based modified tree correlates with the original NFL tree,

the lower the distance in terms of nodes will be. The lower the

node distance the more congruent the respective alignment site is

to the overall tree topology. Fig. 3 shows that the best congruence

with NFL tree topology was obtained for reads covering the V4,

V5 and V6 regions of the 16S rRNA gene. The analysis also shows

that amongst the V4 targeting reads, best congruence with NFL

Figure 1. Percentage of non-coverage rates in 29 classified bacterial Phyla for the primers analyzed in this study. Non coverage rates
were calculated based on the coverage values in the SILVA SSU Ref 113 NR database, using SILVA Test Probe with zero mismatches allowed.
doi:10.1371/journal.pone.0071360.g001
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Table 2. Overview of research parameters that were used to measure the phylogenetic information contained within short read
sequences and the OTU richness calculated from each library.

Librariesa
Variable
region

PC
patristicb wRMSDc RFd WRF1e WRF2f RF-WRF1 RF-WRF2

OTU
0.01
cutoffg

OTU
0.02
cutoffg

OTU
0.03
cutoffg

NFL(1) vs NFL(2) V1-V9 0.928 0.0098 585.3 121.07 155.98 462.93 428.02 - - -

NFL(1) vs NFL(3) 0.979 0.0041

NFL(2) vs NFL(3) 0.943 0.0091

338f(1) vs 338f(2) V3 0.799 0.0135 1260.6 92.97 118.42 1167.63 1142.18 0.86 0.87 0.89

338f(1) vs 338f(3) 0.697 0.0182

338f(1) vs 338f(4) 0.767 0.0156

338f(1) vs 338f(5) 0.911 0.0098

338f(2) vs 338f(3) 0.858 0.0143

338f(2) vs 338f(4) 0.821 0.0137

338f(2) vs 338f(5) 0.819 0.0139

338f(3) vs 338f(4) 0.685 0.0178

338f(3) vs 338f(5) 0.789 0.0157

338f(4) vs 338f(5) 0.802 0.0154

338r(1) vs 338r(2) V2 0.846 0.0141 1359 85.17 110.33 1273.83 1248.67 0.82 0.84 0.84

338r(1) vs 338r(3) 0.851 0.014

338r(1) vs 338r(4) 0.735 0.0191

338r(1) vs 338r(5) 0.828 0.0138

338r(2) vs 338r(3) 0.914 0.01

338r(2) vs 338r(4) 0.642 0.0193

338r(2) vs 338r(5) 0.828 0.0123

338r(3) vs 338r(4) 0.699 0.0194

338r(3) vs 338r(5) 0.826 0.0129

338r(4) vs 338r(5) 0.729 0.0175

518f(1) vs 518f(2) V4 0.97 0.0062 1033.8 92.76 122.92 941.04 910.88 0.79 0.79 0.81

518f(1) vs 518f(3) 0.969 0.0059

518f(1) vs 518f(4) 0.949 0.0077

518f(1) vs 518f(5) 0.956 0.007

518f(2) vs 518f(3) 0.952 0.0076

518f(2) vs 518f(4) 0.931 0.0086

518f(2) vs 518f(5) 0.934 0.0084

518f(3) vs 518f(4) 0.937 0.0082

518f(3) vs 518f(5) 0.942 0.0075

518f(4) vs 518f(5) 0.956 0.0074

518r(1) vs 518r(2) V3 0.905 0.0112 1245.6 91.78 118.82 1153.82 1126.78 0.86 0.85 0.87

518r(1) vs 518r(3) 0.66 0.0206

518r(1) vs 518r(4) 0.957 0.0069

518r(1) vs 518r(5) 0.871 0.0117

518r(2) vs 518r(3) 0.66 0.0201

518r(2) vs 518r(4) 0.892 0.0115

518r(2) vs 518r(5) 0.813 0.0151

518r(3) vs 518r(4) 0.653 0.0211

518r(3) vs 518r(5) 0.661 0.0213

518r(4) vs 518r(5) 0.839 0.013

799f(1) vs 799f(2) V5 0.888 0.0106 1300.2 85.86 112.82 1214.34 1187.38 0.67 0.61 0.59

799f(1) vs 799f(3) 0.821 0.013

799f(1) vs 799f(4) 0.941 0.0095

799f(1) vs 799f(5) 0.941 0.0092
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Table 2. Cont.

Librariesa
Variable
region

PC
patristicb wRMSDc RFd WRF1e WRF2f RF-WRF1 RF-WRF2

OTU
0.01
cutoffg

OTU
0.02
cutoffg

OTU
0.03
cutoffg

799f(2) vs 799f(3) 0.914 0.0096

799f(2) vs 799f(4) 0.822 0.0126

799f(2) vs 799f(5) 0.817 0.013

799f(3) vs 799f(4) 0.741 0.0155

799f(3) vs 799f(5) 0.74 0.0159

799f(4) vs 799f(5) 0.929 0.0084

799r(1) vs 799r(2) V4 0.92 0.0098 1143.6 99.29 128.54 1044.31 1014.06 0.81 0.77 0.79

799r(1) vs 799r(3) 0.91 0.0116

799r(1) vs 799r(4) 0.89 0.0118

799r(1) vs 799r(5) 0.95 0.0108

799r(2) vs 799r(3) 0.95 0.0083

799r(2) vs 799r(4) 0.93 0.0088

799r(2) vs 799r(5) 0.92 0.0109

799r(3) vs 799r(4) 0.93 0.0096

799r(3) vs 799r(5) 0.92 0.0106

799r(4) vs 799r(5) 0.91 0.0111

926f(1) vs 926f(2) V6 0.871 0.0129 1423 103.08 127.38 1319.92 1295.62 0.81 0.77 0.79

926f(1) vs 926f(3) 0.841 0.0145

926f(1) vs 926f(4) 0.858 0.0161

926f(1) vs 926f(5) 0.93 0.0118

926f(2) vs 926f(3) 0.836 0.0132

926f(2) vs 926f(4) 0.847 0.0157

926f(2) vs 926f(5) 0.851 0.0132

926f(3) vs 926f(4) 0.82 0.0173

926f(3) vs 926f(5) 0.863 0.0136

926f(4) vs 926f(5) 0.849 0.0165

926r(1) vs 926r(2) V5 0.857 0.0136 1228.4 86.39 113.04 1142.01 1115.36 0.73 0.69 0.7

926r(1) vs 926r(3) 0.87 0.016

926r(1) vs 926r(4) 0.819 0.0143

926r(1) vs 926r(5) 0.783 0.0151

926r(2) vs 926r(3) 0.884 0.014

926r(2) vs 926r(4) 0.924 0.0082

926r(2) vs 926r(5) 0.812 0.0143

926r(3) vs 926r(4) 0.769 0.0162

926r(3) vs 926r(5) 0.844 0.0155

926r(4) vs 926r(5) 0.729 0.015

1062f(1) vs 1062f(2) V7&8 0.95 0.0078 1212.6 75.51 102.48 1137.09 1110.12 0.68 0.64 0.6

1062f(1) vs 1062f(3) 0.88 0.0105

1062f(1) vs 1062f(4) 0.9 0.0105

1062f(1) vs 1062f(5) 0.93 0.0082

1062f(2) vs 1062f(3) 0.87 0.0107

1062f(2) vs 1062f(4) 0.91 0.0103

1062f(2) vs 1062f(5) 0.9 0.0097

1062f(3) vs 1062f(4) 0.78 0.0147

1062f(3) vs 1062f(5) 0.89 0.0106

1062f(4) vs 1062f(5) 0.84 0.0129

1062r(1) vs 1062r(2) V6 0.742 0.0164 1432.8 107.86 130.78 1324.94 1302.02 0.79 0.82 0.84

1062r(1) vs 1062r(3) 0.708 0.0179
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tree topology was obtained with 799r generated reads. Reads

generated from the V2 and V3 targeting primers, as well as reads

generated from the 1062f primer seemed to be less representative

for NFL sequences with respect to tree topology.

Relation between patristic distances in SR and NFL trees
The Pearson Correlation does not provide information about

the extent to which patristic distances in the SR tree approximate

corresponding distances in the NFL tree. To address this question

we calculated the slope of the best-fitting line forced through the

origin of the chart (Table 3). Reads generated from primers 338f,

926f, 1062r, 799f and 518r were found to generally overestimate

branch-length distances, while reads generated from primers 926r,

338r, 518f, 1062f and 799r were found to generally underestimate

branch-length distances. The 799f and 518r libraries approximat-

ed NFL patristic distances best.

Resolving power of SR fragments
In relation to patristic NFL distances. The sizes of the

error bars on the averaged SR distances (Fig. 2) are an indication

for the resolving power of a SR fragment for a given normalized

distance in the NFL tree. As mentioned in the methods section,

branch lengths in the SR tree were averaged for each 0.01 distance

unit interval in the NFL tree and the corresponding standard

deviation on branch lengths in the SR tree was calculated. For a

particular averaged NFL branch length, a high standard deviation

indicates that the phylogenetic information within the reads did

not allow to resolve the true branch lengths between all concerning

pairs of sequences in the SR tree. In contrast to the Pearson

Correlation, the standard deviation provides insight in the

variation of patristic distances in the SR tree relative to a given

normalized distance in the NFL tree. As such, it provides insight in

the resolving power of the read for any normalized patristic

distance in the NFL tree. The path of this standard deviation,

plotted in function of the patristic distances in the NFL tree, is

Table 2. Cont.

Librariesa
Variable
region

PC
patristicb wRMSDc RFd WRF1e WRF2f RF-WRF1 RF-WRF2

OTU
0.01
cutoffg

OTU
0.02
cutoffg

OTU
0.03
cutoffg

1062r(1) vs 1062r(4) 0.776 0.0152

1062r(1) vs 1062r(5) 0.832 0.0163

1062r(2) vs 1062r(3) 0.792 0.0155

1062r(2) vs 1062r(4) 0.817 0.0145

1062r(2) vs 1062r(5) 0.77 0.017

1062r(3) vs 1062r(4) 0.698 0.0173

1062r(3) vs 1062r(5) 0.83 0.0139

1062r(4) vs 1062r(5) 0.722 0.0172

a, NFL = Nearly Full Length.
b, PC = Pearson Correlation.
c, wRMSD = Weighted Root Mean Square Deviation.
d, RF = averaged Robinson Foulds distances between five best ML trees.
e, WRF1 = averaged Weighted Robinson Foulds distances between five best ML trees based on the sum of the supports of the unique bipartitions.
f, WRF2 = averaged Weighted Robinson Foulds distance between five best ML trees based on the sum of the supports of the unique bipartitions plus the difference of
support values amongst the shared bipartitions.
g, the ratio of the number of OTUs obtained with each short read library to the number of OTUs obtained with the nearly full length library.
doi:10.1371/journal.pone.0071360.t002

Figure 2. The Pearson Correlation between corresponding patristic distances in trees generated from nearly full length (x-axis) and
short read libraries (y-axis) for the different primers investigated. Patristic distances were normalized to a maximum value of one prior to
plotting.
doi:10.1371/journal.pone.0071360.g002
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given for each read library in Figure S1 in File S1. In general, a

scattering is observed at NFL patristic distances larger than 0.8,

which is explained by the decreasing amount of patristic distances

contributing to each averaged distance interval for larger

distances. We should note that for interpretation of the standard

deviation curve standard deviations corresponding to distances

larger than 0.8 were not taken into account. The y-axis was set at a

maximum value of 0.2 in order to gain more detail in the path of

the standard deviation curve. Limiting this maximum value caused

the loss of some non-informative outlier points at patristic

Table 3. Overview of the research parameters that were applied in comparisons of short read and nearly full length sequence
libraries.

Libraries
Variable
region

PC
patristica

PC
pairwisea wRMSDb

Slope
patristicc

Slope
pairwisec RF d WRF1e WRF2f RF-WRF1 RF-WRF2

338f vs NFL V3 0.687 0.68 0.019 1.46 1.01 1916 636.74 756.32 1279.26 1159.68

338r vs NFL V2 partially 0.754 0.81 0.017 0.7 1.07 1916 613.3 743.78 1302.3 1171.82

518f vs NFL V4 0.804 0.83 0.014 0.67 1.27 1797 601.73 742.95 1195.47 1054.25

518r vs NFL V3 0.702 0.69 0.018 1.07 0.98 1914 637.43 754.86 1276.17 1158.74

799f vs NFL V5 0.745 0.84 0.017 1.08 0.75 1938 641.39 755.13 1297.01 1183.27

799r vs NFL V4 (almost
complete)

0.787 0.83 0.015 0.58 1.32 1833 615.35 735.74 1217.45 1097.06

926f vs NFL V6 0.692 0.72 0.019 1.17 1.05 2032 702.96 801.56 1329.44 1230.84

926r vs NFL V5 0.729 0.84 0.017 0.82 1.04 1838 606.2 743.73 1232.2 1094.67

1062f vs NFL V7 & V8
partially

0.82 0.78 0.014 0.59 0.64 1948 695.49 798.8 1252.51 1149.2

1062r vs NFL V6 0.664 0.72 0.019 1.12 1.05 2015 643.48 758.94 1371.32 1255.86

a, PC = Pearson Correlations, values presented are the means that were obtained from the different tree comparisons.
b, wRMSD = Weighted Root Mean Square Deviations, values presented are the means that were obtained from the different tree comparisons.
c, slope was calculated for SR(1) versus NFL(1).
d, RF = averaged Robinson Foulds distance between NFL and SR trees.
e, WRF1 = averaged Weighted Robinson Foulds distance between NFL and SR trees based on the sum of the supports of the unique bipartitions.
f, WRF2 = averaged Weighted Robinson Foulds distance between NFL and SR trees based on the sum of the supports of the unique bipartitions plus the difference of
support values amongst the shared bipartitions.
doi:10.1371/journal.pone.0071360.t003

Figure 3. The result of the sliding window analysis on the nearly full length alignment. The size of the window was 280 bp, conform the
length of the short read sequences. Plus signs indicate the points that cover the regions sequenced by the primers studied.
doi:10.1371/journal.pone.0071360.g003
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distances larger than 0.8. A general trend is that the standard

deviation increases with increasing NFL patristic distance. In some

cases (i.e. 518f, 799f, 518r and 799r) the standard deviation

reaches a maximum value at a certain NFL branch length, and

then fluctuates around this maximum value for increasing patristic

distances. This implies that the resolving power generally

decreases for distant sequences, and in a number of cases varies

around a constant minimum value from a specific NFL patristic

distance forward. Libraries generated from the 338f, 518f, 518r,

799r and 1062f primers were found to generally have the lowest

standard deviation over the complete range of NFL patristic

distances, which means that these libraries have the highest

resolving power over all NFL patristic distances. The 926f

library peaked to the highest standard deviation amongst all

libraries. In the special case of the 1062r library, the resolving

power decreased with increasing NFL patristic distance to reach a

minimum, but from that value forward increased for even more

distant sequences.

In relation to pairwise NFL distances. Figure S2 in

File S1 shows the standard deviation on the averaged pairwise

SR distances in function of the pairwise distances in the NFL tree.

Similar to the plots for patristic distances, a scattering is observed

for normalized pairwise distances larger than 0.6. These points

were not taken into account for interpretation. The y-axis was set

at a maximum value of 0.2, which caused the loss of some non-

informative outlier points. A general trend is that the standard

deviation increases with increasing NFL distance. In the case of

read 1062r, the standard deviation reaches a maximum value for

an NFL distance of approximately 0.4, and then fluctuates around

this maximum value for increasing patristic distances. These

observations imply that, in general, the resolving power decreases

for distant sequences, and in the special case of 1062r varies

around a constant minimum value from a specific distance

forward. Libraries generated from the 338f, 518f, 518r, 799r and

926r primers were found to generally have the lowest standard

deviation over the range of NFL distances up to 0.6, meaning that

these libraries have the highest resolving power over all NFL

distances in question.

OTU richness assessment in SR libraries based on
pairwise distances

The Pearson Correlation between pairwise distances in SR

libraries and corresponding pairwise distances in their parent NFL

library was never close to 1.00. The highest correlations were

found for the 338r, 518f, 799f, 799r, 926r and 1062f reads (Fig. 4,
Table 3), confirming what was observed for patristic distance

correlations between SR and NFL sequences. In each correlation

plot (Fig. 4) we observe a strong correlation up to normalized

pairwise distances of 0.5 to 0.6 on the x-axis. For larger distances

there was some degree of scattering, depending on the library.

This implies that for sequences with a high degree of similarity

within a NFL library, the daughter SR sequences are proportion-

ally similar within the SR library. However, this association is lost

for sequences with a low degree of similarity. Since correlations do

not provide any information about the extent to which pairwise

distances between SR sequences approximate pairwise distances

between their parent NFL sequences, we calculated the slope of

the line of best fit forced through the origin in the NFL versus SR

pairwise distance plots. Youssef et al. [7] found that the slope

depends on the proportion of hypervariable, variable and

conserved bases in the region of the 16 rRNA gene sequenced.

Distances within the 338f and 518r libraries were found to be the

best estimators of distances between NFL sequences, with slopes of

1.01 and 0.98 respectively (Table 3). Similarly, OTU richness

calculated from the 518r and 338f libraries best approximated

OTU richness calculated from NFL sequences (Table 2). How-

ever, no significant relationship was found between OTU richness

calculated from the SR libraries, and the slope of the best fitting

line forced through the origin (R = 0.64, 0.59 and 0.65 for OTU

cut-offs of 0.01, 0.02 and 0.03 respectively). This was somehow

unexpected, but could have been due to the fact that pairwise

distances for OTU assignment were calculated using the Mothur

software, while distance correlation plots were based on pairwise

distances calculated in RAxML. It was shown previously that

distance calculation method and parameters used have a

significant effect on OTU richness [4]. Still, regardless of this

discrepancy, the data shows a clear effect of the region sequenced

on a-diversity in terms of OTU richness (Table 2). In each case

there was an underestimation of OTUs compared to the NFL

sequences. It is clear that these findings argue with the assumption

Figure 4. The Pearson Correlation between corresponding pairwise distances in trees generated from nearly full length (x-axis) and
short read libraries (y-axis) for the different primers investigated. Pairwise distances were normalized to a maximum value of one prior to
plotting.
doi:10.1371/journal.pone.0071360.g004
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frequently made that distances between short reads are represen-

tative for distances between full-length 16S rRNA gene sequences.

Taxonomic assignment of SR sequences
Table 4 summarizes results on the taxonomic assignment

performance of each SR library. Assignment performance was

assessed by comparing identifications for each read within a SR

library with identifications obtained for the parent NFL sequences

in the NFL library. Taxonomic assignment was performed both at

the phylum and genus level. The 518f library was found to

generate the highest percentage of correct assignments at the

genus level (80.15%), followed by the 338f, 799r and 518r libraries

with 76.43%, 76.17% and 76% correct assignments respectively

(Table 4). These observations confirm results obtained by Liu

et al. [5] and Soergel et al. [6]. At the phylum level results were

slightly different. The best assignments were obtained with the

518f, 799f, 799r, 926r, 338f and 518r libraries, all of which gave a

comparably high number of correct assignments. Although the

number of correct assignments obtained with the other SR

libraries was lower, the difference was almost negligible. Short

read sequences that were identified while the NFL sequence could

not, were labeled false positives. The 799f library returned the

smallest amount of false positive genus identifications, while the

926f and 1062r libraries returned the highest amount. At the

phylum level, the number of false positive assignments was

comparable for all libraries. Conversely, a number of SR

sequences could not be assigned, while the NFL sequence was in

fact assigned. Such SR sequences were labeled false negatives.

Both at the genus and phylum level, the 518f library returned the

lowest amount of false negatives while the 1062f library returned

the highest amount. Based on these results it can be concluded that

the 518f library is the best target for assignment of short reads.

With the exception of false positives (for which it scored last but

one), the 518f library scored best for the different criteria for both

genus and phylum level identifications.

Discussion

The aim of this research was to analyze the suitability of

commonly used, published primers targeting dispersed regions of

the bacterial 16S rRNA gene for short read sequencing. The study

targets different aspects that each are involved in data interpre-

tation. We started by calculating primer coverage rates for each of

the primers analyzed, and continued with the phylogenetic

information that is contained within short reads. Subsequently,

the relation between pairwise distances in NFL and SR sequence

libraries was studied to assess the effect on OTU richness. We

ended by investigating the taxonomic assignments obtained with

each of the SR libraries. In order to do so, we constructed a

sequence library composed of 1175 sequences, which served as a

representative substitute of the SILVA SSU database. The choice

to work with this representative library was motivated by the fact

that we did not want to focus on a specific environment, which is

inherently biased towards specific taxonomic groups, but instead

we aimed at making our results applicable for divergent taxa, and

consequently for a variety of environments.

The methodology used allows for a thorough evaluation of the

scientific outcome that is obtained with sequencing short read

fragments generated from primers targeting dispersed regions of

the 16S rRNA gene. For the outline of this study, we started by

following the reasoning of Jeraldo and colleagues [10] who focused

on de novo synthesis of phylogenetic trees from short reads to study

the implications of information loss which is inherent to

sequencing short fragments of the 16S rRNA gene. We extended
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their well designed approach by checking whether short reads can

be used to infer 16S rRNA gene based phylogeny and by assessing

whether short reads are reliable estimators of relationships

between their parent NFL sequences in terms of patristic distances.

Insight in the resolving power of short read fragments for any

patristic or pairwise distance between NFL sequences was

obtained from standard deviations on averaged short read

distances. Next, the relation between pairwise distances between

short read fragments and pairwise distances between NFL

sequences was studied. This information was used to perceive

the effect of sequencing different regions of the 16S rRNA gene on

OTU richness and taxonomic assignment accuracy. Additionally

the coverage rates of the primers were calculated based on

sequences in public 16S rRNA gene databases. We acknowledge

the fact that these databases are composed of sequences that were

obtained from amplicon sequencing, which makes the results

obtained prone to PCR amplification bias. Inclusion of metage-

nomic data, as performed by Mao and colleagues [11], would have

given a superior picture. However, as the emphasis of this study

was on phylogenetic and taxonomic information, we considered

this extension of primer coverage rate beyond the scope of this

study.

Our results show that the 518f reads that target the V4 region of

the bacterial 16S rRNA gene were generally most informative.

The correlation value of 0.97 (and the high degree of fit) that was

obtained after comparing 518f trees from different tree searches is

a very optimistic approximation to the upper limit of 0.98, and

indicates the high phylogenetic content of these reads. High

correlation values were maintained with an increasing number of

tree searches, indicating that the trees generated were very

reproducible with respect to patristic distances. Although 518f

reads tended to underestimate patristic distances in ML trees, they

were found to best reflect 16S rRNA gene based phylogenetic

relationships with good resolving power. The 518f reads were

found to score best for most of the criteria investigated to assess

taxonomic assignment performance. However, nonetheless a high

correlation (and degree of fit) was observed between pairwise

distances in SR libraries and corresponding pairwise distances in

the parent NFL library, reads were not the best estimators of

pairwise distances between NFL sequences (cf. slope). This had its

effect on OTU richness, for which the 518r and 338f libraries were

found to perform better. Furthermore, primer coverage rates

showed that the 518f/r primer is not specific for bacterial 16S

rRNA, which implies that contamination with eukaryotic and

archaeal 16S rRNA genes may occur.

Since 799r reads also target the V4-region of the 16S rRNA

gene, it was not surprising that the primer in question was also

found to be a promising instrument for short read sequencing

studies. The Pearson Correlation and the degree of fit between

patristic distances that were extracted from SR and NFL trees

were higher for reads generated with the 799r primer than with

the 799f primer. The same was observed for multiple tree searches

on the same library. The Pearson Correlation between pairwise

distances in the 799f library and the NFL library was similar to the

Pearson Correlation between pairwise distances in the 799r library

and the NFL library. The high correlation values that were

obtained in both cases indicated that both libraries reflect

similarities between NFL sequences. Sizes of the error bars in

both the patristic and pairwise correlation plots were generally

larger in 799f generated reads than in 799r generated reads,

indicating a higher resolving power of the 799r reads. The slope of

the best fitting line through the origin was 1.08 for the 799f

primer, which is a good approximation of NFL patristic distances.

The slope calculated for the 799r library, however, was only 0.58,

indicating that in general branch lengths were 42% shorter. The

799r reads tended to overestimate differences between sequences,

while the 799f reads tended to underestimate differences, with a

clear effect on a-diversity. Of both libraries, OTU richness in the

799r library was a better estimator of OTU richness in the NFL

library. In terms of taxonomic assignment of SR sequences at the

phylum level, performance was comparable for the 799f and 799r

libraries for the different criteria investigated. However, at the

genus level the 799r library generally performed better than the

799f library.

Our results illustrate that the 1062f/r primer had the highest

coverage rate over the 29 phyla studied. Therefore, this primer is

most likely to target the broadest bacterial diversity amongst the

primers investigated. However, the 518f library scored best for

most of the criteria that allow measuring to which extent the

information obtained from short reads is representative for their

parent full length sequences. In some cases the use of the 799f/r

primer is recommended in order to avoid the interference caused

by co-extracted host organelle DNA. For such cases, the results

obtained show that the 799f/r primer is best used in the reverse

direction in order to optimally exploit the information contained

within short sequencing reads. However, it was mentioned earlier

that in order to exclude the interference of host derived

mitochondrial sequences the primer should be used in the forward

direction. The consideration between information loss due to the

presence of mitochondrial sequences when using the primer in the

reverse direction, and information loss due to the less informative

region sequenced in the forward direction is a decision that should

be driven by the aims of the research.

Supporting Information

Files S1 Contains Figure S1 and S2 and Table S1.
Figure S1 in File S1: The resolving power (y-axis) of short reads

for any normalized patristic distance in the NFL tree (x-axis).

Figure S2 in File S1: The resolving power (y-axis) of short reads for

any normalized pairwise distance in the NFL tree (x-axis).

Table S1 in File S1: Overview of the research parameters that

were applied in comparisons of short read and nearly full length

sequence libraries – individual values for each of the tree

comparisons.

(XLSX)
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