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Abstract

Background: Norovirus (NoV) transmission may be impacted by changes in symptom intensity. Sudden onset of vomiting,
which may cause an initial period of hyper-infectiousness, often marks the beginning of symptoms. This is often followed
by: a 1–3 day period of milder symptoms, environmental contamination following vomiting, and post-symptomatic
shedding that may result in transmission at progressively lower rates. Existing models have not included time-varying
infectiousness, though representing these features could add utility to models of NoV transmission.

Methods: We address this by comparing the fit of three models (Models 1–3) of NoV infection to household transmission
data from a 2009 point-source outbreak of GII.12 norovirus in North Carolina. Model 1 is an SEIR compartmental model,
modified to allow Gamma-distributed sojourn times in the latent and infectious classes, where symptomatic cases are
uniformly infectious over time. Model 2 assumes infectiousness decays exponentially as a function of time since onset, while
Model 3 is discontinuous, with a spike concentrating 50% of transmissibility at onset. We use Bayesian data augmentation
techniques to estimate transmission parameters for each model, and compare their goodness of fit using qualitative and
quantitative model comparison. We also assess the robustness of our findings to asymptomatic infections.

Results: We find that Model 3 (initial spike in shedding) best explains the household transmission data, using both
quantitative and qualitative model comparisons. We also show that these results are robust to the presence of
asymptomatic infections.

Conclusions: Explicitly representing explosive NoV infectiousness at onset should be considered when developing models
and interventions to interrupt and prevent outbreaks of norovirus in the community. The methods presented here are
generally applicable to the transmission of pathogens that exhibit large variation in transmissibility over an infection.
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Introduction

A recent spike in the number and severity of Norovirus (NoV)

outbreaks worldwide [1] has underscored the rising costs of NoV

transmission in both public health and economic terms. Because

NoV transmission is often so explosive that a small number of

isolated cases may touch off a large outbreak (e.g. [2–5]) the

development of effective interventions necessitates an understand-

ing of how each stage of infection in individual cases impacts

outbreak transmission.

NoV illness is characterized by multiple phases of symptom-

atology: an initial period of explosive vomiting characteristic of

illness onset, followed by 1–3 days of less severe symptoms [6].

Environmental contamination resulting from episodes of vomiting

and diarrhea [2,4,5,7] and post-symptomatic shedding that may

persist for days or weeks after symptoms have resolved [8] have

also been implicated in transmission.

Representing variable infectiousness over the course of a single

infection has been shown to be important for understanding the

transmission dynamics of other pathogens, such as HIV [3,9].

However, despite documented variation in NoV symptom

intensity over time, dynamic models of norovirus transmission

have typically represented infectiousness as homogeneous over the

life of a typical infection (e.g. [7]), or have focused on discrete

events such as vomiting within a classroom [10] or the structure of

contact networks [11] rather than changes in symptom intensity

over the infectious period of a typical case. In this paper, we build

upon earlier work demonstrating the importance of vomiting in

norovirus transmission to consider the impact of including time-

varying intensity of infectiousness on the qualitative and quanti-

tative fit of several models of household-level norovirus transmis-

sion. The methods presented here are also generally applicable to

the outbreak transmission of other enteric and respiratory
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pathogens, where variation in symptom-severity across individuals

and over time can impact transmission dynamics.

We fit three models (Models 1–3), each with a different

representation of the infectious period, to household transmission

data collected subsequent to a 2009 point-source outbreak of

GII.12 norovirus in North Carolina [12] and compare the results

(for a graphical depiction of the household data, see Figure 1). We

begin with a standard compartmental model, denoted Model 1,

which allows for heterogeneous infectious period duration but

assumes homogeneous infectiousness over time. The first alterna-

tive model, Model 2, assumes exponentially decaying infectious-

ness after onset, while the final model, denoted Model 3, allows for

a spike in infectiousness at onset followed by a sharp drop-off in

infectiousness 12 hours after the onset of symptoms. For a

graphical depiction of these models, see Figure 2.

Methods

Data source
In December 2009, more than 200 individuals were sickened by

a GII.12 norovirus outbreak caused by contaminated oysters

served at a North Carolina restaurant. The particular GII.12

strain implicated in this outbreak is estimated to have caused 16%

of reported NoV outbreaks in the United States in 2009–10 [13].

Of the 177 individuals who met the case definition for NoV

infection in this outbreak, 85% reported vomiting at some point

during their infection [12]. Household transmission subsequent to

infection of a household member exposed at the restaurant was

assessed via a phone survey. We designate the first individual in a

household who exhibited symptoms after dining at the restaurant

as the household index case. Household contacts of the index case

reported whether they dined at the point source and whether they

became ill in the 14 days after illness onset in the household index

case. Individuals who dined at the point-source but had symptom

onset after the index case are denoted as exposed non-index cases.

Individuals who were not exposed to the point-source but became

ill during the observation period are referred to as secondary cases.

Those who were not observed to be ill are referred to as non-cases.

For those individuals who reported becoming ill, the approximate

time of illness onset (within 12 hours) was obtained.

Because this work was determined by CDC human subjects

review to be under the auspices of public health response, the

protocol and consent procedure were not formally reviewed by an

IRB, though standard practices of verbal consent and confiden-

tiality were followed. The data were collected as part of a phone

survey, so it was not possible to obtain written consent.

Respondents were assured that all survey questions were voluntary

and confidential. Verbal informed consent was requested and

documented on the survey instrument at the time of the interview.

Figure 1 illustrates the times of illness onset in the 18 households

from this outbreak that had secondary cases. A detailed

epidemiological analysis of this outbreak has been presented

elsewhere [12].

Because index cases were infected at a point-source event rather

than during a large community outbreak that continued through-

out the period assessed by the phone survey, we are able to isolate

the likely source of exposure to other members of the household.

In essence, our household-level transmission data provide multiple

independent realizations of the stochastic transmission process,

since we observed 70 exposed households, each with a distinct

index case. This allows us to examine how time-varying intensity

of infectiousness impacts stochastic variability in transmission

[7,8].

Figure 1. Observations for 18 households with non-index cases. The figure illustrates the time course of infection in the 18 households in
which there was a non-index case who became ill after the onset of symptoms in the index case. Filled boxes indicate an individual who dined at the
point-source and became ill. Filled circles indicate individuals who became ill and did not dine at the point-source. Hollow boxes and circles along the
right margin indicate the number of individuals in the household who did and did not dine at the point source and did not become ill, respectively.
The additional 52 households in the analysis with no secondary cases are not pictured.
doi:10.1371/journal.pone.0068413.g001

Figure 2. Illustration of model structure for Models 1, 2 & 3. The
figure illustrates the change in infectiousness over time, for Model 1
(SEIR; top), Model 2 (Exponential decay; middle) and Model 3 (Burst;
bottom). l is the force of infection, i.e. the rate at which susceptible
individuals are recruited to the latent class, E, and e is the mean rate at
which infected individuals progress to infectiousness. The asymptom-
atic class, A, and recovered class, R, are omitted from the figure for
visual clarity.
doi:10.1371/journal.pone.0068413.g002
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Transmission models
For comparison with our alternative models, we first fit an SEIR

compartmental model [14] modified to allow for Gamma-

distributed sojourn times in the latent (E) and infectious (I) classes

(Model 1), to the outbreak data. In Model 1, infectiousness per unit

of time does not change as the infectious period progresses, but

infections may be of variable duration. We then develop two

alternate models with time-varying infectiousness. The first, Model

2, represents the change in infectiousness as exponentially

decaying over time. The other alternative model, Model 3, begins

with a sharp spike in infectiousness at onset, dropping off after the

first 12 hours of infection. This represents discontinuity in

infectiousness at the conclusion of the profuse vomiting that often

marks onset. Figure 2 illustrates differences in model structure for

Models 1, 2 & 3. Table 1 defines parameters used in Models 1–3.

We then compare the ability of each model to reproduce

characteristic features of the outbreak data. This allows us to assess

whether a model with time-varying infectiousness may provide a

more comprehensive explanation of qualitative features of NoV

transmission than standard approaches. Using a quantitative

Bayesian model comparison technique, we also compare the two

models of time-varying infectiousness to understand if one of these

representations may better explain the data.

Because asymptomatic norovirus infection is common, account-

ing for 15–40% of all norovirus infections [15], we also explore the

sensitivity of Models 2 & 3 to the presence of asymptomatic

infections. Although asymptomatic cases are unlikely to be as

infectious as symptomatic ones [16], they still may impact

transmission. Understanding these dynamics is particularly

important for quantifying the role of post-symptomatic shedding

and persistence of the virus in the environment. Specifically, long

serial intervals between symptomatic cases in a household could be

explained by either the presence of an asymptomatic case bridging

two symptomatic cases, or a long period of environmental

contamination or post-symptomatic shedding. For clarity, when

discussing the implementation of transmission models in the text,

we focus primarily on transmission to and from symptomatic cases.

For more detail on the implementation models including

asymptomatic cases, see File S1.

Model 1: SEIR compartmental model
Because the outbreak data are reported in twelve-hour intervals,

we use a discrete-time model where each model step represents a

12-hour period. We designate the time t = 0 to be when the first

individual in the household is exposed to the point source. When

t = 0, we assume that all individuals in the household are in the

susceptible state, S. The state variable S(t) represents the number

of susceptible individuals in the household at time t. We denote

wPS to be the probability that individuals who dined at the point-

source were infected there.

Upon infection, individuals enter the latent state (E). The mean

duration of latency is estimated from the outbreak data to be

1 day. We represent the latent period with a Gamma distribution

with mean e = 1 day, and shape parameter eS = 4. A shape

parameter of 4 represents moderate variability in latency, with

95% of latent periods in the range from 12–48 hours, consistent

with data reported from the outbreak [12] and other clinical and

outbreak studies [17,18]. Sensitivity analysis in which the mean

duration of latency was increased to 1.5 days did not show any

difference in results.

After latency, individuals progress to the symptomatic (I) or

asymptomatic (A) phase of infection. We assume that all

individuals in the household are equally susceptible to infection,

regardless of age, sex or household configuration. Infected

individuals will have a symptomatic infection with probabilityr
and an asymptomatic infection with probability 1-r. Asymptom-

atic infections have a fixed proportion, f, of the infectiousness of

symptomatic individuals. When fitting models to the outbreak

data, we fix f = 0.10, as only qualitative estimates of the infectivity

of asymptomatic cases are available (e.g., [8,16]) and these indicate

that they are much less infectious on a per-contact basis than

symptomatic cases. We then examine the sensitivity of the model

to variability in r, as the proportion of cases that are fully

asymptomatic is not well understood.

After latency, individuals enter either the symptomatic infec-

tious period (I) with probabilityr, or the asymptomatic infectious

period (A) with probability 1-r. In our model, household NoV

transmission is assumed to be density dependent, i.e. each

symptomatic individual transmits to each of her susceptible

Table 1. Parameters and definitions.

Model Parameter Definition Value Source

All Models wPS Probability of infection at point source – EST

f Relative infectiousness of asymptomatics 0.05 See text

r Proportion of cases asymptomatic [0.0, 0.4] Atmar et al.
2006

e Mean duration of latency 1 day See text

eS Shape parameter of latent period distribution 4 See text

Model 1 b Daily symptomatic transmission rate – EST

c Mean duration of symptomatic infectiousness – EST

cS Shape par. of infectious period duration – EST

Model 2 w2 Total infectiousness – EST

1/g2 Mean day of infectivity profile – EST

Model 3 w3 Total infectiousness – EST

1/g3 Mean day of post-onset infectivity – EST

t Proportion of infectiousness at onset – See text

The table lists parameters used in each model as well as fixed values and ranges of parameters assumed or estimated separately from the current analysis. Entries
marked ‘EST’ indicate parameters estimated in the analysis. Model-specific parameters are denoted by a subscript.
doi:10.1371/journal.pone.0068413.t001
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contacts at rate b regardless of household size. Infectious period

duration is modeled by a Gamma distribution, with parameters

cM (mean duration), and cS (shape parameter) to be estimated from

the data. For c and cSwe use Uniform prior distributions on the

range (0,100]. For b we use a Uniform prior distribution on the

range (0, 10]. We can write the force of infection on a susceptible

individual from the household transmission as l(t)~bI(t), where

I(t) is the number of symptomatic individuals in the household at

time t.

Model 2: Exponential decay of infectiousness
Model 2 introduces smooth variation in infectiousness over

time. In this model, the infectiousness of a case decays

exponentially as a function of time elapsed since the onset of

symptoms. We use a discretized exponential distribution with

mean1=g2days, denoted zExp(t,g2), where g2 is the rate parameter

of the distribution, to represent the proportion of an individual’s

infectiousness occurring at each 12-hour interval after onset,

denoted by tonset. An exponential distribution is a natural choice to

represent infectivity over the symptomatic period, because its

mode is at zero [19], i.e., the time of symptom onset. This

guarantees that the largest amount of infectiousness occurs with

the onset of symptoms. It is also a parsimonious representation of

the change in infectiousness over time, as the distribution has only

a single parameter controlling the rate of decay. So,

zExp(t{tonset; g2)is the proportion of the individual’s infectivity

that occurs during period t. This is referred to as the infectivity profile

of the case [20,21]. The total expected transmission rate over the

entire infection is denoted w, and the rate of transmission from a

case to a susceptible individual at a given time, t, is

w|zExp(t{tonset; g2).

We denote yS
j to be the time of symptom onset. The force of

infection on a susceptible individual j from an infectious case, i, at

time t can then be calculated as follows:

lM2
i?j(t)~w2|zExp(t{yS

i ; g2)

Model 3: Burst of infectiousness followed by exponential
decay

In Model 3, the infectious period consists of two phases: 1) a 12-

hour burst of infectivity starting with the onset of symptoms,

followed by 2) a period of declining infectivity modeled by an

exponential distribution with mean 1=g3, as in Model 2. The burst

in infectiousness is assumed to last for only the initial 12 hours of

the infectious period, as the majority of vomiting during naturally-

infected norovirus cases has been observed to occur in the first

24 hours after infection [15]. In addition, the onset of vomiting is

often sudden and explosive, so contact-limiting behaviors that

minimize transmission even in the presence of vomiting are likely

to be implemented in the period immediately following the initial

vomiting event. Because the sudden onset of vomiting is such a

characteristic feature of symptomatic NoV infection, Model 3 is

meant to represent the risk associated with a typical case, although

individual cases may deviate from this pattern. For example,

variation in the location, magnitude, and number of vomiting

events associated with an individual case may contribute to

between-individual heterogeneity.

Model 3 introduces a new parameter, t, which defines the

proportion of a case’s infectiousness that occurs during the

12 hour burst at onset, with the remaining 1-t occurring

afterwards. We fix t = 0.5, so that 50% of the infectiousness

occurs during the burst immediately after onset, with the

remaining half spread over a period of exponentially decaying

infectivity. This ensures that comparisons with Model 3 highlight

the differences between a model assuming that vomiting charac-

teristic of illness onset concentrates a disproportionate amount of

infectiousness at the period immediately following the start of

symptoms, and those that do not. We denote the rate of

transmission over the life of the infection as w2, and define the

force of infection from a symptomatic individual as a function of

time as follows:

lM3
i?j(t; w3,g3)~

t|w3 ift{yS
i v1

(1{t)w3|zExp(t{½yS
i z1�; g3) otherwise

(

Data model
We fit Models 1–3 to the outbreak data using a Bayesian data

augmentation (DA) approach [20]. These methods allow us to

model outbreak data that are partially observed. Because we only

observe the time of illness onset but not infection or recovery it is

not possible to directly calculate the likelihood. DA methods allow

us to use Markov-Chain Monte Carlo (MCMC) tools to sample

from the posterior distribution of model parameters and unob-

served events (infection, recovery) in the individual’s infection

history. Sampling complete sequences of events makes the

likelihood function tractable and allows us to estimate model

parameters. This approach has previously been used to model

norovirus outbreaks [7] as well as transmission of influenza [21,22]

pneumococcus [23,24], and foot and mouth disease [25], among

other pathogens. In Model 1, there are two unobserved events

corresponding to each non-index case: the infection time and

recovery time. In Models 2 & 3, there is only one latent event per

case: the infection time.

When fitting parameters for the mean day of the infectivity

profile for Models 2 & 3 (1=g2,1=g3), we use a uniform prior on the

interval from 1–5 days. This was done to constrain the sampler to

plausible durations of infectiousness and to guard against over-

fitting of the models to households with longer serial intervals

between cases. For models 2 & 3, a Uniform prior on the range (0,

10] was used for the parameter w. When estimating parameter

values, we use the mean of the parameter’s marginal posterior

distribution. We checked these values against the corresponding

posterior median and found that our results are not sensitive to this

choice.

To understand the contribution of fully asymptomatic infec-

tions, i.e. those that enter the asymptomatic infectious phase, A,

immediately after the end of the latent period, E, we employ two

reversible jump MCMC steps (see, e.g.[23,24]) that allow us to add

and remove asymptomatic infections from the histories of non-

cases in the outbreak dataset. Because asymptomatic infections are

likely to be much less infectious than symptomatic ones, our

motivation for including them is to understand their impact on

estimates of the symptomatic transmission rate. It is not feasible to

estimate transmission parameters for asymptomatic infections

from our data because they are unlikely to emit a strong signal of

infectiousness. Consequently, we make some assumptions about

the nature of asymptomatic infections, specifically: 1) that they are

only 10% as infectious as symptomatic infections and 2) that the

mean of the infectivity profile is at 5 days. For a detailed

explanation of the application of these methods to our data, see

File S1.

Symptom Intensity and Norovirus Transmission
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All models presented here were implemented using Python 2.7.

Analysis of posterior distributions was performed using the coda

package in R 2.15. Code used in this analysis is available from the

authors upon request.

Model comparison
We compare the quality of model fit for Models 1, 2 & 3 based

on qualitative fit to the data based on descriptive statistics. We

perform Bayesian model selection using Bayes factors [21] to

compare the time-varying infectiousness models (2 & 3).

Qualitative model comparison
To make qualitative comparisons, we fix the parameters for

each model at the posterior mean values estimated from the

outbreak data and generate 104 sample outbreaks using the

household sizes and point-source exposure patterns from the

outbreak data. We then compare features of these sampled

outbreaks to the household outbreak data via several descriptive

statistics. These include: 1) the average number of secondary cases

in households with at least one secondary case, 2) the average

serial interval between household cases, 3) the average time from

onset in the first household case to onset in the last household case

in those households with secondary cases, 4) the probability of zero

observed secondary cases within the household, i.e. that the index

fails to generate any secondary cases, and 5) the probability of

recrudescence of a household outbreak, defined here as the

probability of observing a serial interval of $4 days between cases

in a household.

Quantitative model comparison
We compare the relative strength of evidence supporting these

models using Bayes factors. Bayes factors facilitate the comparison

of models with differing structure. However, the large number of

unobserved recovery times in Model 1, each represented by a

hidden parameter, makes meaningful comparison of Model 1 with

Models 2 & 3 with Bayes factors infeasible. This is because Bayes

factors naturally penalize additional model structure, effectively

guaranteeing that a model with fewer latent parameters (i.e.,

Models 2 &3) would be preferred over one with many more. So,

we limit this aspect of the analysis to the two models with varying

infectiousness over the symptomatic period. The Bayes factor, K32,

that we use to compare the models M2 & M3 is the ratio of the

posterior densities of each model, given the data, i.e.

K32~P(M3DD)=P(M2DD) (see [21] & File S1).

Because we repeat this analysis for varying rates of asymptom-

atic prevalence, we denote K32(1{r) to be the Bayes factor

comparing Model 3 to Model 2, for a specific level of

asymptomatic prevalence, 1-r. We calculated Bayes factors for

each 10% increment in asymptomatic prevalence from 0% to

40%. This allows us to examine the strength of evidence in favor of

each model under different assumptions about the prevalence of

asymptomatic infections. To interpret these Bayes factors, we use

the Jeffreys scale [26], which is a subjective guide to the strength of

the evidence supporting a given hypothesis.

In order to perform this portion of the analysis, we employed a

reversible-jump MCMC sampling step that allowed the sampler to

jump between Models 2 and 3 within a single MCMC run. This

step is similar to one employed by O’Neill & Marks [10] in their

analysis of NoV transmission in a school outbreak.

When interpreting the results of these model comparisons, it is

important to note that Model 3 represents a stylized scenario in

which 50% of infectiousness is concentrated at onset. This means

that comparisons between Model 2 and 3 are necessarily heuristic

in terms of their ability to assess the explanatory power of a model

that allows excess infectivity at onset versus one that does not. So,

for example, if Model 3 is preferred over Model 2, this would

indicate that a model with 50% of infectiousness concentrated at

onset is preferred to one in which there is an exponential decay of

infectiousness beginning at onset. But it should not be taken as

evidence that a model with a spike in infectiousness at onset is

preferred in all cases, regardless of the height of this spike.

Results

Parameter estimates
Table 2 lists parameter estimates for Models 1–3 with only

symptomatic infections. For estimates over varying levels of

asymptomatic prevalence, see Tables S1 & S2 in File S1. For

descriptive characteristics of the household outbreaks, see Table 3.

Across all three models, estimates of the probability of infection

at the point source are similar, with a 55% probability of infection

for non-index cases exposed to the point source (r̂rPS = 0.55, 95%

CI = 0.38, 0.71. Estimates of a secondary attack rate of

approximately 15% are also consistent across models. To test

the validity of the assumption in Model 3 that t = 0.5, i.e. that

50% of infectiousness occurs during the burst at onset and 50%

occurs afterwards, we re-fit Model 3 while allowing t to vary. We

found that the estimated value was close to the assumed value

(t3 = 0.46, 95% CI: 0.19, 0.75), while other parameter estimates

listed in Table 2 were unchanged. Sensitivity analysis using Bayes

Table 2. Parameter estimates for Models 1–3.

Model
Para
meter Model 1 Model 2 Model 3

Est 95% CI Est 95% CI Est 95% CI

All wPS 0.55 (0.38, 0.71) 0.55 (0.38, 0.71) 0.54 (0.38, 0.71)

Time
Varying

w – – 0.13 (0.07, 0.21) 0.14 (0.08, 0.22)

g – – 2.78 (1.55, 4.87) 3.89 (2.20, 4.95)

Compart
mental

b 0.05 (0.02, 0.10) – – – –

c 2.98 (1.22, 4.79) – – – –

cS 1.04 (0.07, 3.63) – – – –

doi:10.1371/journal.pone.0068413.t002
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factors was also performed in which the duration of the burst at

onset was varied from 12 to 24 hours, and both burst durations

were supported equally by the data with no impact on estimated

parameter values. Figure 3 illustrates the fitted infectivity profiles

for Models 2 and 3.

Model comparison
Table 3 presents descriptive features of the outbreak data and

corresponding measures of 104 of simulated outbreaks from

Models 1–3. The first column of Table 3 lists mean values from

the data and the ranges of these values. In Columns 2–4, is the

mean value from the simulations and values spanning the range

from the 5th to the 95th quantile of the simulated distribution of the

outcome. We find that all models reproduce mean values and

variability in the outbreak data for 1) the number of secondary

cases, 2) duration of serial intervals between cases, and 3) average

household outbreak duration. The models differ in their ability to

reproduce recrudescence and the proportion of households with

no secondary cases. The probability of recrudescence for Model 1

(0.22) and Model 3 (0.21) are closest to the data (0.17), while

Model 2 overestimates this value by a larger margin than the other

two (0.29). Simulations from Models 2 & 3 generate values for the

probability of observing no secondary cases (0.63 & 0.64,

respectively) that are closer to the data (0.62) than Model 1

(0.70). Overall, Model 3 generates values closest to the outbreak

data along those qualitative dimensions where there are differences

between the candidate models.

In our quantitative comparison of models 2 and 3, we find that in

a model with only symptomatic infections, support for Model 3 is

strong (K32(0) = 25). As asymptomatic prevalence increases from

10% to 40%, the strength of evidence in favor of Model 3 decreases,

but remains strong (K32(0:1) = 16, K32(0:2) = 14, K32(0:3) = 14,

K32(0:4) = 16). This indicates that the explanatory power of Model

3 is not sensitive to the level of asymptomatic prevalence. Sensitivity

analysis in which the infectiousness of an asymptomatic case relative

to a symptomatic case was varied from 5% to 15% did not impact

these results. Tables S1 & S2 in File S1 show parameter estimates

for models with varying levels of asymptomatic prevalence.

Tables S3 & S4 in File S1 show the robustness of the fitting

procedure to inclusion of asymptomatic infections.

Discussion

These results suggest that models including time-varying

infectiousness may better capture observed person-to-person

norovirus transmission dynamics than approaches assuming

uniform intensity of infectiousness over time. Allowing for changes

in infectiousness that reflect characteristic patterns of norovirus

illness can increase our ability to explain observed outbreak

patterns and re-create qualitative features of these outbreaks. In

particular, Models 2 & 3 were better able than Model 1 to

reproduce the proportion of household outbreaks not resulting in

secondary cases. Model 3 was also able to capture the probability

of recrudescence in household outbreaks, potentially because the

infectiousness remaining after the burst at onset is more evenly

distributed over the infectious period than in Model 2. A particular

strength of an approach allowing for symptom intensity to vary

with time is that the roles of waning symptomatology and post-

symptomatic shedding can be explored without adding model

complexity, i.e. additional infectious classes. Because it eliminates

latent state variables in the infectious period, this framework also

facilitates straightforward model comparison.

Quantitative comparisons between Models 2 and 3 suggest that

Model 3 provides a more comprehensive picture of the outbreak

data than the other models presented here. This also holds across a

range of plausible asymptomatic prevalence rates. These results

are qualified, however, by the relatively small size of this outbreak

and should be verified against datasets with a higher density of

cases. It is important to note, however, that our data actually

represent 70 independent replications of the household transmis-

sion process. In addition, the use of a dataset where an individual’s

outcomes are directly linked to her exposure is likely to decrease

error in estimation relative to approaches in which only the

aggregate force of infection and population-level incidence are

considered, (see e.g. [27]). These findings also echo results from

other modeling studies which have found that asymptomatic

infection is unlikely to play a major role in person-to-person

transmission during an outbreak [16].

Although all three models are able to explain key features of the

data, the qualitative fit of model 3 is the strongest of those

considered here. As compared to models 1 & 2, it is able to capture

both patterns of within-household transmission as well as the

probability the index case will fail to transmit to any household

members. Our findings are, however, limited by two factors.

First, the fact that our dataset consists primarily of self-reported

illness onset times may introduce some error with respect to the

actual time of infectiousness onset. Second, to provide a contrast to

models 1 & 2, in model 3 the proportion of a case’s infectivity at

onset is fixed at 50%. This means that our model comparison

results need to be interpreted as a contrast between one in which

Table 3. Descriptive characteristics of household outbreak data compared to 10̂4 simulations from fitted Models 1–3.

Data Model 1 Model 2 Model 3

Descriptive Statistic Value Range Value
5th–95th

Quantile Value
5th–95th

Quantile Value
5th–95th

Quantile

Avg#secondary cases
(in hh w/1+ cases)

1.3 (1.0, 4.0) 1.2 (1.0, 3.0) 1.3 (1.0, 3.0) 1.3 (1.0, 3.0)

Avg household outbreak
duration (days)

3.1 (0.5, 10.0) 2.8 (0.5, 10.0) 3.4 (0.5, 11.0) 2.9 (0.5, 10.0)

Avg serial interval (days) 2.3 (0.5, 8.0) 2.6 (0.5, 8.0) 2.7 (0.6, 9.0) 2.3 (0.5, 9.5)

Probability no
secondary cases

0.62 – 0.70 – 0.63 – 0.64 –

Recrudescence
probability

0.17 – 0.22 – 0.29 – 0.21 –

doi:10.1371/journal.pone.0068413.t003
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50% of the infectiousness occurs at onset with smooth variation

thereafter to one in in which infectiousness at onset is tied

smoothly to variation afterwards, rather than a general compar-

ison between a model with a spike at onset and one in which there

is no such spike.

Consequently, although our findings suggest that it is important

to account for increased infectiousness at onset, they should be

verified and expanded using outbreak datasets with more cases

and larger contact networks. Future analysis should also address

variation in infectivity profiles by age, as this is likely to influence

transmission. In addition, data including laboratory testing

confirming symptomatic infection and identifying asymptomatic

cases is necessary to verify the robustness of these results to

asymptomatic transmission.

In model 3, we also assume that the 12-hour duration of the

burst of infectiousness following onset is similar to the period of

vomiting reported from a cohort study of norovirus infections in

the community [15]. Clinical challenge studies, e.g. [8], have

shown longer periods of vomiting of up to several days. But this

may result from dosage with quantities of norovirus much greater

than likely to be encountered in the context of a real-world

outbreak. Given the critical role of vomiting in norovirus

transmission [3,10], further study is necessary to understand the

distribution of the duration and intensity of vomiting in the context

of real-world outbreaks and the role of contact-limiting behavior in

transmission.

The methods discussed here may be extended to include the

mechanisms driving the shape of infectiousness over time. For

example, for HIV and other STIs, infectiousness over time may be

modeled as a function of individual-level covariates, such as

changes in risk behavior. Models including time-variation in the

influence that individuals have on each other might also be

usefully extended to studies of the diffusion of behavioral risks for

chronic illness, e.g. obesity [28], where compartmental modeling

approaches may result in an awkward discretization of changes in

social behavior over time.

Our results underscore the idea that public health interventions

need to focus on both the acute phase of infection as well the

environmental contamination and post-symptomatic infectious-

ness that characterize norovirus outbreaks. Onset of norovirus

gastroenteritis is often abrupt, with no prodrome, so public

vomiting events are common. Preventing such events from

occurring may not be possible, but our results demonstrate the

importance of rapidly responding to such occurrences, as well as

other opportunities for transmission in the initial phase of illness.

Future work should test this framework and its implications for

intervention in the context of community and institutional

outbreaks, where issues of sanitation are most acute.

Figure 3. Fitted infectivity profiles for Models 2 & 3. The figure shows infectiousness as a function of time since symptom onset for the
estimated values of the exponential decay model (Model 2; solid line) and burst model (Model 3; dashed line).
doi:10.1371/journal.pone.0068413.g003
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