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Abstract

A recent epidemiological study showed that eating ‘fast food’ items such as potato chips increased likelihood of obesity,
whereas eating yogurt prevented age-associated weight gain in humans. It was demonstrated previously in animal models
of obesity that the immune system plays a critical role in this process. Here we examined human subjects and mouse
models consuming Westernized ‘fast food’ diet, and found CD4+ T helper (Th)17-biased immunity and changes in microbial
communities and abdominal fat with obesity after eating the Western chow. In striking contrast, eating probiotic yogurt
together with Western chow inhibited age-associated weight gain. We went on to test whether a bacteria found in yogurt
may serve to lessen fat pathology by using purified Lactobacillus reuteri ATCC 6475 in drinking water. Surprisingly, we
discovered that oral L. reuteri therapy alone was sufficient to change the pro-inflammatory immune cell profile and prevent
abdominal fat pathology and age-associated weight gain in mice regardless of their baseline diet. These beneficial microbe
effects were transferable into naı̈ve recipient animals by purified CD4+ T cells alone. Specifically, bacterial effects depended
upon active immune tolerance by induction of Foxp3+ regulatory T cells (Treg) and interleukin (Il)-10, without significantly
changing the gut microbial ecology or reducing ad libitum caloric intake. Our finding that microbial targeting restored CD4+

T cell balance and yielded significantly leaner animals regardless of their dietary ‘fast food’ indiscretions suggests
population-based approaches for weight management and enhancing public health in industrialized societies.
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Introduction

The risk of developing obesity rises with a Westernized lifestyle.

In industrialized and developing countries obesity contributes to

increased mortality by predisposing to serious pathological

conditions such as type 2 diabetes, cardiovascular disease, fatty

liver, arthritis, asthma, and neoplasia [1–2]. Clinical and

experimental data suggest that the white adipose tissue of obese

organisms is in a low-grade, persistent state of chronic inflamma-

tion that exerts adverse systemic effects [2–3]. The most

prominent inflammatory cell type of the obesity-associated

inflammation is the adipose tissue macrophage. Macrophages

are recruited and surround dead adipocytes, thus creating the so-

called crown-like structures (CLS). These cells along with

hypertrophic adipocytes are thought to be the key cells initiating

the unique subclinical pro-inflammatory signaling cascade en-

countered in obesity [2,4–5]. Macrophages, B and T lymphocytes,

and up-regulated pro-inflammatory cytokines including TNF-a,

IL-1, IL-6, IL-17, and monocyte chemoattractant protein-1

(MCP-1) have been reported to contribute to obesity-associated

pathologies. In parallel, regulatory T cells down-regulate host

inflammatory responses [2–3,6–10].

It is well documented that ‘‘fast food’’ with high fat and salt

content at relatively low cost is a major cause of the obesity

epidemic in Western societies. Recent epidemiological research

shows while dietary ‘fast food’ contributes to obesity, eating yogurt

surprisingly prevents age-associated weight gain, though the

mechanism is unknown. It has been thought that slenderizing

outcomes of yogurt are due to a probiotic bacteria-mediated

mechanism [1]. Dietary probiotic consumption alters gut micro-

biota and may be an effective strategy not only for weight loss but

also for preventing weight regain after loss [11–14]. Furthermore,

alterations in the composition of gut microbiota may affect not

only gut health but also distant tissues and overall health and

longevity via immune-mediated mechanisms [15–20].
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Using a mouse model of obesity we found that purified probiotic

organisms alone prevented weight gain, and these protective

effects were irrespective of the baseline diet. We show that this

effect could be isolated to a single purified probiotic microbe,

namely Lactobacillus reuteri. Importantly, eating L. reuteri bacteria

acted without changing the existing gastrointestinal (GI) microbial

composition in stool or level of calorie consumption; instead, the

slenderizing microbial mechanism involved bacteria-triggered

changes in the host immune system composition. The effect was

in particular dependent on CD4+ T cells and the presence of anti-

inflammatory Il-10, as Il-10 deficient animals were resistant to L.

reuteri-induced effects. Adoptive transfer of purified Il-10-compe-

tent L. reuteri-induced Foxp3+ Treg cells was sufficient to rescue fat

pathology and lessen body fat in naı̈ve recipient animals. These

data provide a mechanism whereby simple dietary manipulation

can have major health impact, highlighting the utility of directly

harnessing bacteria for public health initiatives.

Results

Eating Westernized ‘Fast Food’ Style Diet Restructures
the Gut Microbiome and Accelerates Age-associated
Obesity in Mice

Knowing that eating ‘fast food’ contributes to age-associated

weight gain in humans, we first used animal models to test specific

roles for diet and the gastrointestinal (GI) tract microbiome in

obesity. Genetically outbred Swiss mice were fed an ad libitum diet

of Westernized chow mimicking typical human ‘fast food’ diets

that are high in fat and sugar, and low in fiber and vitamins B and

D, that lead to age-associated obesity (Figure 1a). Abdominal fat

examined histologically at five months of age revealed increased

crown-like structures (CLS) (Figs. 1a and 1b) and a type of

pyogranulomatous inflammation characteristic of obesity in

humans [2]. Although both genders exhibited significant increases

in fat pathology after Western chow, both CLS and pyogranulo-

matous inflammation lesions were more pronounced in male mice

than in female mice when examined at five months of age (Fig.

S1). Gastrointestinal tract microbial communities in mice changed

within weeks after beginning Western diet formula (Fig. 1c; Fig.

S1), showing that altered gut microbes may be associated with

weight gain and obesity [1,11].

Subjects Dining on Westernized ‘Fast Food’-style Diet
Exhibit Th17-biased Immunity

It is well established that intestinal microbes modulate host

health through activities of CD4+ T cells [21–22], at least in part

through Il-6-dependent reciprocal functions of anti-inflammatory

Foxp3+ Treg cells and pro-inflammatory Th17 cells [6,23]. Thus,

we examined T cell subpopulations and found that obese mice

eating Western chow had increased frequencies of Il-17 expressing

cells which is in line with a previous report [6] (Fig. 1b and 1d).

Importantly, when examining peripheral blood of human subjects

frequently dining on ‘fast food’ we found a similar pro-

inflammatory Th17-biased profile (Fig. 1e).

Dietary Supplementation with Probiotic Yogurt Inhibits
Obesity Due to Westernized ‘Fast Food’ Style Diet

Recent epidemiological research shows eating ‘‘yogurt’’ pre-

vents age-associated weight gain in humans [1]. To examine

whether this epidemiologic observation could be modeled in

genetically outbred experimental animals, and as a prelude to

testing isolated microbes, we first examined the effect of a

commercially available probiotic yogurt by feeding 0.8ml/mouse

Figure 1. Eating probiotics blocks a gut microbiota-immunity-
obesity axis. L. reuteri protects mice from Western diet-associated
obesity. Data are shown in male outbred Swiss mice at the age of 5
months. Numerous crown-like structures (CLS) caused by adipocyte
death-related inflammation, and focal pyogranulomatous inflammation
(PGI) arise in abdominal fat of ‘fast food’-fed but not probiotic-fed
animals. Probiotics increase anti-inflammatory Foxp3+ regulatory (Treg)
cells and reduce pro-inflammatory Il17 protein to restore immune
balance coinciding with a slender physique (a and b), without
restructuring GI microbial communities (c). In the same mice, serum
cytokine analysis shows that the pro-inflammatory Il-17-associated
effect of obesity is systemic, and that L. reuteri negates this effect up-
regulating the anti-inflammatory cytokine Il-10 (d). Humans frequently
eating ‘fast food’ also show an elevated ratio of pro-inflammatory
IL17+/anti-inflammatory Foxp3+ Treg in peripheral blood cells com-
pared to subjects never eating ‘fast food’ (e). Probiotic-consuming slim

Probiotics Inhibit Weight Gain from Fast Food Diet

PLOS ONE | www.plosone.org 2 July 2013 | Volume 8 | Issue 7 | e68596



thrice weekly to Swiss mice eating either control or Westernized

diets. Surprisingly, we discovered that feeding of probiotic yogurt

together with either control chow (N = 5 mice/group; body weight

of mice eating control diet = 37.4264.711g versus control

diet+yogurt = 24.964.995, p,0.05), or with ‘fast food’ style chow

(fast food diet = 42.3967.455 versus fast food diet+yo-

gurt = 28.0860.732, p,0.001), entirely inhibited the age-associ-

ated fat pathology accumulation and body weight gain when

examined upon necropsy at five months of age. Differences in

body weight were attributable at least in part to intra-abdominal

fat, which was significantly reduced in mice eating the probiotic

yogurt (intra-abdominal fat of mice eating control

diet = 1.69260.9036 g versus control diet+yo-

gurt = 0.306760.1684, p,0.05; fast food diet = 3.0660.9737

versus fast food diet+yogurt = 0.505460.2536, p,0.05). These

data showed that probiotic yogurt yielded significantly leaner

animals regardless of dietary ‘fast food’.

Feeding of Purified Lactobacillus reuteri was Sufficient to
Inhibit Western Diet Obesity

To examine whether the effect of the yogurt was due to

probiotic bacteria, or instead other compounds such as extra

protein or vitamin D supplied in yogurt, we fed mice purified

probiotic organism Lactobacillus reuteri ATCC 6475 cultivated as

described elsewhere [24] using a dosage of 3.56105 organisms/

mouse/day in drinking water. Mice received the organisms as

above in their drinking water starting at age 8 weeks and

continuing for three months throughout the study until necropsy at

age = five months. We found probiotic bacteria alone were

sufficient for the slenderizing effect and entirely blocked develop-

ment of abdominal fat pathology arising from ad libitum feeding of

Western ‘fast food’ chow (Figs. 1a and 1b). Abdominal fat (Fig. 2a)

and subcutaneous fat (Fig. 2b) accumulations were significantly

reduced in Swiss mice eating purified L. reuteri in combination with

either control or Western diet (Fig. 2a–c). This was not a generic

attribute of bacteria added to the drinking water, as mice

consuming 3.56105 Escherichia coli K12 organisms/mouse/day in

drinking water did not develop the slender physique (Fig. S1). This

protection from age-associated weight gain was sustained as

evidenced by older Swiss mice at seven-months and nine-months

of age (Fig. 2d) while consuming 3.56105 L. reuteri organisms daily

in their drinking water also starting at the age of 8 weeks. Similar

outcomes were also achieved in inbred C57BL/6 strain mice

eating special diets with or without L. reuteri supplementation

(Figs. 3a). Taken together, these data demonstrate that purified

lactic acid bacteria, in this case L. reuteri ATCC 6475 organisms

alone, are sufficient for the anti-obesity effects of eating a probiotic

yogurt formulation.

Eating L. reuteri Daily did not Change the Existing Gut
Microbiome

Knowing that eating probiotics made mice slim, we next tested

whether purified probiotic L. reuteri may act to change the

microbial ecology in the gut. Using paired-end Illumina sequenc-

ing targeting the V4 region of the 16S rRNA gene on animal

stools, it was found that daily intake of probiotic organisms did not

change the existing gut microbiome profile (Fig. 1c). Thus, animals

eating L. reuteri had a GI tract microbiome output that was not

significantly different from their matched diet counterparts eating

either regular chow or Western diet. Although probiotics didn’t

restructure resident microbiota communities, a pre-existing diverse

microbial community was required for optimal slenderizing effects

as illustrated by the fact that mice raised under germ-free

conditions, and then fed L reuteri under general housing conditions,

fail to benefit from eating probiotic organisms (Fig. S1h).

Probiotic Bacteria-consuming Slim Mice Chose Similar
Calories as Obese Animals

Another possible explanation for significantly slimmer physiques

after eating L. reuteri was reduced caloric intake when eating

probiotic bacteria. In order to test this, we calculated daily ‘free

choice’ consumption of mouse chow in animals with L reuteri

bacteria added to their drinking water versus regular water controls.

We found that L reuteri-consuming slim mice chose similar calories

to those of the regular-water drinking obese animals (Fig. 1f), in

spite of large (p,0.001) body weight discrepancies.

Probiotic Microbes Inhibit Fat Pathology by an IL-10-
dependent Mechanism

Recognizing that eating probiotics made mice thin without

restructuring their microbial communities or reducing food intake,

we hypothesized that probiotic organisms may protect from

obesity by up-regulating anti-inflammatory immune activities; in

particular, levels of anti-inflammatory cytokine IL-10. This

reasoning was based upon data that interleukin-10 is pivotal in

mounting immune tolerance to microbes along intestinal mucosal

interfaces [25–26]. In support of this concept, it was found that the

Swiss mice eating L. reuteri exhibited higher levels of IL-10 protein

in serum than matched control mice (Fig. 1d). To test this further,

we examined C57BL/6 strain mice with deletion of the Il-10 gene

and thus entirely lacking IL-10. Importantly, we found that Il-10-

null animals eating Western chow with yogurt or Western chow

with L. reuteri failed to benefit from probiotic bacteria and instead

became obese (Fig. 3b). Likewise, C57BL/6 Rag2-deficient mice

(that entirely lack functional lymphocytes) eating Westernized diets

were unprotected from obesity after eating L. reuteri (N = 7 mice/

group; body weight of mice eating Western diet = 42.9461.19 g

versus Western diet+L reuteri= 41.7861.45, p = 0.1 not significant).

Taken together these data indicated that probiotic microbes acted

to inhibit fat pathology by an IL-10-dependent adaptive immune

cell mechanism.

Probiotic-triggered Protection from Fat Pathology is
Transferable to Naı̈ve Hosts via Purified CD4+ T Cells

Based upon our earlier work [27], and that of others [7,28–30],

we postulated that probiotic organisms such as L reuteri protected

from obesity by IL-10-mediated induction of lymphocytes [21–

22]. To test whether probiotic-triggered lymphocytes were

sufficient for reduced fat pathology we used adoptive transfer of

purified CD4+ T cells into naı̈ve syngeneic C57BL/6 Rag2-

deficient mice. For these experiments, cell donors were fed

supplementary probiotic yogurt or ate only baseline diets, and

exhibited fat pathology typical for that treatment. We found that

Rag2-null recipients of cells from donor mice eating the probiotic

bacteria had reduced abdominal fat pathology when compared

with recipients of cells from untreated control mice (Fig. 4).

Moreover, subcutaneous fat was significantly reduced in regular-

chow Rag2-knockout recipients of cells from L reuteri- consuming

mice (Fig. 4a). Importantly, these protective effects required IL-10-

competency in cell donor mice (Fig. 4b–c). These data showed that

mice chose similar calories when compared with obese animals,
regardless of baseline diet, highlighting potential for translational
medicine (f). Fat histology: Hematoxylin and eosin, Bars = 50 mm; MLN
Immunohistochemistry: Diaminobenzidine chromogen, hematoxylin
counterstain, Bars = 8.3 mm.
doi:10.1371/journal.pone.0068596.g001
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the microbe-imbued protection from obesity resided in IL-10-

dependent functions of CD4+ T cells, confirming the findings of

Feuerer et al (2009) who observed that protective IL-10-dependent

Treg cells are associated inversely with adiposity [31].

Feeding of Purified L. reuteri Restores Foxp3+ Treg/Th17
Balance

Based upon earlier work by DiGiacinto et al (2005), we

postulated that probiotic organisms protect from obesity by IL-

10-mediated induction of anti-inflammatory Treg cells [21–22,28].

We tested whether feeding of L. reuteri may restore host immunity

from a diet-induced pro-inflammatory Th17 bias towards a

beneficial anti-inflammatory Treg cell dominated immunity. We

found that slim mice eating Westernized chow plus probiotic L.

reuteri showed significantly increased anti-inflammatory Foxp3+

Treg cells and also lower levels of IL-17A protein within

abdominal lymph tissues when compared with mice feeding on

Westernized ‘fast food’–style chow alone (Figs. 1a and 1b).

Further, humans frequently eating ‘fast food’ displayed a pro-

inflammatory Th17-dominant phenotype when compared with

control subjects who exhibited more Foxp3+ cells and fewer Th17

cells in the peripheral blood (Fig. 1e). These data are in line with

an earlier study showing the importance of anti-inflammatory

Treg for prevention of adiposity and insulin resistance in mouse

models [31]. Thus feeding L. reuteri specifically induced Foxp3+

Treg cells and restored the Treg/Th17 balance observed in lean

animals.

Figure 2. Dietary supplementation with L. reuteri protects from age-associated Western diet obesity. Specifically, the abdominal
(epididymal) fat mass is significantly reduced in probiotic-consuming Swiss mice (a). The slenderizing effect of L. reuteri is also observed in the
subcutaneous fat depot. The subcutaneous fat layer (SF) is significantly thicker and has many CLS (inset) in ‘‘fast food’’-fed mice in contrast to mice
eating the same diet and L. reuteri. There is thicker dermis and increased subcutaneous hair follicle profiles in the left inset of the ‘‘fast
food’’+probiotic skin image (b). Fad pad weight and subcutaneous fat thickness histomorphometric analyses show that probiotics protect from age-
associated obesity irrespective of baseline diet (c). Eating probiotics benefits aged Swiss mice as well as the young animals, evident here from the
body weight analysis of 7- and 9-months-old male and female mice (d). Skin histology: Hematoxylin and eosin, Bars = 250 mm.
doi:10.1371/journal.pone.0068596.g002
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L. reuteri Induced Effects are Dependent on Active
Immune Regulation by Foxp3+ Treg Cells

To test whether probiotic-triggered Foxp3+ regulatory T cells

were the key population and sufficient for reduced fat pathology in

Western diet-fed mice, we used adoptive transfer of purified

CD4+Foxp3+ Treg cells delivered by intraperitoneal injection into

naı̈ve syngeneic C57BL/6 Rag2-deficient mice. For these exper-

iments, cell donors were green fluorescent protein (gfp)-Foxp3

transgenic C57BL/6 mice that had received L. reuteri in their

drinking water, in addition to Western-style chow. We found

significantly reduced abdominal fat pathology in recipients of L.

reuteri-treated cells when compared with cells from donors eating

Western diet alone (Fig. 4d). These adoptive transfer model data

showed that probiotic-mediated protection from obesity resided in

functions of Foxp3+ regulatory T cells. In line with these

observations, selectively depleting Tregs by targeting CD25 [32]

showed similar effects. We found eight-week-old Swiss mice eating

L. reuteri and also simultaneously treated with anti-CD25 antibody

rapidly developed morbid obesity, sluggish demeanor, and

profound abdominal fat pathology during the ensuing three

months (Fig. 5a); whereas control animals eating L. reuteri and

treated with sham isotype matched IgG had reduced fat pathology

and slender outcomes (Figs. 5a and 5b). Requirements for CD25+

cells for slenderizing benefits of L. reuteri were also evident in

abdominal fat weights that were significantly increased after CD25

depletion (Fig. 5c). A role for CD25 in controlling inflammatory

cytokines was displayed in peripheral blood in this model (Fig. 1d).

Thus, dietary supplementation with L. reuteri seems to restore

beneficial balanced Th17/Treg host immunity, even in individuals

otherwise suffering from a pro-inflammatory immunity and

chronic inflammation when dining on Westernized ‘fast food’-

style diets (Fig. 6).

Discussion

We devised an animal model to examine the mechanisms of diet

[i.e., ‘fast food’ or ‘yogurt’] previously shown to impact obesity in

humans [1]. Genetically outbred mice consuming ‘fast food’

mimicked adiposity patterns in people [1] and displayed enteric

microbial similarities with other models and humans [11]. Mice

eating yogurt – a food item most strongly linked with lean

physique in human subjects [1] - were leaner than matched

control animals. We demonstrate that a purified lactic acid

microbe was sufficient to mediate this effect. Importantly, we show

that 1) this lean outcome was achievable even while dining on

Westernized chow, 2) eating probiotic microbes did not signifi-

cantly change the established control or Westernized diet

microbiome in stool, 3) L reuteri consumption did not significantly

alter the caloric intake even though mice were significantly

slimmer, and 4) lean outcomes involved microbe-triggered CD4+

Foxp3+ regulatory T cells, dependent on IL-10. These observa-

tions led us to propose a circular mechanistic model where both

lactic acid organisms and the resident GI microbiome [1,11] affect

Figure 3. Mice exhibit an Interleukin 10-dependent Treg cell-mediated gut microbiota-immunity-obesity axis. Genetically-inbred
C57BL/6 strain mice similarly benefit from probiotic protection against Western diet-associated obesity and fat pathology, including CLS and focal
pyogranulomatous inflammation as shown here in males at 5 months of age (a). Interleukin (Il) 10-deficient C57BL/6 male mice eating Westernized
chow failed to benefit from oral L. reuteri supplementation. Mice from both experimental groups were obese and had increased CLS that were often
seen coalescing to form focally diffuse areas of adipocyte necrosis (b). Fat histology: Hematoxylin and eosin. Bars = 250 mm (a) and 100 mm (b).
doi:10.1371/journal.pone.0068596.g003
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host immunity [21–22], which in turn affects obesity [31], which

impact host immunity, and so forth. Once initiated, adiposity may

then become a self-sustaining condition.

Consuming Westernized ‘fast food’-style chow rapidly re-

structured the murine microbiome coincident with increased IL-

17 protein levels and developing obesity in our mouse models [11].

In our human subjects, a Th17 biased profile also emerged when

eating fast food, matching that seen in animals eating the Western

chow. Although the New Western diet for mice was selected

specifically to mimic human ‘fast food’, the ‘potato chip’ diet of

humans also includes high salt and other factors not included in

mouse chow. Nonetheless, these mice exhibited elevated levels of

Il-17A, whether a result of the diet, or microbes, or from the

obesity itself [6]. Following this line of reasoning, the insertion of

dietary probiotics may break this inflammatory-adiposity cycle.

Although a Th17 pro-inflammatory bias has been clearly linked

with obesity, there’s evidence of a dichotomy in effects of IL-17A

in adipogenesis [6,33–34]. One possible explanation for this might

be the recently uncovered heterogeneity amongst Th17 cells [35–

37]. As a result, such complex immune feedback mechanisms are

difficult to interrupt without untoward consequences to the host,

making pro-inflammatory molecules TNF-a, IL-6 and IL-17

Figure 4. Diet-associated fat pathology is transferable to naı̈ve animals using purified T-lymphocytes. Adoptive transfer of purified
CD4+ cells from C57BL/6 wild type donor mice eating probiotics into C57BL/6 Rag2-null mice was sufficient to significantly reduce recipient body fat
depots such as subcutaneous fat, as well as ameliorate abdominal fat pathology (a). Control diet-fed mice used as donors for lymphocyte transfer
experiments showed IL10-dependent L.reuteri benefits including significantly less CLS in their abdominal fat (b). This immune-mediated protection
requires Il10, as adoptive transfer of CD4+ cells from probiotic-fed Il10-deficient donors did not protect the recipient mice from obesity and associated
fat pathology (c). Purified wild type CD4+ FoxP3+ Treg cells from mice eating L. reuteri were sufficient for beneficial effects in Rag2-null recipient mice
rescuing them from obesity-associated pathology (d). Skin and fat histology: Hematoxylin and eosin. Bars skin = 250 mm, edididymal fat = 50 mm.
doi:10.1371/journal.pone.0068596.g004
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Figure 5. Anti-obesity protection of oral probiotics in outbred Swiss mice requires CD25+ immune cells. Depletion of CD4+CD25+ Treg
cells entirely inhibits probiotic-induced protection from age-associated obesity and abdominal fat pathology (a). Probiotics protect from weight gain
unless mice were simultaneously treated with anti-CD25 antibody, in which case animals rapidly became obese. Frequency of prototype crown-like
structures was increased in abdominal fat after depletion of CD25+ cells but not in sham IgG-treated control animals (b). Fat histology: Hematoxylin
and eosin. Bars = 100 mm.
doi:10.1371/journal.pone.0068596.g005
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[8,38–40] challenging targets in this process. These constraints are

perhaps best overcome by directly harnessing bacteria that

apparently induce global immune homeostasis that may serve

public health initiatives.

In contrast with microbiome changes induced by eating ‘fast

food’, consuming yogurt or purified probiotic bacteria in the form

of L. reuteri did not significantly alter the existing gut microbiome as

measured in stool in the present or other studies [41]. However,

feeding of this lactic acid microbe did recapitulate leaner physique

recently observed in a large epidemiological survey of human

subjects when eating yogurt [1], and in line with recent work by

others [42–47]. However, in separate epidemiological studies, the

presence of L. reuteri in human guts has been associated with

obesity [48–49]. Whether this discrepancy reflects the wide

genomic variation of L. reuteri strains or differences [50] in host-

microbial interactions warrants further investigation. A health-

protective role for L. reuteri in host metabolism, as displayed in the

present study, offers mutually beneficial gut symbiont-host

relationship and co-evolution [51].

Interestingly, feeding probiotic yogurt or the purified L. reuteri

bacteria to our mice did not alter their caloric intake, and also

revealed benefits to general demeanor, skin and hair coat, and

reproductive performance coincident with elevated plasma levels

of oxytocin [52]. Oxytocin, a neuropeptide hormone associated

with reproduction and social bonding, has also been linked with

dietary satiety [53–54]. Hypothalamic hormones such as oxytocin

conceptually intersect microbes with social and physical fitness in

evolutionary success. Studies are underway to more explicitly test

the impact of a microbial – hypothalamic – immune axis upon

obesity.

We postulate that microbes contained in probiotic yogurt

impart immune homeostasis that maintains systemic health [21–

22]. One specific aspect of this paradigm is reciprocal activities of

pro-inflammatory Th-17 and anti-inflammatory Treg cells [23].

Diet and microbe-induced failure of tolerance unifies these data

with prior work involving inflammation, obesity, and cancer

[8,55–58]. These data agree with Feuerer et al (2009) who

discovered IL-10-dependent Treg arise inversely with adiposity

and insulin resistance [31]. Along mucosal surfaces, IL-10

facilitates immune tolerance [59] and recruitment of Treg cells

to skew host immunity away from pro-inflammatory IL-17.

Diverse disorders such as asthma and autoimmune diseases

associated with Westernized living are widely believed to result

from insufficient levels of IL-10 and insufficient immune calibra-

tion essential for sustained systemic health [60]. Westernized diets

are also low in vitamin D, a nutrient that normally works together

with IL-10 to enforce immune tolerance and protect against

inflammatory disorders [61–63] and some types of cancer [64].

Feeding of palatable probiotic organisms offers potentially

potent, cost-effective and practical options for public weight

management. Apparent requirements for other beneficial resident

commensal microbes may be further tested using gnotobiotic

models [41,65–66]. Such microbial re-programming may ulti-

mately target other diseases linked with obesity and inflammation

such as diabetes [2], cancer [8], and multiple sclerosis [15] for

healthful longevity to combat a growing Westernized ‘fast food’

public health crisis.

Experimental Procedures

Animals
Genetically outbred CD-1 mice (Charles River; Wilmington,

MA), inbred wild type or Interleukin 10-deficient C57BL/6 strain mice

(Jackson Labs, Bar Harbor, ME), plus inbred Rag2-deficient

C57BL/6 strain mice and outbred Swiss Webster mice (Taconic;

Germantown, NY) were housed and handled in Association for

Assessment and Accreditation of Laboratory Animal Care

(AAALAC)-accredited facilities with diets, experimental methods,

and housing as specifically approved by the Institutional Animal

Care and Use Committee. The MIT CAC (IACUC) specifically

approved the studies as well as the housing and handling of these

animals. Mice were bred in-house to achieve experimental groups.

The experimental design was to expose mice to diets starting at

age = eight weeks, and then continue the treatment for 12 weeks

until euthanasia using carbon dioxide at five months of age, unless

otherwise specified (Fig. S1). Each experiment included 5–15

animals per group with two replications (total N = 10–30 mice per

group). For microbiome analyses, fresh stools were collected twice

weekly and stored in RNA-later at 220C for later testing. Other

tissues were collected upon necropsy.

Human Subjects and Specimen Collection
The PhenoGenetic Cohort of Brigham and Women’s Hospital

including 1200 healthy control subjects provided subject recruit-

ment and sample collection, in compliance with the Declaration of

Helsinki with local ethics committee approval before initiation,

and written informed consent from all subjects. The Brigham and

Womens Institutional Review Board (IRB): Partners Human

Research Committee specifically approved the studies. Subjects

had the following characteristics: female/male sex ratio was

60:40%; race distribution was 14% African American, 12% Asian

American, 68% white, and 6% Hispanic; mean age was 24.3 y

(range, 18–50 y); mean body mass index was 22.5 (range, 13–50).

Blood samples were processed on the day of collection. Dietary

and lifestyle behaviour was assessed by questionnaire on day of the

Figure 6. Proposed mechanistic overview. In order to explain the
‘fast food’ versus ‘yogurt’ age-associated weight disparity observed in
human subjects, we propose that Western-style dietary habits alter gut
microbiota fueling an IL-6 driven, IL-17-dominant, systemic smoldering
inflammatory milieu, ultimately leading to a vicious circle of obesity and
inflammation. On the other hand, individuals consuming probiotic
yogurt enrich their gut with probiotic bacteria that stimulate the anti-
inflammatory arm of the immune system. Potent IL-10-associated Treg
responses in these individuals rescue them from the inflammation-
obesity cycle, thus increasing likelihood of a leaner physique.
doi:10.1371/journal.pone.0068596.g006

Probiotics Inhibit Weight Gain from Fast Food Diet

PLOS ONE | www.plosone.org 8 July 2013 | Volume 8 | Issue 7 | e68596



visit. Total N = 23 for high fast food intake, and N = 26 for low fast

food intake.

Special Diets for Animals
Mice of 6–8 wks were placed on experimental diets: control

AIN-76A (Harlan-Teklad Madison WI), and a Westernized diet

with high fat and low fiber with substandard levels of Vitamin D

(TD.96096; Harlan-Teklad) starting at 8 weeks of age until

euthanasia at 5 months of age. Subgroups were supplemented with

commercially available vanilla probiotic yogurt (0.8 ml/mouse 3X

weekly) containing a microbial cocktail including S. thermophilus, L.

bulgaricus, L. acidophilus, Bifidobacterium bifidus, L. casei, and L.

rhamnosus during this same time. Separate groups of animals

received a purified preparation of an anti-inflammatory strain of

Lactobacillus reuteri ATCC 6475 cultivated as described elsewhere

[24] using a dosage of 3.56105 organisms/mouse/day, or a sham

E coli K12 3.56105 organisms/mouse/day in drinking water.

Drinking water was replaced at least weekly. Viability of L reuteri

organisms in drinking water was assessed using standard aerobic

plate culture methods and determined to be too numerous to

count (TNTC) at day one and less than ten colonies by day seven.

Stool Microbiome Analyses
Genomic DNA was extracted from stool samples using the

Qiagen QIAamp DNA Stool Mini Kit. Samples for paired-end

Illumina sequencing were constructed using a two-step PCR

amplicon approach targeting the V4 region of the 16S rRNA gene

(U515F and E786R) as described in [67] and reads were quality

filtered and clustered into operational taxonomic units (OTUs) at

97% nucleotide identity. Principal coordinates analysis is based on

the Jensen-Shannon divergence between samples, and differences

in microbiome composition were tested for significance using an

empirical p-value estimated by permutation. Data presented in

Fig. 1 were from stool collected at 5 days after onset of treatments.

Human T Cell Isolation and Stimulation
Peripheral blood mononuclear cells (PBMC) were separated by

Ficoll-Paque PLUS (GE Healthcare, Piscataway, NJ) gradient

centrifugation. Untouched CD4+ T cells were isolated from

PBMC by negative selection via the CD4+ T cell isolation kit II

(Miltenyi Biotec, Auburn, CA). CD4+ T cells were cultured in

serum-free X-Vivo 15 medium (BioWhittaker, Walkersville, MD)

and stimulated for 4 h with PMA (50 ng/ml) and ionomycin

(250 ng/ml; Sigma-Aldrich) with GolgiPlug (BD Biosciences).

Stimulated cells, with dead cells excluded by LIVE/DEAD cell kit

(Live Technologies), were fixed and made permeable according to

manufacturer’s instructions (Fix/Perm; eBioscience) and were

stained with anti-IL17A (eBio64DEC17; eBioscience, San Diego,

CA) and anti-FOXP3 (206D; BioLegend, San Diego CA) for 30–

45 min. Data were acquired on a LSR II (BD Biosciences, San

Jose, CA) and analyzed with FlowJo software (TreeStart, Ashland

OR) and GraphPad Prism (GraphPad Software, La Jolla, CA).

Adoptive Transfer of T Cells into Recipient Mice
CD4+ lymphocytes isolated from wild type or IL-10-deficient

C57BL/6 mice using magnetic beads (Dynal/Invitrogen; Carlsbad

CA) are sorted by hi-speed flow cytometry (MoFlow2) to obtain

purified populations of CD4+ lymphocytes and determined to be

,96% pure as previously described elsewhere [16]. Syngeneic

Rag22/2 recipient mice were then injected intraperitoneally with

36105 CD4+ cells as previously described. For separate assays,

purified populations of CD4+ lymphocytes were collected as above

from transgenic C57BL/6 mouse donors expressing green

fluorescent protein (gfp)-Foxp3, and then further purified sorting

gfp+ expression to achieve purified populations of CD4+ FoxP3+

TREG lymphocytes injected intraperitoneally at 36105 cells/mouse

into C57BL/6 Rag22/2 recipient mice.

Depletion of CD25+ Cells
Mice were treated with anti-CD25 antibody (clone PC-61; Bio-

Express, West Lebanon, NH) at 150 ug per mouse intraperitone-

ally 3X weekly for 12 weeks. Treated mice were compared to mice

receiving sham isotype antibody alone. Depletion of CD25+ cells

was confirmed by undetectably low fractions of CD25+ cells in

spleens of mice treated with anti-CD25 antibody compared to

sham-treated controls using flow cytometry. Depletion was

confirmed by absence of Foxp3+ cells in spleen.

Detection of Systemic Cytokine Protein Expression
Serum cytokine levels of six animals per group were analyzed

using the Bioplex assay system (BioRad, Hercules, CA) according

to the manufacturers protocol. Samples were analyzed in duplicate

on a Bio-Plex 200 system (BioRad, Hercules, CA). Statistical

analysis was performed using 2-tailed student’s t-test; a p-value

,0.05 was considered statistically significant.

Histopathology and Immunohistochemistry
For histologic evaluation, formalin-fixed tissues were embedded

in paraffin, cut at 5 mm, and stained with hematoxylin and eosin.

Lesions were analyzed and quantified by a pathologist blinded to

sample identity. Foxp3 and Il-17 were labeled immunohistochem-

ically in mouse tissue. Immunohistochemistry and morphometric

assessment of Il-17+ and FoxP3+ cells in mesenteric lymph nodes

and abdominal fat were as previously described [16].

Statistical Analyses
The Mann-Whitney U test was used for body weight, diet,

calorie consumption, and histomorphometry. A p-value ,0.05

was statistically significant.

Supporting Information

Figure S1 Dietary probiotic bacteria protect mice from
obesity. The experimental time line depicts how outbred Swiss

mice or inbred C57BL/6 mice began eating special diets at 8-

weeks-of-age. Ad libitum diets were fed continuously for three

months duration until mice were humanely euthanized at 5-

months-of-age (a). A significantly slender body weight effect was

achieved by adding 36105 L reuteri organisms/mouse/day to

drinking water, but similar addition of 36105 E. coli K12

organisms/mouse/day to drinking water did not cause significant

differences when compared with untreated controls (b). Female

Swiss mice eating either probiotic yogurt or purified L. reuteri

organisms have significantly lower body weights than their non-

probiotic-fed counterparts. Data are shown in 5-month-old (yogurt

consuming) and 9-month-old (aged L reuteri-consuming) mice (c).
Similarly to what has been observed in male mice, probiotics

protect female mice from abdominal fat pathology, upregulate

Foxp3+ cells in the MLNs and downregulate IL-17 expression in

the abdominal fat and the MLNs (d). CLS in the abdominal fat of

obese male and female mice are often characterized by a robust

inflammatory response with high numbers of macrophages,

lymphocytes, neutrophils and myeloid precursor cells. In contrast,

CLS of probiotic-fed mice maintain their typical quiescent

inflammatory lesion appearance with macrophages and occasional

lymphocytes bordering dead adipocytes (e). IL-17 specific

immunohistochemistry shows the abundant cytoplasmic and
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extracellular IL-17 found in the MLNs of western-diet fed obese

Swiss mice but not in the MLNs of mice consuming the same diet

plus probiotics (f). Obesity-associated adipose tissue pathology was

noticed in all fat depots of the mouse body examined including the

mesenteric fat shown here. Probiotics universally suppressed this

pathology (g). Experiments in germ-free mice suggest that diverse

bacteria are required for slim outcomes since these mice did not

benefit after eating probiotics (h). p,0.05, ** p,0.001, ***

p,0.0001. Hematoxylin and eosin (c and e); Diaminobenzidine

chromogen, hematoxylin counterstain (d). Bars = 25 mm (c and d);

100 mm (e).

(TIF)
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