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Abstract

Modularity has been suggested to be connected to evolvability because a higher degree of independence among parts
allows them to evolve as separate units. Recently, the Escoufier RV coefficient has been proposed as a measure of the
degree of integration between modules in multivariate morphometric datasets. However, it has been shown, using
randomly simulated datasets, that the value of the RV coefficient depends on sample size. Also, so far there is no statistical
test for the difference in the RV coefficient between a priori defined groups of observations. Here, we (1), using a rarefaction
analysis, show that the value of the RV coefficient depends on sample size also in real geometric morphometric datasets; (2)
propose a permutation procedure to test for the difference in the RV coefficient between a priori defined groups of
observations; (3) show, through simulations, that such a permutation procedure has an appropriate Type I error; (4) suggest
that a rarefaction procedure could be used to obtain sample-size-corrected values of the RV coefficient; and (5) propose a
nearest-neighbor procedure that could be used when studying the variation of modularity in geographic space. The
approaches outlined here, readily extendable to non-morphometric datasets, allow study of the variation in the degree of
integration between a priori defined modules. A Java application – that will allow performance of the proposed test using a
software with graphical user interface – has also been developed and is available at the Morphometrics at Stony Brook Web
page (http://life.bio.sunysb.edu/morph/).

Citation: Fruciano C, Franchini P, Meyer A (2013) Resampling-Based Approaches to Study Variation in Morphological Modularity. PLoS ONE 8(7): e69376.
doi:10.1371/journal.pone.0069376

Editor: Axel Janke, BiK-F Biodiversity and Climate Research Center, Germany

Received March 24, 2013; Accepted June 7, 2013; Published July 16, 2013

Copyright: � 2013 Fruciano et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: CF received support from a DAAD postdoctoral fellowship (A/11/78461) and a Marie Curie IEF fellowship (GA 327875). AM and PF have been supported
by the University of Konstanz. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: Axel Meyer is a PLOS ONE Academic Editor. This does not alter the authors’ adherence to all the PLOS ONE policies.

* E-mail: Carmelo.Fruciano@uni-konstanz.de

Introduction

Organisms, to function as a whole, need their parts to be

connected and establish relationships, i.e. they need a degree of

‘‘integration’’ [1]. However, the integration between parts is not

uniformly distributed but there are units – called ‘‘modules’’ – that

are relatively independent from each other. Modularity is of

interest for evolutionary biologists as an increase of the level of

modularity – i.e. an increase in the level of independence between

modules – is believed to increase evolvability as modular

organization allows the modules to evolve independently [2–4].

Modular structure can be recognized at multiple levels of

biological organization and, in the case of variational modularity

in morphology (i.e. modular organization that can be inferred

from the higher degree of covariation within modules relative to

the level of covariation between modules; [5]), it is assumed to

reflect evolutionary or developmental processes that result in

modularity itself [6]. For instance, traditionally two modules are

recognized in the house mouse mandible (i.e. the alveolar region

and the ascending ramus). These regions reflect the presence of

multiple morphogenetic units and provide evidence of some

degree of genetic modularity due to pleiotropic effect [7–13].

Analyses of morphological modularity and integration are

extremely popular nowadays and many methods for studying

patterns of modularity and integration exist [14–15]. Klingenberg

[16] has proposed the use of the Escoufier RV coefficient [17] as a

measure of the level of modularity in geometric morphometric

datasets. The RV coefficient is a measure of the covariation

between blocks of variables relative to the covariation within

blocks, so this coefficient is an ideal choice as a measure of

variational modularity (i.e. variation between modules relative to

variation within modules). The Escoufier RV coefficient can be

considered a multivariate extension of the expression for the

squared correlation coefficient between two variables [16], ranging

from 0 to 1 with lower values indicating lower covariation between

modules relative to the variation within modules (i.e. higher degree

of modularity). Robert and colleagues [18] investigated several

statistical properties of the coefficient at sample sizes comprised

between 100 and 1000, showing that it has small bias and small

variance (and, therefore, high precision) when used as estimator,

for finite samples, of the population levels of association between

matrices. Klingenberg [16] also proposed using the RV coefficient

to assess if the level of modularity of an a priori defined partition of

anatomical landmarks in modules is higher than random partitions

of the same set of landmarks. The method developed by

Klingenberg [16] has been widely used since its development,

being also implemented in the software package MorphoJ [19]. In

fact, the ease with which estimates of the degree of modularity can

be obtained and the hypothesis of organization in a priori defined

modules (groups of landmarks) can be tested has promoted the use

of such method on biological datasets. However, while compar-

isons of the levels of overall integration across groups of

observations can be performed using measures of the dispersion
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of the eigenvalues of the principal components [14], no specific

method to analyze variation in the RV coefficient between a priori

defined groups of observations exists. This represents an interest-

ing area of research as, if modularity promotes evolvability, then

inferring variation in levels of modularity might highlight variation

in the levels of evolvability. In a similar fashion, variation in levels

of modularity might point out a variation in the processes that are

responsible of modular organization. Reflecting the high potential

interest of variation in the degree of modularity, studies have

started reporting [20–21] the RV coefficients for different a priori

defined groups of observations (different species in the case of the

two cited studies). Jojić and colleagues [22], when comparing

traditional and geometric morphometric approaches to the study

of modularity, while cautioning against potential discrepancies

between methods, suggested that direct comparisons among

studies on the mouse mandible are reliable. However, it has been

shown [23], using random data, that the RV coefficient decreases

when sample size increases. If this was true for real morphometric

datasets, then comparisons of RV coefficients across samples or

studies with different sample sizes might be meaningless. Another

shortcoming of simply reporting the RV coefficient is that, even in

the case of equal sample sizes, it does not represent a formal test of

the null hypothesis of no variation in levels of modularity but, at

best, an exploratory approach.

Here, we show, using a real morphometric dataset, that the RV

coefficient is, indeed, dependent on sample size. We then describe

how a permutational approach can be used to test for the

difference in RV coefficient between two a priori defined groups of

observations, providing simulations of type I error for this new test.

We, further, suggest two other possible ways of studying variation

in modularity. In particular, how a rarefaction procedure could be

used to obtain ‘‘sample-size-corrected’’ RV values and how a

nearest neighbor procedure might be used to explore patterns of

variation in the RV coefficient in geographic space.

Materials and Methods

Datasets Used
In this study, three real datasets (Tab. 1, Fig. 1) were used either

directly or to generate simulated data. They are unpublished

datasets that will be used here just for the methodological purposes

of this study while the analyses reflecting their biological relevance

will be published elsewhere (P. Franchini, C. Fruciano et al.

unpublished data). For all datasets, (semi)landmarks were digitized

using tpsDig2 [24]. Landmark and semilandmark configurations

were then aligned [25–26] in tpsRelw [27]. In all cases, the

allometric component of shape variation was removed by

performing, in MorphoJ [19], a multivariate regression of shape

on centroid size. Residual Procrustes coordinates were then

partitioned in two modules for the analyses of modularity (Tab. 1,

Fig. 1). When performing Klingenberg’s method [16], significant

modularity was found for all the datasets and subsets in Tab. 1

except for parental species and F1s in Dataset1 and for the CD

subset of Dataset2, probably as a consequence of the small sample

size of these subsets. All the subsequent analyses and simulations

were performed in MATLAB (MathWorks, inc.).

Relationship between RV and Sample Size in a Real
Dataset

To test if there is a relationship between the RV coefficient and

sample size in real datasets, we performed a rarefaction procedure

on the 308 configurations of Procrustes residuals belonging to F2

generation individuals in Dataset1. Briefly, we carried out the

following procedure:: 1. we randomly sampled with replacement

from the 308 configurations 100 samples for each of the sample

sizes comprised between 10 and 300; 2. for each sample we

computed the RV coefficient; 3. we calculated then the mean and

standard deviation of the RV coefficient for each set of 100

samples at each sample size. We repeated the procedure described

above 200 times and obtained grand means of the RV coefficients

and average standard deviation by averaging the results of the 200

independent rarefaction analyses. We also computed the variance

of the mean RV estimate across the 200 independent analyses. To

assess the impact of different alignment procedures, we performed

the above mentioned analysis both aligning all the 308 observa-

tions prior to the rarefaction procedure with a single generalized

Procrustes analysis and performing separate generalized Procrus-

tes analyses for each of the two modules. Further, to assess the

effect of superimposition at each step, we carried out a simplified

version of the procedure described above (steps 1–3). In this

simplified procedure we performed a generalized Procrustes

analysis (both performing a single alignment for all the landmarks

and using separate alignments for each module) for each of the

samples obtained at step 1 of the procedure for all the sample sizes

comprised between 10 and 300 at steps of 5 (10, 15, 20,…).

Using Rarefaction to Standardize RV to a Given Sample
Size

Here we suggest that using a rarefaction procedure could be

useful to overcome the problem of dependency of Escoufier RV on

sample size when one needs to compare RV values directly or use

them in downstream analyses. We apply this idea to the main

groups (A. astorquii, A. zaliosus, F1 specimens, F2 specimens) of

Dataset1. In particular, we draw – sampling with replacement –

1000 random samples of 11 observations (sample size of the

smallest group, F1 individuals) from each of the groups, compute

the Escoufier RV coefficient for each dataset and, finally, compute

a mean RV coefficient for each group.

Permutation Test of the Null Hypothesis of no Difference
in RV Coefficient

Here we propose to test for the difference in RV between two a

priori defined groups of observations.

Let A and B be two matrices n x t and m x t of, respectively, n and

m observations and t variables (constituting, effectively, two a priori

defined groups of n and m observations). Let t = q+r where q and r

are two a priori defined groups of variables (representing modules).

We propose computing the difference between RV coefficients for

each group, defined as:

RVOBSDIF~DRVA{RVBD

Where RVA and RVB are, respectively, the RV coefficient

between q and r variables for matrix A and the RV coefficient

between the same two sets of variables for matrix B.

We propose – to test the null hypothesis H0 : RVA~RVB –

creating two new groups APERM (of size n x t) and BPERM (of size m

x t) resampling without replacement observations from the pooled

sample M of size (n+m) x t and computing the difference in RV

between the two new groups as:

RVPERMDIFF~DRVAPERM{RVBPERMD

Where RVAPERM and RVBPERM are the RV coefficients

computed on APERM and BPERM, respectively. After repeating

Testing for Variation in Morphological Modularity
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the procedure NPERM times to obtain an empirical distribution of

RVPERMDIFF, we will consider the proportion of times in which

RVOBSDIFF exceeds the differences of the empirical distribution as

the probability level at which the null hypothesis H0 of no

difference in RV (modularity) between the two groups can be

rejected.

We used this permutation test on Dataset2, comparing the RV

coefficients for mice from the CD and ACR groups, and on

Dataset3 comparing mice with standard and hybrid karyotype (in

all cases 1000 random permutations were used).

Analysis of Type I Error for the New Permutation Test
To analyze the type I error for the permutation test proposed

here, we used two different approaches: simulating no difference in

modularity using real datasets and simulating no difference in

modularity using random data.

For the first approach, we independently used the following sets

of landmark configurations: F2 individuals from Dataset1, CD mice

mandibles from Dataset2 and ACR mice mandibles from Dataset2.

For each of the sets of landmark configurations independently and

for each of the sample sizes comprised between 40 and 200 at steps

of five, we generated 1000 random multivariate normal datasets

with the observed mean and covariance. Then we subdivided each

dataset in two subsets of equal number of observations (rounded to

the next integer) and performed the proposed permutation test for

the difference in RV coefficient. We, finally, used the proportion of

significant (at the 5% probability level) tests at each sample size as

a measure of type I error.

For the second approach, to test type I error in different

conditions (different number of total cases, different number of

total variables, different number of variables for each block,

different number of observation for each a priori defined group), we

generated 200,000 random datasets. We used random datasets as

this choice allowed us to have a wide range in the number of

variables and their possible subdivision in two blocks. Each dataset

had a random number of observations comprised between 40 and

200 and a random number of variables comprised between 20 and

100. Observations for each variable were drawn from the standard

uniform distribution on the open interval (0,1). Each random

dataset was, further, divided into two groups of observations and

two blocks of variables with the number of observations per group

being random but constrained to be higher than 20 and the

number of variables per block random but constrained to be at

Table 1. Datasets used in the present paper.

Dataset Subsets

Description n Description n

Dataset1 Body shape data for a QTL experiment in Midas cichlid fish (P. Franchini, C. Fruciano et al. unpublished
data). A total of 20 points, comprising both landmarks and semilandmarks, was digitized. The full dataset of
landmark/semilandmark configurations was then subjected to a generalized Procrustes analysis (GPA)
with sliding of semilandmarks [26]. Two modules (one cranial and one post-cranial; [31]) were defined,
thereby effectively partitioning the 40 variables into two groups of 10 and 30 variables respectively.

376 Amphilophus astorquii 16

Amphilophus zaliosus 41

F1 individuals obtained
crossing a female A. astorquii
and a male A. zaliosus

11

F2 individuals obtained
breeding two F1 individuals

308

Dataset2 Data from a morphometric analysis of a contact area between two chromosomal races (CD and ACR)
of the Western European house mouse (Franchini et al. unpublished data). Fifteen landmarks were collected in
the left mandible of each individual and then subjected to a GPA [25]. Two modules, defined by the ascending
ramus and the alveolar region [9], were defined by 7 and 8 landmarks respectively, partitioning the variables
into two groups of 14 and 16 variables.

84 CD 18

ACR 66

Dataset3 Data from a morphometric analysis of a hybridization area between two chromosomal races
(CD and Standard races) of the Western European house mouse (Franchini et al. unpublished data).
Landmarks and modules as in Dataset2.

86 Standard 45

Hybrids 41

doi:10.1371/journal.pone.0069376.t001

Figure 1. Configurations of points for datasets used in the
present work. a. Dataset1, b. Dataset2 and Dataset3. Circles represent
landmarks, triangles semilandmarks. Red and blue distinguish the two
modules.
doi:10.1371/journal.pone.0069376.g001
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least four. For each of the simulated datasets we performed the

proposed permutation test for the difference in the RV coefficient,

using the proportion of significant tests as a measure of type I

error. To investigate if the type I error of our test was dependent

on number of cases, number of variables, difference in sample size

between groups, difference in variables between blocks, we also

produced plots of such features for datasets which returned a

significant test.

Using a Nearest Neighbor Approach to Analyze Variation
in Modularity in Geographic Space

In the case of a relatively small number of discrete samples with

multiple observations (sampling sites), variation in geographic

space could be studied by standardizing to a common sample size

through rarefaction and/or multiple pairwise comparisons using

the permutation test proposed here. However, in case of sparse

sampling in geographic space, we suggest that a solution could be

to compute, for each xi observation in geographic space, the RV

coefficient for the subset comprising xi itself and its k-nearest

neighbors, computing also the average spatial coordinates of the

subset. In this way, for each of the original observations an RV

coefficient and a new spatial position will be computed. The new

matrix representing the variation in the RV coefficient in

geographic space could then be analyzed with exploratory or

hypothesis-testing tools. For instance, plots of the variation of the

RV coefficient in geographic space can be obtained and functions

to describe the observed patterns can be fitted to the data. Here we

provide an example of such an approach using Dataset1. We

divided a hypothetical bidimensional square – representing a

hypothetical geographic space – into four quadrants. Then for

three of the four quadrants we generated – using the multivariate

normal distribution having the mean and covariance matrix of the

F2 individuals in Dataset1–100 observations per quadrant and

assigned them random uniform coordinates within the quadrant.

For the fourth quadrant we generated 100 observations from the

multivariate normal distribution having the mean and covariance

matrix of a subset of F2 individuals chosen so to have a higher RV

coefficient and assigned them random uniform coordinates. In

such a way, we simulated the situation where within one quadrant

– the upper left – there would be a maximum in the RV

coefficient. We then computed the RV coefficient with the k-

nearest neighbor approach outlined above using k = 20, Euclidean

distances in the two-dimensional space as distance measure and

the KD-tree technique for finding the k-nearest neighbors [28].

Finally, we fitted a third-order polynomial on the obtained matrix

of RV coefficients and average spatial coordinates and we plotted

the fitted surface as a surface plot and as a heat map.

Results

Relationship between RV and Sample Size in a Real
Dataset

Fig. 2 shows the average RV coefficient at each sample size

obtained through rarefaction analysis. A clear pattern of decrease

in RV at increasing sample sizes can be observed. Such pattern is

especially pronounced at sample sizes smaller than 100, thus

suggesting that comparing the RV coefficient across samples with

different sizes can be misleading. It is interesting to notice that

lower overall values and lower variances of estimates of the RV

coefficient are obtained when performing separate generalized

Figure 2. RV at different sample sizes obtained from the rarefaction analysis. Solid line: mean, dashed lines: mean +/2 standard deviation.
a. Single generalized Procrustes analysis on the complete dataset. b. Separate Procrustes superimpositions for each module on the complete dataset.
c. Generalized Procrustes analysis on each randomly drawn sample, using the full configuration of landmarks. d. Generalized Procrustes analyses on
each randomly drawn sample, performing separate superimpositions for each module.
doi:10.1371/journal.pone.0069376.g002
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Procrustes analyses for each module (Fig. 2a,b). On the other

hand, performing generalized Procrustes analyses for each dataset

obtained resampling from the population does not affect the

general finding of a decrease in the RV coefficient at increasing

sample sizes (Fig. 2). The variance of the estimated average RV

coefficient, as expected, decreases at increasing sample sizes (Fig.

S1) and, while a critical sample size cannot be identified, the

decrease is very pronounced at lower sample sizes.

Using Rarefaction to Standardize RV to a Given Sample
Size

In our example dataset, the average RV obtained after a

rarefaction analysis at the smallest sample size (n = 11) for A.

astorquii was 0.704, for A. zaliosus 0.623, for the F1 specimens

0.668, for the F2 specimens 0.554. These results might suggest that

modularity in A. astorquii x A. zaliosus hybrids behaves as a

transgressive trait. However, here the dataset has been just used as

an example of using rarefaction to standardize the RV coefficient

and any biological consideration will be made elsewhere.

Application of the Permutation Test to Real Datasets
The RV coefficients of mice belonging to the groups CD and

ACR from Dataset2 were, respectively, 0.31 and 0.20 (difference

0.11; sample sizes were, respectively, 18 and 66). However, the

newly developed permutation procedure did not reject (p = 0.758,

based on 1000 permutations) the null hypothesis of equal RV

coefficients. On the other hand, using the same test on standard

and hybrid mice from Dataset3 (RV coefficient 0.31 and 0.20,

respectively, with sample sizes 45 and 41) resulted in significant

differences (p = 0.02). The fact that in the two datasets, the same

difference in the RV coefficient produced non-significant and

significant results, respectively, suggests that the observed differ-

ence in RV between the two groups in Dataset2 can be explained as

a consequence of their difference in sample size.

Analysis of Type I Error
In the analysis of type I error using mean and covariance from

real datasets, the average type I error for all simulation was 0.049.

Plots of type I error at different sample sizes (Fig. 3) do not show

any relationship between type I error rate and sample size.

In the analysis of type I error using random datasets with

variable number of cases, number of observations, number of

observations in each group and number of variables in each block,

the overall type I error was 0.05. Plotting the number of cases,

number of observations, fraction of observations in the first group,

fractions of variables in the first block, difference between number

of variables and number of cases for occurrences of type I error

showed no departure from random expectations (Figure S2). This

shows that type I error for the suggested permutation test is not

influenced by the analyzed features.

Using a Nearest Neighbor Approach to Analyze Variation
in Modularity in Geographic Space

In our example analysis using randomly distributed observa-

tions, a third-order polynomial provided a reasonably good fit

(R2 = 0.69) for modeling the variation of the RV coefficient in a bi-

dimensional space. A surface plot and a heat map are provided in

Fig. 4. Looking at the plots, a maximum in the RV coefficients can

be noticed in the upper left quadrant, which is the one we chose to

contain the maximum.

Discussion

In the present paper we have dealt with the problem of studying

variation in morphological modularity. We have shown that the

value of the Escoufier RV coefficient, despite being a useful and

appealing measure of the strength of integration between modules,

is dependent on sample size, even in real morphometric datasets.

In particular, our results show that at sample sizes smaller than

100, the relationship between the RV coefficient and sample size is

non-linear. Especially at sample sizes lower than 50, the RV

coefficient rapidly decreases at increasing sample sizes. It is

relevant to notice that sample sizes lower than 50 or 100 per group

are quite common in modularity studies and the dependence of

the RV coefficient on sample size makes comparisons of

modularity between groups with different number of observations

unreliable. In addition to this, mere comparisons of the RV

coefficient values do not test the null hypothesis of no difference

between groups of observations. Here we presented a permutation

procedure to address the limitations outlined above by testing the

null hypothesis of no difference between two groups. We have

Figure 3. Type I error rate at different sample sizes. a. Average type I error rate across the full set of simulations using mean and covariance
matrices of real datasets. b. Type I error rate for each of the simulations based on real datasets.
doi:10.1371/journal.pone.0069376.g003
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shown that such a procedure has appropriate type I error and that

type I error is not dependent on factors such as total sample size,

difference in sample size between groups, total number of

variables, difference in number of variables between modules,

difference between number of variables and number of cases.

Studies of morphological modularity are becoming increasingly

popular, also because of the development of easy to use software

tools to investigate the existence of multiple modules within a

configuration of landmarks. Some studies have also started to

report the RV coefficient for multiple species [20–21]. In this

paper we also suggested that a rarefaction procedure could be used

Figure 4. Variation of the RV coefficient in geographic space. Computation follows the k-nearest neighbor approach outlined in the paper
and the predicted values at each site were then modeled using a third-order polynomial. a. Heat map. X and Y represent coordinates in a bi-
dimensional space, the color reflects the value of RV predicted by the polynomial fitting. b. Surface plot. The basis represents the two dimensional
space, the elevation the predicted RV. Color coding as in a.
doi:10.1371/journal.pone.0069376.g004

Testing for Variation in Morphological Modularity
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to derive ‘‘sample size-standardized’’ values of the RV coefficient

to be used in downstream analyses. Our suggestion can have

multiple applications. For instance, RV values derived from such a

rarefaction procedure could be used in phylogenetic comparative

studies to investigate the variation in the level of modularity across

phylogenies [29–30]. Finally, we also suggested the use of a k-

nearest-neighbor procedure to create groups of individuals of

equal sample sizes in space computing then the RV coefficient on

each group. Our example, involving sparse observations in a two-

dimensional space, reflects one obvious possible application of

such a nearest-neighbor procedure: the study of variation in

modularity across geographic space. However, given that k-

nearest-neighbors can be computed on spaces with number of

dimensions higher than two, this idea could be used to explore

different problems. It should be noticed that this method will

always find one or more maxima and minima even using random

data. Therefore, using a polynomial fit on the results of the k-

nearest-neighbor approach could represent a useful exploratory

approach while hypothesis-testing approaches should be used in

case one wants to test for significance of the variation in

geographic space. We consider our ideas of using rarefaction to

obtain sample size-standardized RV values and using a k-nearest-

neighbor approach to study RV variation in space as mere

suggestions as the statistical properties of both approaches should

be carefully investigated under a variety of conditions and we

consider such investigations beyond the scope of the present paper.

However, our results showing high variance of the rarefaction

estimates at small sample sizes suggest caution when using

resampling to obtain sample-size corrected RV values to be used

in downstream analyses. At the same time, the sudden drop in the

variance of mean RV estimates observed at increasing sample sizes

suggests that even moderate increases in sample sizes could result

in a sensibly better estimation of a sample-size corrected RV value.

On the other hand, preliminary simulations of the k-nearest-

neighbor method (data not shown) assuming one maximum in one

quadrant at different values of k (10–25) show that the average

distance between absolute maxima across different values of k is

around 10% of the maximum distance between observations, thus

suggesting that the maximum is found in the same region, even at

different k.

We believe that the methods presented here represent new tools

for the study of variation in morphological modularity, and

precisely in the analysis of how the level of integration between a

priori defined modules co-varies with other categorical or

continuous variables. We also developed a Java application with

graphical user interface to perform in a user-friendly way the

proposed permutation test for the difference in modularity

between a priori defined groups. While we explicitly developed

and tested these methods on landmark-based geometric morpho-

metric datasets, we believe that they could be easily applied,

perhaps with minor modifications, to non-morphological studies of

modularity. For instance, if modular groups of co-expressed genes

are identified in gene expression studies, it would be straightfor-

ward to study the variation in modularity among different samples.

Supporting Information

Figure S1 Variance across 200 independent simulations
of the average RV coefficient obtained through rarefac-
tion at different sample sizes using a single generalized
Procrustes analysis (GPA) for all landmarks or separate
GPAs for the two modules (Fig. 1a).

(PDF)

Figure S2 Frequency of different features in the cases of
type I error. Blue: observed frequencies, red: expected

frequencies simulating random data using the conditions under

which the type I error simulations have been run (between 40 and

200 observations, between 20 and 100 variables, first group of at

least 20 observations, first module of at least 4 variables).

(PDF)
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