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Abstract

We investigated the physiological consequences of the most challenging mountain ultra-marathon (MUM) in the world: a
330-km trail run with 24000 m of positive and negative elevation change. Neuromuscular fatigue (NMF) was assessed before
(Pre-), during (Mid-) and after (Post-) the MUM in experienced ultra-marathon runners (n = 15; finish time = 122.43 hours
617.21 hours) and in Pre- and Post- in a control group with a similar level of sleep deprivation (n = 8). Blood markers of
muscle inflammation and damage were analyzed at Pre- and Post-. Mean 6 SD maximal voluntary contraction force
declined significantly at Mid- (213617% and 210616%, P,0.05 for knee extensor, KE, and plantar flexor muscles, PF,
respectively), and further decreased at Post- (224613% and 226619%, P,0.01) with alteration of the central activation
ratio (224624% and 228634% between Pre- and Post-, P,0.05) in runners whereas these parameters did not change in
the control group. Peripheral NMF markers such as 100 Hz doublet (KE: 218618% and PF: 220615%, P,0.01) and peak
twitch (KE: 233612%, P,0.001 and PF: 219614%, P,0.01) were also altered in runners but not in controls. Post-MUM
blood concentrations of creatine kinase (371963045 Ul?1), lactate dehydrogenase (11456511 UI?L21), C-Reactive Protein
(13.167.5 mg?L21) and myoglobin (449.36338.2 mg?L21) were higher (P,0.001) than at Pre- in runners but not in controls.
Our findings revealed less neuromuscular fatigue, muscle damage and inflammation than in shorter MUMs. In conclusion,
paradoxically, such extreme exercise seems to induce a relative muscle preservation process due likely to a protective
anticipatory pacing strategy during the first half of MUM and sleep deprivation in the second half.
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Introduction

Mountain ultra-endurance running has experienced consider-

able growth in recent years. These events consist of running/

walking on mountain trails with positive and negative slopes over a

distance longer than the traditional marathon. These extreme

events are an opportunity to investigate the physiological responses

of the human body when pushed to its limits [1]. Some previous

studies have already assessed the acute consequences of these

mountain ultra-marathons (MUM) on inflammation, neuromus-

cular or cardiac fatigue or hemolysis [2–5] but none of them have

assessed the consequences of an event longer than 50 h. More

precisely, neuromuscular fatigue has been assessed after 5 to 37 h

prolonged running exercises and the general observation was the

presence of large central fatigue [3,4,6] with some slight

differences depending of the muscle group tested, usually knee

extensors (KE) vs. plantar flexors (PF). Moreover, peripheral

fatigue, such as low-frequency fatigue, has also been reported after

a MUM [3]. A plateau in the maximal voluntary contraction

(MVC) force loss (index of global fatigue) has been suggested [7]; it

appears that after approximately 30–36 h of running, MVC force

loss does not increase further. However, to our knowledge, there

are no data available on MUM longer than 37 h to confirm the

presence of this plateau.

Information about inflammation and muscle damage have

already been collected after a MUM [2,3,5] and revealed large

increases of myoglobin, C-reactive protein, lactate dehydrogenase

(LDH) and creatine kinase (CK) concentrations. For example, CK

activities have been reported to be ,13,600 UI?L21 (mean value)

after the Ultra-trail du Mont-Blanc (UTMB). Such levels are

similar to those measured in patients with rhabdomyolysis [8] and

confirm the extreme solicitation of the organism.

Analyzing MUM longer than 100 hours involves sleep depri-

vation, which is not an issue in shorter events. This factor has

never been assessed in previous MUM studies lasting less than 50

h. Little is known about the effects of sleep deprivation on

neuromuscular fatigue and muscle damage. It has been reported

that 24 h of sleep deprivation did not affect weightlifting

performances [9]. Following 30-h sleep deprivation, isokinetic

knee flexion peak torque decreased but no effects were detected on

fatigue index [10]. Electrically evoked force or maximal voluntary

strength did not change during either isometric or isokinetic

contractions of the upper or lower limbs during 60 h of sleep

deprivation [11,12]. These findings suggest that sleep deprivation

per se has little effect on the neuromuscular function.
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Analyzing MUM longer than 100 hours also allows making a

mid-run measurement, which is difficult in shorter duration

MUMs. Effectively, with such a long exercise time, a few minutes

lost for the study won’t have any effect on the final performance.

Finally, the comparison of runners and control subjects has never

been performed on MUM studies.

The aim of the present study was to investigate the etiology of

neuromuscular fatigue, muscle damage and inflammation in the

most extreme (duration: 80–150 h) MUM in the world. By using

data recorded prior to, during and after the event on both runners

and control subjects, we aimed at characterizing the specificities of

such MUM and better describe the underlying mechanisms of

extreme fatigue.

Methods

Experimental design
The race supporting this study was the Tor des Géants (TdG)

2011. It consisted of running/walking ,330 km around the

province of Val d’Aoste in Italy with a total positive and negative

elevation change of ,24000 m (Figure 1). There were 471 starters

and 301 finishers (64%) in 2011. This race is considered as the

world’s most challenging single-stage MUM. The maximum and

minimum altitudes are 3300 m and 322 m, respectively. There are

20 passes over 2000 m. The maximum time allowed for

completion of the race is 150 h and the current record is 76 h.

The distance is divided into seven parts interspersed by six aid-

stations where sleeping is allowed. However, the participants do

not have any compulsory stops and therefore can pace themselves

and manage their stops as they wish. Since the recovery time (e.g.

nutrition, hydration, sleep) is not subtracted from the race time,

the influence of pacing and sleep deprivation is paramount. This

race is therefore different to other mountainous ultra-trails of

shorter distances (e.g. Ultra-trail du Mont-Blanc, UTMB, 166 km

[3]) or road ultra-marathons over longer distance but with several

stages (e.g. Trans Europe Foot Race, 4,487 km in 64 stages from

South Italy to North Cape, Norway in 2009, [13]) where sleep

management is of less importance.

The study was approved by the institutional ethics committee of

the University of Verona, Italy (Department of Neurological,

Neuropsychological, Morphological and Motor Sciences). All

subjects provided written, voluntary, informed consent before

participation. The experiment was conducted according to the

Declaration of Helsinki. Most of the subjects were familiar with

testing procedures, having previously participated in similar

experiments [3,6].

Participants
Twenty-five male runners took part in the present study.

Participants were tested three times: before the run (Courmayeur,

Italy, altitude 1224 m, km 0, Pre-); during the run (Donnas, Italy,

altitude 322 m, km 148.7, Mid-); and approximately 30 minutes

after the run (Courmayeur, Italy, altitude 1224 m, km 330, Post-).

Of the 25 initially engaged participants, 15 (i.e. 60%) completed

the TdG and 9 took part in the three testing sessions (i.e., Pre-,

Mid- and Post-). The finishers/starters ratio for our subjects was

similar to the overall ratio for this race (64%). All subjects were

experienced in ultra-marathons/trails (Table 1). Three subgroups

of runners (Pre-Mid-Post, n = 9; Pre-Mid, n = 15; Pre-Post, n = 15)

were considered in the present study (see statistical analysis for

more details). There was no significant difference between the

three groups (n = 9 and n = 15) for any characteristics (Table 1).

Therefore, the group ‘‘Pre-Mid-Post’’ (n = 9) was considered as

representative and was renamed ‘‘TOR’’.

In parallel, a control group (CON, n = 8) participated in this

study, and was tested at Pre- and Post-. Table 1 shows that TOR

and CON were similar except for age and experience in trail

running. The timing for the Pre- and Post- measurements was

strictly similar in TOR and CON. This control group was

constituted of investigators. Of importance is that both groups

were constrained by the same level of sleep deprivation (Table 1).

Force assessment
MVC force loss of KE and PF was evaluated to provide an

index of global fatigue [14]. The voluntary activation ratio of KE

and PF was assessed using superimposed high-frequency (100 Hz)

doublet to detect central fatigue. Finally, evoked stimulations were

delivered to the relaxed muscle in a potentiated state to determine

the extent and type of peripheral fatigue.

The protocol was identical for the three testing sessions, and was

conducted as follows:

1. One MVC (duration ,4 s).

2. One or two MVCs with a superimposed 100 Hz doublet,

followed by a 100 Hz doublet (,2 s after the MVC), a 10 Hz

doublet and a single twitch (,2–3 s between each stimulation).

A second MVC was performed if a plateau was not observed in

the first one.

This sequence was conducted twice at Pre- and Post- and only

one time at Mid- since the time was limited for the runners during

the race. At Pre-, the first step consisted of determining the

supramaximal stimulation intensity, which was used for all

sessions. In Pre-, subjects performed 8–10 contractions on each

ergometer at intensities ranging from 20–80% of the estimated

MVC as a warm-up. No warm-up was performed for Mid- or

Post-.

For the KE testing, subjects were seated in an isometric

ergometer comprised of a custom-built chair equipped with a

strain gauge (STS 250 kg, sensitivity 2.0005 mV?V21 and 0.0017

V?N21, SWJ, China). Subjects were seated with a knee angle of

90u and a trunk-thigh angle of 100u (180u= neutral position). The

strain gauge was attached to the chair on one end and securely

strapped to the ankle with a custom made mould. Two crossover

shoulder harnesses and a belt limited extraneous movement of the

upper body across the lower abdomen. Subjects were instructed to

cross their arms on the trunk during the MVC. During the MVCs,

subjects were strongly encouraged.
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Figure 1. Altitude profile of the entire run with the three session test locations and the distance scale in km.
doi:10.1371/journal.pone.0065596.g001
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For the PF testing, another specific custom-built ergometer was

used. The forefoot was strapped on this ergometer and the knee

was blocked to limit heel lift during the MVC. Arms were crossed

on the trunk. The hip, knee and ankle angles were set at 90

degrees. Subjects were sitting on a massage table vertically

adjustable. Mechanical torque of the PF muscles was obtained

with an instrumental pedal equipped with a strain gauge sensor

(Vishay Micro Measure, Raleigh, NC) set in bridge of Wheatstone

(set of two perpendicular gauges). The pedal’s body was made of

aluminum (Fortal 7075-T6, Grenoble, France) with an elastic limit

over 500 MPa. The field of the torque measured and tested

extended to 30 kg?m. The lower section of the pedal body was

60 mm wide and 16 mm thick, with a constraint of 120 MPa. To

limit the contribution of muscle groups other than PF and to

optimize force recordings, the upper leg was clamped down to the

pedal just proximal to the knee. Mechanical data were recorded at

1 kHz using an AD conversion system (MP150; Biopac system,

Goleta, CA). The right leg was investigated for all subjects in both

muscle groups. It is important to note, that the right leg was the

dominant one for all subjects. For both KE and PF testing, the

settings of the ergometer were noted to standardize the position of

every subject.

Electrical stimulation
Most of the subjects (75%) had already experienced electrical

stimulation of femoral and tibial nerves [3,6]; thus no familiariza-

tion session was performed. Transcutaneous stimulations were

induced by a high-tension, constant current stimulator (maximal

voltage of 400 V, DS7AH, Digitimer, Hertfordshire, UK). The

doublets were induced by a Train/Delay Generator (Model

DG2A, Digitimer).

For KE, the cathode (5-cm diameter, Dermatrode, American

Imex, Irvine, CA) and the anode (5610 cm, Medicompex SA,

Ecublens, Switzerland) were placed over the femoral nerve at the

femoral triangle level beneath the inguinal ligament and on the

lower part of the gluteal fold opposite to the cathode, respectively.

For the PF, the anode (1065 cm, rectangular self-adhesive

stimulation electrode, Medicompex SA) was located on the

inferior base of the quadriceps muscle and the cathode (EMG

electrode, 10 mm diameter, Kendall Meditrace 100, Tyco,

Canada) was located on the tibial nerve in the popliteal cavity.

The maximal stimulation intensity was measured during the

first testing session by progressively increasing the intensity until a

plateau was observed for the mechanical (peak twitch) and

electrical (M-wave amplitude) responses. This stimulation intensity

was then increased by 50% to obtain supramaximal intensity.

Electromyographic recordings
The EMG signals of the right vastus lateralis (VL) and soleus (SOL)

were recorded using bipolar silver chloride surface electrodes of

10-mm diameter (Kendall Meditrace 100) during the MVC and

electrical stimulation. These muscles were chosen as VL has been

proposed as a surrogate for the quadriceps muscle [15] and SOL is

the main muscle contributing to plantar flexor force at a knee

angle of 90u [16]. The recording electrodes were taped on the skin

over the muscle belly following SENIAM recommendations [17],

with an inter electrode distance of 20 mm [18]. The position of the

electrodes was marked on the skin so that they could be fixed on

the same place for the two other sessions. The reference electrode

was attached on the patella (for both VL and SOL EMG). Low

impedance (,10 kV) at the skin-electrode contact was obtained by

shaving,abrading the skin with an abrasive sponge and cleaning

with alcohol. EMG data were recorded with Biopac system

(MP150, Biopac System, Goleta, CA) and amplified (gain = 1000)

with a bandwidth frequency ranging from 10 to 500 Hz, digitized

at a sampling frequency of 2 kHz, and recorded by the AD

conversion system (common mode rejection ratio: 90 dB, input

impedance: 100 MV; gain: 1000). Isometric force and EMG data

were stored and analyzed offline with commercially available

software (Acqknowledge 4.1 software, Biopac System, Goleta,

CA).

Blood samples
Peripheral venous blood was collected at Pre- and Post- by

peripheral venipuncture into siliconized vacuum tubes containing

either K2 EDTA (Becton-Dickinson, Oxford, UK) for blood count

analysis (Advia 2120, Siemens, Germany) or lithium heparin for

clinical chemistry testing (Modular Analytics, Roche, Switzerland).

The samples were stored in a refrigerated bag and transported to

the reference laboratory for analysis. The quality of the results was

validated by regular internal quality control procedures and

participation in an External Quality Assessment Scheme. For

further details, see [19,20].

General fatigue and peripheral pain. Subjects were

requested to quantify the levels of general fatigue and subjective

pain (e.g. muscle soreness, joint pain) in three anatomical areas

(foot-ankle; leg-knee; thigh-hip) and their digestive feelings by

using a visual analog scale (VAS) with a 100-mm horizontal line

with ‘‘no fatigue/no pain’’ on one end (0 mm) and ‘‘extremely

fatigued/painful’’ on the other (100 mm). Subjects were asked to

mark their pain level on the VAS under supervision of an

examiner.

Table 1. Main characteristics of the different groups.

Group N Age (yr) Height (cm) Mass (kg) Body fat (%)
Training
(h?wk21)

Year of expe
rience in trail
running (yr)

Sleep at
Mid (h)

Sleep at
Post (h)

Total runners 25 45.4610.3 17465 69.466.1 18.462.9 8.265.1 7.765.3 - -

‘‘Pre-Mid-Post’’
(TOR)

9 41.6613.1 17466 67.366.4 17.863.3 7.264.1 7.866.9 1.261.6 8.665.2

‘‘Pre-Mid’’ 15 45.1611.9 17466 71.066.2 17.563.3 7.164.4 8.165.5 1.962.1 9.965.4

‘‘Pre-Post’’ 15 44.7611.3 17465 67.965.8 18.463.2 7.865.2 7.465.5 1.461.8 9.164.8

Control (CON) 8 29.368.1# 17466 70.969.3 20.166.1 2.762.5 0.861.2 1.261.8 12.365.4

Data are mean 6 SD. Training volume was considered for the past trail running season. Mid-: during the run at Donnas, km 148.7. Post-: about 30 minutes after the race,
at Courmayeur. Sleep represents the sleeping time accumulated at Mid- and Post-. #: P,0.001 for differences between control and other groups.
doi:10.1371/journal.pone.0065596.t001
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Mechanical responses
Peak force measured during the highest MVC for each session

was considered as the MVC value. The amplitudes of the

potentiated low- (10 Hz, PS10) and high-frequency (100 Hz,

PS100) doublets, potentiated twitch (Pt) and superimposed high-

frequency doublet and the ratio of high- to low-frequency doublet

peak force (PS10/100) were analyzed for the KE and the PF. For

these parameters, the values obtained during or after the highest

MVC were considered for each muscle group. The PS10/100

ratio was used to assess the development of low frequency fatigue

(LFF) [21].

MVC force and central activation
The Central Activation Ratio (CAR) was was calculated as

follows [22]:

Central Activation Ratio ~

MVC force= MVC force z superimposed doublet amplitudeð Þ

EMG
The M-wave peak-to-peak duration and amplitude were

measured from VL and SOL muscles. They were analyzed from

the single potentiated twitch evoked on the relaxed muscle. The

EMG Root Mean Square (RMS) values for VL and SOL muscles

at peak torque level were calculated during the highest MVC trial

over a 500 ms period (250 ms period either side of the peak

torque).

Statisticical analysis
Data were screened for normality of distribution and homoge-

neity of variance using a Shapiro-Wilk normality test and the

Barlett’s test, respectively.

First, we tested differences across the testing sessions for the

three different experimental groups (TOR, n = 9; Pre-Mid, n = 15;

Pre-Post, n = 15). When conditions of analysis of variance

(ANOVA) application were met, each variable was compared

between the different times of measurements (Pre-Mid-Post, n = 9;

Pre-Mid, n = 15; Pre-Post, n = 15) using a repeated measures

ANOVA for the experimental sub-groups. Bonferroni corrections

were applied to determine between-means differences if the

ANOVA revealed a significant main effect. When conditions of

application for parametric repeated-measures ANOVA were not

met, Friedman ANOVA was used.

Second, we examined the TOR vs CON differences: a repeated

measures ANOVA was used to identify differences by examination

of the group (TOR vs CON) x time (Pre- vs. Post-) interaction,

complemented by a Bonferroni post-hoc test. When the conditions

of application were not met, a Mann-Whitney rank-sum test was

used.

Third, for comparison of the percent decreases in neuromus-

cular parameters between TdG and a previous study with the

same experimental method (i.e. UTMB [3]), unpaired t-tests were

used.

Pearson correlation coefficients were calculated between Pre- to

Post-MUM changes in neuromuscular and blood parameters.

For all statistical analyses, a P value of 0.05 was accepted as the

level of significance. All data presented as mean values 6 SD in

the text and tables and as mean values 6 SE in figures.

Results

Considerations about groups and subgroups
There was no significant difference between groups (TOR, Pre-

Post and Pre-Mid) in terms of age, height, weight and running

time. Furthermore, for all subsequent analyses and discussion, only

the TOR group has been used. However, we did report the

changes for the other two sub-groups in the figures to show that

the TOR group was representative of the other groups, as done in

a previous study. [3]

Performance and muscle fatigue
The average finishing time of our subjects was 122.43 hours

617.21 hours, their final rank being from 8th to 244th position out

of 301 finishers.

MVC declined significantly (Figure 2) at Mid- (212.6617.4%

and 29.7616.4% for KE and PF, respectively; P,0.05), and

further decreased at Post- (223.9613.1%; P,0.01 and

226.4619.1%, respectively; P,0.001). For the control group,

MVC was not significantly reduced between Pre- and Post- both

for KE (216.5615.1%) and PF (21.6612.9%).

Central fatigue
CAR decreased significantly for both KE and PF

(222.1616.2% and 229.2624.5% for KE and PF respectively)

muscles in TOR but no change was observed in CON (Table 2).

Peripheral fatigue
PS100 was significantly reduced for both muscle groups in TOR

(217.9617.8% and 219.9615.2% for KE and PF, respectively;

P,0.01). No significant decrease was observed in CON (Figure 3).
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Figure 2. Maximal voluntary contraction (MVC) prior to (Pre-),
in the middle of (Mid-) and after (Post-) the race for knee
extensors (KE, panel A) and plantar flexors (PF, panel B). A two-
way repeated measure ANOVA was used complemented by a
Bonferroni post-hoc test. Values are mean 6 SE.
doi:10.1371/journal.pone.0065596.g002
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Peak twitch was significantly reduced for both KE and PF muscles

in TOR (233.6612.3%, P,0.001 and 219.3613.6%, P,0.01

for KE and PF, respectively), but no change was observed in CON

(Figure 4). The PS10/100 ratio decreased significantly at Mid- for

PF (26.168.3%, P,0.01) but no change was reported for KE.

The other peripheral fatigue markers are presented in Table 3.

Blood analysis
We found significant increases in the main inflammation and

muscle damage markers in TOR. These results are presented in

Table 4. Changes in Na+, K+, Ca2+, glucose, myoglobin and total

protein are given in Tables 4 and 5. No significant correlation

between the Pre- to Post- changes in neuromuscular parameters

and changes in blood variables was found.

Comparison with the UTMB study
We compared our main results to previous data collected in a

previous study during UTMB, [3] (Figure 5). The anthropome-

trical values of the subjects were similar between TdG and

UTMB. There was no significant difference between TdG at Mid-

and UTMB in distance, elevation, running time or relative rank

(Table 6). To compare the difference in speeds, we used a flat-

equivalent speed calculated as:

flat-equivalent distance ~

distance kmð Þz positive elevation change mð Þ=100:

General fatigue and peripheral pain
The changes in general fatigue, pain in foot-ankle and knee-

thigh-hip and digestive feelings are displayed in Figure 6. The

increase in these four variables was significant in TOR from Mid-

whereas no changes were observed in CON.

No significant correlation was found between the changes in

general fatigue or peripheral pain (measured with VAS) and the

changes in neuromuscular parameters.

Table 2. Central activation ratio (CAR, %) for the knee
extensors (KE) and the plantar flexors (PF) prior to (Pre-), in the
middle of (Mid-) and after (Post-) the race in runners (TOR,
n = 9) and control group (CON, n = 8).

CAR
(%) KE PF

Pre Mid Post Pre Mid Post

TOR 91.265.9 87.568.7 71.1626.5* 89.0610.3 87.3613.7 63.0638.7*

CON 88.566.8 - 82.3610.1 85.7617.2 - 83.8615.1

Values are given as mean 6 SD. *: P,0.05 for differences in TOR between Pre-
and Post-.
doi:10.1371/journal.pone.0065596.t002
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Bonferroni post-hoc test. Values are mean 6 SE.
doi:10.1371/journal.pone.0065596.g004

Neuromuscular Function and Mountain Ultra-Marathon

PLOS ONE | www.plosone.org 5 June 2013 | Volume 8 | Issue 6 | e65596



Discussion

The purpose of the present study was to investigate neuromus-

cular and biological adjustments occurring during and after a

single-stage MUM lasting between 4 and 7 days and inducing a

large magnitude of sleep deprivation. The main results of the

present study are that, compared to similar events of one-quarter

to half the distance: (i) the neuromuscular function was generally

less altered and (ii) muscle damage and inflammation markers (e.g.

CK, LDH, C-RP) were much lower. This suggests that the pacing

strategy (i.e. slow pace from the beginning of the race) and sleep

deprivation that result in very low-intensity concentric/eccentric

contractions preserve the neuromuscular function despite the

apparent extreme difficulty of this event.

Neuromuscular fatigue induced by the TdG
Central and peripheral alterations. At Post-MUM, MVC

was significantly decreased in TOR but not in CON. When

comparing the TdG with the UTMB [3] the decreases were lower

for KE and tended to be lower for the PF (224% vs. 232% in

KE; 226% vs. 238% in PF, for TdG vs. UTMB, respectively).

Surprisingly, over a MUM of longer distance and duration and

greater elevation change, the magnitude of MVC force loss was

lower than in shorter MUMs. These findings complement

previous results presenting a MVC force loss – exercise duration

Table 3. Values of potentiated peak twitch (N for knee extensors and Newton.meter: N?m for plantar flexors) and M-wave peak-to-
peak amplitude (millivolts: mV) and peak-to-peak duration (ms) for the knee extensors (KE) and the plantar flexors (PF) prior to (Pre-
), in the middle of (Mid-) and after (Post-) the race in runners (TOR, n = 9) and control group (CON, n = 8).

KE PF

TOR CON TOR CON

Pre Mid Post Pre Mid Post Pre Mid Post Pre Mid Post

Potentiated Peak
Twitch
(N or N?m)

95.1622.2 89.5623.4 67.9621.3* 95.7629.7 - 95.2611.3# 31.166.5 28.869.4 24.965.5 28.966.8 - 26.369.4

M-wave
Peak-to-peak
Amplitude (mV)

15.1 68.8 14.165.9 12.5 65.8 17.567.3 - 14.967.8 9.562.7 9.664.3 12.866.6 11.662.1 - 9.963.6

M-wave
Peak-to-peak
duration (ms)

8.8 61.9 8.7 62.1 8.6 62.3 7.862.3 - 7.8 62.5 2.860.5 3.461.5 3.361.2 2.960.4 - 2.860.8

Values are given as mean 6SD. N = 8 and n = 9 for CON and TOR respectively. *: P,0.05 for differences with Pre; #: P,0.05 for differences between TOR and CON.
doi:10.1371/journal.pone.0065596.t003

Table 4. Main blood markers of muscle damage and
inflammation prior to (Pre-) and after (Post-) the race in
runners (TOR, n = 9) and control group (CON, n = 6).

Pre Post

Creatine Kinase (UI ? L21)

TOR 112633 371963045***

CON 122.5641.1 147.7632.6###

Lactate Dehydrogenase (UI ?

L21)

TOR 340651 11456511***

CON 345665 312635###

C-Reactive Protein (mg ? L21)

TOR 0.3160.32 13.1167.51***

CON 1.0561.04 0.6560.61##

Creatinine (mmol ? L21)

TOR 0.9460.12 0.9560.15

CON 0.9860.18 1.0160.17

Myoglobin (mg ? L21)

TOR 25.665.5 449.36338.2***

CON 26.168.4 32.3616.4###

Total Protein (g ? L21)

TOR 72.763.9 64.964.6***

CON 72.462.9 73.163.4

Data are mean values 6 SD. ***: P,0.001 for differences between Pre- and
Post-. ##: P,0.01, ###: P,0.001 for differences between groups.
doi:10.1371/journal.pone.0065596.t004

Table 5. Changes in Na+ K+, Ca2+ and glucose concentration
prior to (Pre-) and after (Post-) the race in runners (TOR, n = 9)
and control group (CON, n = 6).

Pre Post

Na+ (mmol ? L21)

TOR 141.161.9 138.363.4

CON 140.760.8 140.260.4

K+(mmol ? L21)

TOR 5.160.9 7.162.1*

CON 5.560.2 4.760.4##

Ca2+(mmol ? L21)

TOR 9.660.3 8.362.3***

CON 9.860.2 9.960.2###

Glucose (mmol ? L21)

TOR 4.860.7 4.360.8

CON 4.360.5 4.960.5**#

Values are given as mean 6 SD. *: P,0.05, **: P,0.01, ***: P,0.001 for
differences between Pre- and Post-. #: P,0.05, ##: P,0.01, ###: P,0.001
for differences between groups.
doi:10.1371/journal.pone.0065596.t005
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relationship [6,23]. In these previous studies, the authors described

an increase in KE MVC force loss as running duration increases

and then ‘‘a plateau for extreme durations.’’ This relationship was

observed for durations between 2 and 37 h (i.e. less than 2 days).

The present results highlight that for durations between 4 and

7 days, the loss in maximal force generating capacity may be even

lower than the above-described ‘‘plateau.’’ This can be explained

by the large deceleration throughout the MUM (Table 6) and

consequently the relative low intensity during the second part of

the race due to the accumulation of kilometers, elevation and sleep

deprivation. Compared to shorter races, both the speed, especially

at the end, and strength loss were lower.

It is interesting to compare the present results with a preceding

study conducted on during the UTMB [3]. For a similar distance,
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Figure 5. Decrease in MVC force for UTMB (Ultra-Trail du Mont-Blanc), the TdG (Tor des Geants) and TdG at mid-race (Mid) for the
knee extensors (KE, panel A) and the plantar flexors (PF, panel B) and decrease in peak twitch for the UTMB, the TdG and TdG Mid
for the knee extensors (panel C) and the plantar flexors (panel D). Unpaired t-tests were used. Data are given in changes from Pre- values.
doi:10.1371/journal.pone.0065596.g005

Table 6. Comparison of parameters concerning the different run (TdG: Tor des Geants; UTMB: Ultra Trail du Mont-Blanc) properties
and subjects.

Parameters TdG TdG Pre-Mid TdG Mid-Post UTMB

Equivalent flat distance (km) 545 241 304 262

Average equivalent-flat speed (km/h) 5.562.8 6.262.1* 4.560.4*$ 7.261.3*${

Speed decrease relative to UTMB (%) 223.1 214.1* 236.8*$ -

D+ (m) 24000 11500 12500 9600

Relative rank (% field) 34 - - 38

Time (h) 107.5615.4 39.165.9* 67.163.3*$ 37.665.9*{

Age (Yr) 45.4610.3 45.4610.3 45.4610.3 40.267.4

Height (cm) 17365 17365 17365 17867

Weight (kg) 69.466.1 69.466.1 69.466.1 73.466.4

Values are given in mean 6 SD. Equivalent-flat distance was calculated as follows: (positive elevation (m)/100) + distance (km). *: P,0.05 different from TdG; $: P,0.05
different from TdG Pre-Mid; {: P,0.05 different from TdG Mid-Post.
doi:10.1371/journal.pone.0065596.t006
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running time and elevation, the decrease in MVC was two times

greater in UTMB than Mid-TdG in KE (231% vs. 213% for

UTMB and Mid-TdG, respectively) and four times greater in PF

(240% vs. 210%). When compared to UTMB, the ,15% lower

running speed induced one-quarter to half the MVC force loss.

These differences may be explained by the pacing strategy [24]. In

the pacing strategy model, the athlete generates a conscious RPE

managed by his brain, which assimilates all afferent information

from each physiological system. The work output is then adjusted

so that RPE does not increase disproportionately during the

exercise, to avoid premature exercise termination. This pacing

strategy is adopted by the runners in order to preserve themselves

for the rest of the run; this can explain the lower decrease in MVC

force observed Mid-TdG compared to UTMB.

The central component of fatigue after ultra-endurance exercise

has been proposed as the main explanation for neuromuscular

fatigue in KE [3,4,6], and it has been shown that this central drive

alteration was not as high for PF as for KE after a 24–h treadmill

run [25]. The present study partially confirmed these observations

since the decrease in %CAR was significant in both muscle

groups. These results could confirm the existence of a central

mechanism already described in the UTMB [3] and whose

purpose is ‘‘to reduce neural input to working muscles to limit

fatigue and damage’’[7,26]. As expected, peripheral fatigue was

also observed in this study, highlighted by the decreases in PS100

and peak twitch amplitude. Our results also suggest that muscle

excitability was well-preserved [27] since no significant alteration

was found in the M-wave properties. This confirms previous

results obtained after various endurance exercises [23,28].

Therefore, it rather seems that processes located beyond action

potential propagation/transmission were impaired. The reduction

in electrically evoked force can thus be attributed to the

impairment of some steps of the excitation-contraction coupling

mechanism and could involve (i) a reduced number of active cross-

bridges due to a decreased release of Ca2+; (ii) a decreased

sensitivity of the myofilaments to Ca2+; and/or (iii) a reduced force

produced by each active cross-bridge [29]. Recent data seem to

favor decreased Ca2+ release from the sarcoplasmic reticulum as

an important contributor to fatigue after prolonged exercise and

was explained by leaky ryanodine receptors, the Ca2+ release

channels in the muscle [30]. This hypothesis is in accordance with

the decrease in PS10/100 in the PF at Mid-, which revealed the

presence of low-frequency fatigue (LFF) in this muscle as observed

in the UTMB. In addition, it is interesting to note that for the

same distance, time and elevation, the decrease in Pt was minimal

(e.g. 5% and 8% at Mid- for the KE and PF respectively) and 3–4

fold greater in the UTMB (19% and 26%, respectively). This is in

line with MVC loss described above and illustrates the conserva-

tive pacing strategy [7,24,31].

The reduction in speed, the sleep deprivation and the

underlying respective feedback vs. feed-forward components of

the pacing regulation are among the putative factors explaining

this reduced strength loss observed in TdG, when compared to

shorter distances. During the second part of the TdG (Mid-to-

Post), the average flat-equivalent speed was 4.5 km?h21 and was

37% lower than in UTMB (Table 6). Most of the participants were

only walking during the final part of the TdG. Even the best

athletes had a larger proportion of walking vs. running than in
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Figure 6. Visual analogue scale (VAS) for the pain-foot-ankle (panel A), the knee-thigh-hip (panel B), the digestive feeling (panel C)
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the race. A two-way repeated measure ANOVA was used complemented by a Bonferroni post-hoc test. Values are mean 6 SE.
doi:10.1371/journal.pone.0065596.g006
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UTMB and thus less mechanical stress on the muscles [32]. This

involved smaller forces on lower limb muscles resulting in a less

eccentric work since downhill running leads to important eccentric

contractions, especially for the KE [33,34] knowing that muscle

damage is greater with fast- than slow- velocity eccentric exercise

[35]. In addition, the energetic cost of downhill walking is lower

than for downhill running [36] and one cannot exclude that this

might contribute to the pacing of the subjects. However, the

influence of economy on MUM performance is unclear and is still

being debated [37,38].

We already mentioned that the reductions in MVC force and

peak twitch, when compared to the UTMB, were likely due to a

specific pacing strategy [24]. This is supported by the VAS

‘‘fatigue’’ and ‘‘pain’’ values that were all significantly lower at

Mid- than at Post- (except ‘‘igestive feelings’’). Of interest is that

‘‘general fatigue’’ at Mid- was not different between TOR and

CON (Figure 6); however we cannot distinguish the influence of

nociceptive feedback on this decrease in strength.

An important point in this study, which differentiates it from

previous studies on ultra-endurance, is the severe sleep deprivation

(Table 1). Although this possibility that sleep deprivation

negatively affects voluntary strength has previously been proposed

[10], it is difficult to attribute the loss of voluntary strength in

TOR to the sleep deprivation since no significant strength loss was

observed in CON constrained to the same amount of deprivation.

The results of CON are in agreement with the rare studies

examining the effects of sleep deprivation itself on neuromuscular

function. On the contrary, several studies have illustrated an

injurious effect of sleep deprivation on endurance performance

[7,39,40]. Moreover, sleep deprivation one of the centrally acting

performance factors presented in different models of performance

regulation [7,31] and can therefore influence pacing strategies.

Indeed, a lack of sleep is known to have an influence on the RPE

for a given exercise [39,41]; i.e. the perceived exertion is higher

with partial or total sleep deprivation. Thus, this factor can

influence the pacing strategy by decreasing the speed in order to

maintain a sufficient security reserve as described by Millet [7].

Biological markers of fatigue
As expected, a 330-km/24000 m D+ (i.e. total positive elevation

change) ultra-marathon led to a large increase in main blood

markers of muscle damage and inflammation. As already observed

in UTMB [3], there was a large variability among subjects for the

biological parameters.

CK increased to a large extent in TOR whereas there was no

change in CON. However, the post-race level of CK in TOR was

much lower than after UTMB (3700 vs. 13600 UI.L21 for TdG

and UTMB, respectively). These results are also much lower than

the values measured after the Western States Endurance Run (161

km and 5500 m D+/7000D-,[2]). It is well known that downhill

running involves a large eccentric component, especially for the

KE [33,34] and leads to large increases in muscle damage

markers, principally CK [42,43]. Our relatively low CK values

despite the extremely high downhill component of the TdG

highlight the influence of running speed on the magnitude of

muscle damage [43]. This relative muscle preservation is also

illustrated by the increase in myoglobin concentration being much

lower than after UTMB [5]. As discussed above, the final part of

the TdG was walked by most of the participants mainly due to

nociceptive feedback and sleep deprivation-induced fatigue. This is

in line with CK values of ‘only’ 4500 UI.L21 after a 1600-km

‘‘flat’’ ultra-marathon [44].

An interesting inflammation marker measured in our study was

C-RP. This increased in TOR, showing a great inflammation

process but this rise remained lower than the one observed in

UTMB (46.8 vs. 13.1 mg?L21 for UTMB and TdG, respectively),

indicating less inflammation in TdG and in line with the lower

muscle damage described above. Of interest is also that the

increase in LDH concentration (+240%) was similar compared to

the UTMB (+274%) [3,5]. The decrease in total protein suggests

an increase in plasma volume and these results are also in line

with the UTMB data [5] and with other previous endurance

exercises [45,46]. This may confirm the inflammation process

which had probably occurred in our case. Other mechanical

parameters must be considered. The level of tension is recognized

as a primary factor for exercise-induced muscle damage [47].

Since participants run faster in UTMB than on TdG, they

consequently produced greater muscle forces during propulsive

(concentric) actions. Stronger eccentric contractions were thus

needed to absorb the potential energy during ground contact

phase. More importantly, wider amplitudes are thus needed to

perform these braking phases, especially for the knee and ankle

joints [48]. The higher levels of tension associated with large

movement amplitudes induce greater mechanical stress (length-

ening) on muscle fibers [49,50] and importantly affect the level of

exercise-induced muscle damage [51]. These considerations

could explain the present finding and are in line with the pacing

strategy adopted and described above.

The purpose of this study was to assess the physiological impact

of the world’s most challenging mountainous ultra-marathon

(TdG, 330 km; 24000 m D+). This competition is unique since it

represents the greatest elevation change and distance ever

performed over a single-stage mountainous ultra-marathon,

inducing an amazing level of sleep deprivation. To our

knowledge, the experimental design (inclusion of measurements

at mid-race and comparison with a control group constrained to

the same amount of sleep deprivation) is also unique and the first

one allowing investigation of the pacing strategy and the

responses to extreme fatigue induced by distance, elevation and

sleep deprivation. We believe that ultra-endurance is an

interesting model to better understand the pacing/coping

strategies and adaptive responses of athletes facing extreme load

and stress [1].

Over the TdG, an anticipatory pacing strategy was observed

during the first part of the race. Then fatigue combined with a

high level of sleep deprivation led to a large decrease in speed,

particularly during the second part of the race, so that speed was

relatively low over the whole course. This event induced lower

inflammatory responses and less muscle damages than similar

types of events of shorter duration, probably as a result of the very

low concentric/eccentric contraction intensity due to the slow

pace, showing that the amount of neuromuscular fatigue is not

necessarily correlated to the difficulty of the event (duration and/

or elevation). In addition, a control group allowed us to minimize

the effects of sleep deprivation as the main factor of the

neuromuscular fatigue in the runners.

In conclusion, beyond the influence of exercise duration on

ultra-distance trails, the reduction in maximal force generating

capacity seems to be related to other unidentified factors.

Paradoxically, such an extreme MUM seems to induce relative

muscle preservation. Further studies focusing on injuries and pain

are required to complete the understanding of the physiological

impact of such non-standard exertions.
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