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Abstract

Efficient methods to explore plant agro-biodiversity for climate change adaptive traits are urgently required. The focused
identification of germplasm strategy (FIGS) is one such approach. FIGS works on the premise that germplasm is likely to
reflect the selection pressures of the environment in which it developed. Environmental parameters describing plant
germplasm collection sites are used as selection criteria to improve the probability of uncovering useful variation. This study
was designed to test the effectiveness of FIGS to search a large faba bean (Vicia faba L.) collection for traits related to
drought adaptation. Two sets of faba bean accessions were created, one from moisture-limited environments, and the other
from wetter sites. The two sets were grown under well watered conditions and leaf morpho-physiological traits related to
plant water use were measured. Machine-learning algorithms split the accessions into two groups based on the evaluation
data and the groups created by this process were compared to the original climate-based FIGS sets. The sets defined by trait
data were in almost perfect agreement to the FIGS sets, demonstrating that ecotypic differentiation driven by moisture
availability has occurred within the faba bean genepool. Leaflet and canopy temperature as well as relative water content
contributed more than other traits to the discrimination between sets, indicating that their utility as drought-tolerance
selection criteria for faba bean germplasm. This study supports the assertion that FIGS could be an effective tool to enhance
the discovery of new genes for abiotic stress adaptation.
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Introduction

Drought coupled with heat stress, expected to increase in

frequency and intensity is likely to expand due to climate change

[1,2]. Faba bean (Vicia faba L.) is an important source of protein,

often referred to as poor man’s meat, in those dry areas of

developing countries most likely to be impacted by climate change

[3,4]. This has significant food security implications because faba

bean is relatively sensitive to terminal moisture stress when

compared to other temperate-season grain legumes [5–7] so

drought is a major constraint to its production and yield stability.

Therefore it is imperative that natural variation for traits related to

drought adaptation be identified from the faba bean genepool and

introduced into improved cultivars. Economic analysis of cultivar

development showed that the identification of a desirable trait is of

equal importance to the process of transferring it into improved

backgrounds because it reduces the time taken to develop

improved cultivars [8].

Genetic resource collections conserved in genebanks are the

most obvious place to look for useful traits, but given the size of

these collections, searching for specific and often rare traits has

been likened to searching for a needle in a haystack. Further,

evaluating large collections for some parameters can be extremely

costly. For example, the International Center for Agricultural

Research in the Dry Areas (ICARDA) houses a globally important

collection of over 9500 faba bean accessions. It would be beyond

the resources of most research programs to evaluate this entire

collection for variation in leaf morpho-physiological traits related

to plant moisture stress. What is needed therefore is a means of

wisely selecting an economically feasible set size that has a better

probability of capturing useful variation than if material was

selected at random or through the use of other techniques that do

not focus on the sought-after trait.

The core collection was proposed as a way to work with fewer

accessions that would represent, ‘‘with a minimum of repetitive-

ness, the genetic diversity of a crop species and its relatives’’ [9].

There are numerous examples of methodologies to develop core

collections (see Hodgkin et al. [10] for examples), which in practice

tend towards limiting the size of the sub-set to around 10% [11,12]

of the original collection size. Although one of the stated purposes

of core collections is to improve utilization, the vast majority of

reported research seems to focus more on methods (or sampling

strategies) to establish core collections [13–16] and the analysis of

the diversity held within core collections [17–20]. A number of
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references suggest alternative types of collections, or sets of

collections, to enhance the efficiency of capturing diversity or

addressing utilization, including specialized core collections [21],

mini core sets [22], nested core collections [23] and composite

collections [24]. Despite this diversity of core collection method-

ology, there seems to be a lack of literature that demonstrates that

core collections have had a significant impact on the utilization of

genetic resources. Rare and adaptive alleles, most of which are

thought to be functional, may even be missed from a core

collections [21,25–29].

The Focused Identification of Germplasm Strategy (FIGS) was

designed to improve the efficiency with which specific adaptive

traits are identified from genetic resource collections. FIGS is

based on the premise that adaptive traits displayed by an accession

will reflect the selection pressures of the environment from which it

was originally sampled [30–33]. The FIGS approach uses both

trait and environmental (climate) data to develop a priori

information or specialized knowledge as per Gollin et al. [8]

based on a quantification of the trait-environment relationship

[32,34,35]. This a priori information is then used to define a set of

accessions with a high probability of containing the desired traits.

Many adaptive traits can be linked to agro-climatic parameters.

For example, using monthly values for a range of climatic

variables, FIGS detected sources of resistance in wheat (Triticum

ssp.) for biotic stresses such as powdery mildew (Blumeria graminis

(DC) Speer f.sp. tritici) [36,37], Sunn pest (Eurygaster intergriceps Put.)

[38], Russian wheat aphid (Diuraphis noxia Kurdj.) [39] and stem

rust (Puccinia graminis Pers.) [34,35] as well as net blotch (Pyrenophora

teres Drechs.) in barley (Hordeum vulgare L.) [34]. Further, Endresen

et al. [40] demonstrated how eco-geographic data from the

collection sites of 14 Nordic barley landraces (Hordeum vulgare L.)

was successfully correlated to morphological traits using multi-

linear data modelling techniques and conclude that the FIGS

approach can be used efficiently as a targeted germplasm selection

method.

However, so far studies are few on the effectiveness of FIGS to

detect traits that impart tolerance to abiotic stresses such as

moisture availability, and there are certainly none for faba bean.

The aim of this study was to compare the leaf morpho-

physiology and phenology of two sets of faba bean accessions

originating from environments with contrasting seasonal moisture

availabilities. The underlying hypothesis is that ecotypic (climatic)

differentiation occurred so traits associated with plant moisture

regulation and lifecycle will differ between the two sets. From this,

we would further expect that set membership based on collection

site environmental descriptors would be the same when the

accessions are classified using trait measurements.

Materials and Methods

Construction of FIGS Sets
Two sets containing landrace accessions of faba bean were

selected from the collection conserved by ICARDA that contains

9545 entries, representing 21% of the worldwide germplasm

collection [41]. One set was chosen to maximize the probability of

having drought-related adaptive traits, the ‘‘dry set’’, and the other

was constructed as a control from accessions originating from

environments with higher moisture profiles - the ‘‘wet set’’. The

origin of the selected accessions is presented in Figure 1, and the

ICARDA accession numbers are given in Table S1.

The dry set (201) was constructed as follows. Accessions from

collection sites where the annual rainfall was below 300 mm/year

or greater than 550 mm/year were not considered. Of the

remaining accessions, one accession per collection site was chosen

at random. A hierarchical cluster analysis was performed using the

following collection site agro-climatic parameters: precyr, ariyr,

tminyr, tmaxyr, bio4, bio15, bio16, and bio19 extracted from ICARDA

and Worldclim-databases and Hijmans et al. [42] (Table 1). The

climate variables were chosen to combine temperature and

precipitation factors that would influence the length of growing

season and seasonal moisture availability. The between-groups

linkage option was set as the clustering algorithm, using squared

euclidian distances as the distance measure. The procedure

created 20 clusters. Accessions contained in 6 clusters were

dropped because the average aridity index for the cluster was

above 0.6 or below 0.1 (indicating irrigated sites). For each of the

remaining clusters the accessions were sorted according to the

bio15 climate variable (a measure of the variation in seasonal

moisture availability) for their respective collection sites. Any

accession with a score of 50 or lower was discarded. The

remaining accessions within each cluster were ranked based on

collection site long-term yearly precipitation. A set of 201

accessions was chosen by selecting the lowest ranked accession

in each cluster and repeating the process until the set size was

achieved.

The wet set was chosen from sites that receive over 800 mm/

year of rainfall (long-term average). One accession per site was

chosen at random. The remaining accessions were sorted

according to collection site yearly average aridity index and 201

accessions were chosen from sites with the highest aridity indices.

Growth Conditions
Accessions were planted in a randomized complete block design

(RCBD) with 4 replicates in a climate-controlled greenhouse of the

University of Helsinki, Finland during 2010–2011, giving a total of

1608 pots. Before sowing, seeds were inoculated with Rhizobium

leguminosarum biovar. viciae (faba bean strain, Elomestari Oy,

Tornio, Finland). Three seeds were sown per 2 L plastic pot, which

held a mixture of sand and peat (White 420 W, Kekkilä Oy,

Vantaa, Finland) (3:1 v/v). After 10 days, the seedlings were

thinned to one per pot. Soil moisture levels were maintained at

field capacity with an automatic irrigation system to ensure that

each plant received the same amount of water during the

experiment. At three and five weeks after sowing, 70 ml of

fertilizer solution (equivalent to 20 kg of P and 24 kg of K per

hectare) was added to each pot. The photoperiod was adjusted to

14 h light and 10 h dark, and the temperature was set to 21uC
day/15uC night 62uC. Photosynthetic photon flux density (PPFD)

was about 300 mmol m–2 s–1 at the canopy level. The relative

humidity was maintained at 6065%.

Pest control. Thrips were controlled biologically using

Amblyseius cucumeris, especially at seedling and flowering stages.

Morphological Measurements
Stomatal density and morphology. Stomatal density (SD),

length (SL) and width (SW) were measured on the middle part of

the abaxial surface of the youngest, fully expanded leaflet of 8-

week-old plants using the impression method [43]. The number of

stomata was counted from ten different microscopic fields of view

at 2506 magnification. To estimate SD, the number of stomata

per field of view was converted to the number of stomata per mm2

of leaf using a standard scale. SL and SW were measured on ten

stomata from the impressions using a scaled 5006 eyepiece of

microscope and converted to mm. Stomatal area (SA) was

calculated as SA = SL 6 SW. Stomatal area per unit area of

leaflet (SAAL) was calculated as the product of SA and SD.

Drought Adaptation and Genetic Resources
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Leaflet area. Leaflet area was measured using a LI-6200 leaf

area meter (LI-COR, Inc., Lincoln, NE, USA). Means of four

leaflets per plant were used for analysis.

Fertile tillers. The number of fertile tillers was counted at 16

weeks after sowing.

Seed size. Ten seeds from each accession were measured in

order to classify them to the traditional seed size class, minor, equina

and major according to seed length and mass [44,45].

Physiological Measurements
Gas exchange traits. Gas exchange was measured on each

plant at 6 weeks and 8 weeks after sowing, using a LI-6400

portable photosynthesis system (LI-COR, Inc.) equipped with a

263 cm leaf chamber with a LED light source (6400-02B, 90%

red and 10% blue). Photosynthesis photon flux density (PPFD) was

1000 mmol m22 s21. A CO2-injecting cartridge was attached to

the system to control reference CO2 concentration at 400 mmol

mol21, a value close to that during plant growth. The flow rate

was 400 mmol s21. All the gas exchange measurements were done

between 9 and 11 am using the youngest, fully expanded leaflet

which was also used for stomatal morphology and leaflet area

measurements. Measurements were logged only when the stability

criteria were met, according to the manufacturer’s instructions.

For logistical reason, each replicate was measured on a separate

day. The gas exchange measurements taken were: photosynthetic

rate (Anet), stomatal conductance (gs), transpiration rate (E), and

intercellular CO2 (Ci). Intrinsic water use efficiency (WUE) was

calculated as gas exchange rate divided by stomatal conductance

(Anet/gs) [46].

Leaflet and canopy temperatures. Leaflet temperature was

measured along with gas exchange on the LI-6400. Canopy

temperature was measured using a FLUKEH 574 thermometer

gun (FLUKE, Everett, WA, USA) from the fully expanded leaves

used for the other measurements. Canopy temperate was

measured at 6 weeks and 8 weeks after sowing. Air temperature

was recorded at the time of measuring leaf temperature. Leaflet

temperature is presented as: Leaflet temperature – air temperature

and canopy temperature as: canopy temperature – air tempera-

ture.

Relative water content. Five leaflets were used for deter-

mining leaf relative water content (RWC%) according to the initial

principles by Barrs and Weatherley [47]. First, fresh weight (FW)

was determined. Turgid weight (TW) was measured after floating

the sample on distilled water in Petri dishes in darkness at 4̊C for

24 h. Dry weight (DW) was calculated by putting the samples for

48h in a 60̊C oven. RWC (%) = (FW–DW)/(TW–DW) 6 100.

Figure 1. Geographical distribution of the two sets (wet set, blue circle and dry set, green triangle).
doi:10.1371/journal.pone.0063107.g001

Table 1. The climatic variables used in the selection of FIGS
sets.

Code Description

precyr Long term yearly precipitation

ariyr Long term yearly aridity index

tminyr Long term yearly minimum temperature

tmaxyr Long term yearly maximum temperature

Bio4 Temperature seasonality (standard deviation 6 100)

Bio15 Precipitation seasonality (coefficient of variation)

Bio16 Precipitation of wettest quarter

Bio19 Precipitation of coldest quarter

Source: ICARDA GIS (Geographic information system) unit and world global
climate data (http://www.worldclim.org/bioclim).
doi:10.1371/journal.pone.0063107.t001
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Phenological Measurement
The number of days to the onset of flowering was recorded.

Statistical Analysis
The membership of the two contrasting FIGS sets was based on

a priori information, namely the long-term climatic conditions of

the sites from which the accessions were collected. The underlying

assumption was that morpho-physiological traits related to

moisture stress adaptation would differ between two sets of

selected germplasm. Two methods were used to determine

whether the two sets are different in terms of morpho-physiological

phenotypic expression.

To determine if there were differences between the sets, they

were subjected to a t-test, using means across replicates for each

accession, with the R statistical package [48] after testing for

normality.

Multivariate analysis was employed for deeper investigation

because the relationships between the collection site agro-climatic

conditions and trait expression are likely to be non-linear and

multi-dimensional and thus not captured in a linear framework.

When trait expression differs between the two sets, this should be

reflected in how the classification algorithms discriminate between

accessions. Thus, we would expect the algorithms to correctly

assign accessions into the sets created on climatic descriptors.

Three models (Table 2) were used to classify accessions,

discriminate between sets and to highlight those traits that

contributed most to the discrimination. The algorithms used a

learning-based approach, in which they were ‘‘trained’’ on a set of

accessions whose set membership (wet or dry) was made ‘‘known’’

to the algorithm. The trained algorithm was then used to classify

the accessions whose set membership was ‘‘unknown’’ to the

algorithm into two sets (wet or dry). This is an iterative process

where the model that is finally chosen by the algorithm is based on

the ‘‘best’’ values for accuracy parameters that measure the

model’s ability to classify the unknown accessions into their

respective climate-based sets. These learning-based techniques

need fewer assumptions and thus are more suitable when highly

complex non-linear relationships are expected among input

variables. They were used to overcome the problem of restrictive

parametric paradigms on one hand and the prerequisite distribu-

tion assumptions on the other [56,57].

The parameters used to measure the accuracy of these models

are the AUC and Kappa values. The AUC refers to the area

under the curve (AUC) of the Receiver Operating Characteristics

(ROC) [58,59], which is a plot of true positive rate versus false

positive [60]. An AUC value of 0.5 represents randomness and

would indicate that the FIGS sets are no different from randomly

chosen sets. An AUC value of 0.7 and above represents high

model performance [59] indicating that the wet and dry sets are

highly distinguishable and that the dry set is more prone to harbor

traits that favor drought adaptation. Similar to the AUC, Kappa is

a measure of agreement, where a value of 0.4 and above is an

indication of good agreement between the model’s prediction and

the trait measurements [61].

The datasets were presented to the algorithms as follows: the

mean value for each variable was calculated over the replicates for

each accession. This accession level data was combined (wet+dry

sets) and standardized so that the dataset mean was zero with

standard deviation of 1. The algorithms split the combined data

into 2 datasets containing 2/3 and 1/3 of the accessions on a

random basis. The larger dataset was used to ‘‘train’’ the models

and quantify the association between the membership (wet/dry)

and the drought-related attributes. The association was then used

in turn (in reverse) to classify the ‘‘unknown’’ accessions of the

smaller dataset. This process was performed 10 times and the

results were averaged.

Selection of important parameters. Some of the param-

eters used to differentiate between two sets are expected to have

more influence on the classification defined by the algorithms

(Table 2). The importance of each variable was calculated based

on the Gini, or impurity index, where a split node that has a

mixture of both tolerance and susceptible membership (wet and

dry set) is less pure.

Results

Eleven of the 16 parameters measured differed between the sets.

The members of the dry set had 21% fewer fertile tillers, flowered

2.4 days earlier, had longer stomata (4%), greater stomatal area

(4%), more stomatal area per unit of leaflet (3%), 48% more leaflet

area, 5% higher transpiration rate, 5% higher RWC, and cooler

leaves than the wet set. The transpiration rate was 9% higher in

the wet set while leaflet and canopy temperatures were lower in

the dry set (Table 3). Furthermore, three quarters of the material

from the dry set were large-seeded (major type) compared to only

20% in the wet set, whose remaining seeds were distributed

equally between the minor and equina classes (Figure S1). The two

sets thus contained accessions that, on average, differed morpho-

logically and physiologically.

This assertion is supported by all 3 models used to classify the

accessions based on the trait data; the accessions were placed into

sets that agreed with the original climate-based classifications. The

Kappa scores were all close to one, which demonstrates a high

degree of accuracy given that an acceptable score is above 0.4.

Likewise the AUC values were well in excess of the acceptable

value of 0.7. Thus the models classified the accessions into their

climate-based sets with accuracies approaching 100% (Table 4).

Table 2. Models used in the study to test the difference between the two sets and to select the best splitters.

Model Tuning parameters
Library
(R language) References

Classification and Regression Training (CARET)* caret [49,50]

Random Forests (RF)* Number of trees (n.tree)
Number of predictors chosen at
each node (mtry)

randomForest [51–53]

Support Vector Machines
(SVM)

gamma/sigma, cost (C) svm (e1071)
ksvm (kernalab)

[49,54,55]

*Variable importance is available for these models.
doi:10.1371/journal.pone.0063107.t002
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The accuracy of the models is also illustrated by the ROC plots

(Figure 2), where displacement above the diagonal indicates non-

random assignment of accessions to the correct subset. In the rpat-

caret plot, there is some overlap between the sets, but both RF and

SVM show mutual exclusivity of the two sets. The prediction

density plots to the right of the ROC plots demonstrate that the

wet and dry sets include accessions which, in a multivariate sense,

are different and that the basis for the difference will be related to

the selection criteria, in this case the seasonal moisture availability

at collection sites.

Table 3. The mean (6 standard deviation) of morphological, physiological and phenological measurements on sets of 201 wet
adapted and 201 dry adapted faba bean accessions, along with the difference between the set means and the value of the t-test.

Parameters means difference t (df =400)

Wet Dry

Morphology

Stomatal density (No. mm22) 49.6612.4 48.366.1 –1.3 1.29ns

Stomatal length (mm) 53.263.9 55.462.6 +2.2 6.63***

Stomatal width (mm) 30.461.61 30.360.92 –0.1 0.20ns

Stomatal area (mm2) 16226184 16856119 +63 4.07***

Stomatal area per unit area of leaflet 6 1023 (mm2.mm22) 77.9612.4 80.666.8 +2.7 2.67**

Leaflet area (cm2) 11.465.9 16.965.2 +5.5 9.86***

Number of fertile tillers 2.8561.52 2.2561.1 –0.60 4.54***

Physiology

Photosynthetic rate (mmol m22 s21) 7.862.0 8.261.1 +0.4 2.25*

Intercellular CO2 (ppm) 322.4622.3 325.2610.5 +2.8 1.64ns

Stomatal conductance (mol m22 s21) 0.32960.119 0.32060.072 –0.009 0.92ns

Water use efficiency (mmol mol21) 25.667.8 26.464.2 +0.8 1.24ns

Transpiration rate (mmol m22 s21) 3.2660.9 3.4260.5 +0.16 2.15*

Leaflet temperature (uC) –0.1760.31 –0.7260.19 –0.55 34.98***

Canopy temperature (uC) –0.8061.21 –1.5960.48 –0.79 13.77***

Relative water content (%) 82.363.9 86.362.4 +4.0 12.59***

Phenology

Days to flowering 50.7613.1 48.367.4 –2.4 2.24*

df: degrees of freedom; ns: non significant; *, P,0.05; **, P,0.01; ***, P,0.001.
doi:10.1371/journal.pone.0063107.t003

Table 4. Model accuracy values for learning-based techniques used on test data (1/3) of faba bean over 10 runs of the algorithms.

Model AUC omission rate sensitivity specificity
correct classification
rate Kappa

caret-rpart Mean 0.97 0.03 0.97 0.97 0.97 0.93

Lower 0.96 0.01 0.95 0.95 0.96 0.92

Upper 0.98 0.05 0.99 0.98 0.97 0.95

RF Mean 0.99 0.01 0.99 1.00 0.99 0.99

Lower 0.99 0.00 0.98 1.00 0.99 0.98

Upper 1.00 0.02 1.00 1.00 1.00 1.00

SVM Mean 0.99 0.00 1.00 0.98 0.99 0.98

Lower 0.99 0.00 1.00 0.97 0.99 0.97

Upper 1.00 0.00 1.00 0.99 1.00 0.99

AUC: Area under the ROC curve.
RF: Random Forest.
caret-rpart: Classification and Regression Training.
SVM: Support vector machine.
Correct classification rate: the overall classification of both wet and dry accessions to their respective membership group. It is the total of both correctly classified
accessions as either wet or dry divided by the total of all the accessions (402).
Omission rates: the opposite of correctly classified accessions with drought-related traits in this case, which is the number of accessions lacking the traits yet they have
been classified (incorrectly) as having the.
doi:10.1371/journal.pone.0063107.t004
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Variable Importance
Of the 16 variables, leaflet temperature depression was the most

informative, followed by canopy temperature, RWC, leaflet area

and stomatal length (Table 5). The relative importance of the

other variables differed between the three assessment methods,

with transpiration rate being the third most important in RF mean

decrease accuracy and fourth in RF mean decrease Gini, for

example.

Discussion

While other studies have shown that the FIGS approach was

effective when employed in the search for resistance to pests and

diseases (e.g. [34,35,37,38]), this study demonstrates its effective-

ness as a method to search for adaptive traits associated with

abiotic constraints. The set selection process, based on indicators

of moisture availability, yielded sets whose morpho-physiology and

phenology were significantly different.

This result is not all that surprising, since it has been

comprehensively shown that the environment strongly influences

gene flow, natural selection and thus spatial/geographic differen-

Figure 2. ROC plots (left) and density plots class prediction (right) for dry and wet sets using the three models; The class
predictions fall out of range (0, 1) as a result of linearity/interpolation in some of the models.
doi:10.1371/journal.pone.0063107.g002
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tiation [62–64]. Numerous studies have documented eco-geo-

graphic variation for drought-related traits linked to environmen-

tal parameters such as phenology and carbon isotope discrimina-

tion in Triticum turgidum spp. dicoccoides (Körn.) Thell [65], as well as

leaf area, electrolyte linkage and RWC in Arabidopsis thaliana [66].

In this context, FIGS represents a logical extension of N. I.

Vavilov’s work that by the 1920s had developed and illustrated the

concept of centres of diversity that established the association

between diversity and eco-geographic distribution [67].

Despite the above, using an eco-geographic approach to select

germplasm for utilization has not been industry standard in

genetic resource conservation circles. Rather, there has been a

focus on the core collection concept (e.g. [21]). In fact, the Food

and Agriculture Organization of the United Nations (FAO), in its

global strategy for plant genetic resources (PGR) conservation,

called for and financially supported the development of core

collections as a standard and recommended practice.

However, the authors of this paper have determined that a large

percentage of germplasm requests from the ICARDA genetic

resources database are for specific adaptive traits. Thus it is argued

that, in contrast to core collections, FIGS represents a dynamic,

direct and practical approach that focuses on specific adaptive

traits rather than on generalized measures of diversity, and as such

could be of considerable value to the genebank user community if

deployed on a regular basis. It is further suggested that as the plant

breeding community prepare to tackle climate change, the efficient

utilization of genetic resource collections will become increasingly

important [68]. In this context, it is argued that the FIGS

approach can reduce the cost and effectiveness of evaluation by

reducing the number of accessions screened while providing a

higher probability of identifying sought-after traits.

While this study supports the assertion that FIGS is an effective

way to search for adaptive traits, there is considerable room for

improvement in the approach. Since FIGS is still in its infancy, it is

acknowledged that the procedure used to select the sets in this

study was more a common sense process rather one based on

previous research. The rationale behind the selection of the dry set

was to select material from environments that were most likely to

impose relatively dry conditions during the growing season whilst

not so dry that a crop would need irrigation. Faba bean is unlikely

to be planted to rain fed conditions much below the 300 mm/year

limit. Further the criteria on narrow range in rainfall and low

aridity index were selected to favour environments where there is

more likely to be higher seasonal variation for moisture

availability, low rainfall tending to be coupled with high

variability. The rationale here is that higher seasonal moisture

variation is likely to push populations towards physiological

adaptation to dry conditions rather than drought avoidance

strategies (earliness, for example). The bio15 parameter, a measure

of seasonal variation in rainfall, was then used to select high

variation environments. The tminyr, tmaxyr, bio4, bio16, and bio19

parameters were included in the clustering procedure because they

all represent factors that influence growth conditions and it was

desirable to include a range of different low-moisture environ-

ments. The approach outlined above to select the dry set could

have been done in different ways and further experimentation is

needed to determine the optimal strategy.

Different approaches could also have been used to define the set

of material originating in environments with higher seasonal

moisture profiles. In this case it was considered desirable to include

a wide range of environments provided they received over

800 mm of precipitation, which is considered to be favourable

for faba bean cultivation.

Both sets were chosen by applying selection criteria to long-

term average yearly data. However, these data do not

necessarily reflect the conditions within the growing season. A

more effective approach would be to use climatic data presented

on the basis of growing season or different crop development

phases rather than calendar year. To do this effectively there is

a need for accurate continuous surface maps detailing the onset

Table 5. Potential climate predictors based on caret R and RF packages.

Rank drought related parameter model

rpart-caret RF

mean decrease accuracy mean decrease Gini

1 Leaflet temperature 34.91 0.26 55.41

2 Canopy temperature 13.68 0.10 31.64

3 Relative water content 12.46 0.02 9.64

4 Leaflet area 9.95 0.01 6.39

5 Stomatal length 6.70 0.01 2.30

6 Fertile tillers 4.72 0.00 0.47

7 stomatal area 4.13 0.00 1.01

8 Transpiration rate 3.61 0.03 6.94

9 Stomatal area per unit area of leaflet 2.75 0.01 3.52

10 Photosynthetic rate 2.34 0.01 4.25

11 Days to flowering 2.21 0.00 1.95

12 Intercellular CO2 1.64 0.00 0.93

13 Stomatal density 1.26 0.01 2.42

14 Water use efficiency 1.21 0.01 1.89

15 Stomatal conductance 0.86 0.01 1.83

16 Stomatal width 0.14 0.00 0.82

doi:10.1371/journal.pone.0063107.t005
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of the growing season for different crop species. Additionally,

the machine-learning algorithms used in this study could be

used to create the FIGS sets using climatic variables as the

input data.

While this study demonstrates that there is a difference in leaf

morphology and physiology associated with water use between the

two sets, it was performed under well watered conditions and thus

we cannot firmly conclude that the dry set is in fact more drought

tolerant. Nevertheless, the existence of a difference indicates that

eco-typic differentiation has occurred in faba bean accessions from

dryer environments, so we can infer that differentiation is in some

way associated with adaptation to dryer seasonal moisture profiles.

Indeed, eco-geographic differentiation has been found for leaf

morphology in other species. For example leaf area was found to

be negatively correlated with altitude (and by inference the

probability of chilling stress) for Dodonaea viscosa subsp. angustissima

[69]. It would appear that the same holds true for faba bean, since

leaf width in this study was linked to maximum temperature

regionally (latitude gradient) and leaf area to minimum temper-

ature locally (altitude gradient).

While leaf area and RWC were positively correlated in Quercus

acutissima [70], as found in this study (R2 = 0.29, P,0.001,

n = 402), leaf area and size diminished with declining water

availability, in contrast to this study. The present results may be

seen as somewhat counter-intuitive if one expects reduced leaf

areas to present less evaporative surface, thus favouring tighter

control on water use, which is certainly the case in xerophytic

perennials. However, large leaf areas cover the soil surface more

effectively, minimizing unproductive evaporation. Furthermore,

75% of the dry set accessions belong to the major seed type of faba

bean (Figure S1) and these larger seeds tend to produce bigger

seedlings with larger leaflets and more extensive root systems,

which bestow the adaptive advantage of rapidly exploiting

available soil moisture earlier in the season. In Panicum virgatum

L., for example, larger seeds were linked to higher seedling vigour

and better root establishment in dry environments [71], while in

oat (Avena sativa L.) larger seeds lead to better germination under

osmotic stress [72], and in faba bean larger seeds were related to

higher transpiration efficiency and lower transpiration rates [73].

Furthermore, in some legume species seed size was found to be an

indicator of abiotic adaptation [74].

RWC has been recognized as a reliable indicator of plant water

status, and thus has been widely used as a screening parameter for

drought adaptation in crop plants [47,75]. Nevertheless, screening

large quantities of germplasm using RWC measurements is costly

and time consuming. Since lower RWC in this study was

associated with lower canopy temperatures (R2 = 0.54, P,0.001,

n = 402), it supports the assertion of Blum [76] that leaf

temperature can be used as a rapid and economical phenotyping

method to screen germplasm for drought adaptation. The slightly

earlier flowering in the dry set is in line with expectations that

earlier flowering is part of drought escape in faba bean as in many

other species [6].

The current work involved the aerial part of the plant.

Nevertheless, for drought adaptation, root morphology and

function also play a significant role [75,77]. For example, the

roots of sorghum genotypes from dry African environments were

found to be deeper and more highly branched than US-derived

genotypes [78]. Variation for root traits linked to drought

adaptation is of particular interest, especially if they can be linked

to more easily evaluated above-ground marker. A logical extension

of the work reported here would be to assess differences in root

morphology between the two sets.

Many genetic diversity studies still use linear based approaches

such as principal component analysis (PCA). The machine

learning/recursive algorithms used here represent a novel

approach deserving some comment. This study demonstrates that

the RF and SMV approaches are suited to studies such as this,

since they can detect patterns or relationships between a

dependent variable (trait data) and a set of independent variables

(climate data) in large datasets [79]. They can also identify

parameters that have the greatest impact on the discrimination.

Used in this context, the algorithms can point to which trait or

combination of traits confers the adaptation.

Further, the use of recursive partitioning is gaining momen-

tum in areas where the data are too highly dimensional for

standard regression methods such as PCA in which the

decomposition of variables into reduced components leads to

the loss of their individual effects, thus rendering the important

variable unidentifiable in the interpretation [80]. In the present

algorithms, the variables that have a strong relationship to the

trait would be those that split the accessions correctly [81]. At

the split, the variable that produces less entropy measured using

either information theory (Shannon index) or Gini index (known

as impurity measure) is ranked first. A reduction in the impurity

is a prerequisite for the variable ranking/importance which can

be best visualised in the graphs generated by these algorithms

[82].

A further advantage of the algorithms used here is that the input

data does not have to be normally distributed or conform to other

assumptions related to linear models and thus do not require the

tedious and time consuming pre-analysis required for linear

models to ensure that the assumptions are not violated.

Conclusions
The methods used were effective at creating sets that were

different in terms of leaf morphology, physiology and phenology.

This demonstrates that eco-geographic differentiation in faba

beans has occurred and is related, in part, to moisture availability.

Thus the underlying premise upon which FIGS is based was

supported, indicating that it can be an effective tool to enhance the

discovery and deployment of new genes, although the FIGS

process can be improved to select for drought-adapted genetic

resources. Further, the use of machine-learning algorithms was

demonstrated here as an effective tool to investigate datasets that

are complex and highly dimensional, so it is suggested that they

are particularly suited to eco-geographic diversity studies. The

results also indicate that leaf and canopy temperature could be an

economical way to screen for potentially drought-adapted material

as has been suggested by other authors.
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73. Avola G, Cavallaro V, Patanè C, Riggi E (2008) Gas exchange and

photosynthetic water use efficiency in response to light, CO2 concentration
and temperature in Vicia faba. J Plant Physiol 165: 796–804.

74. Parra-Quijano M, Iriondo JM, Torres E (2012) Ecogeographical land

characterization maps as a tool for assessing plant adaptation and their
implications in agrobiodiversity studies. Genet Resour Crop Evol 59: 205–217.

75. Blum A (2011) Plant breeding for water limited environments. Springer-Verlag,
New York, 255 p.

76. Blum A (2009) Effective use of water (EUW) and not water-use efficiency (WUE)
is the target of crop yield improvement under drought stress. Field Crops Res

112: 119–123.

77. Blum A (2011) Drought resistance – is it really a complex trait? Funct Plant Biol
38: 753–757.

78. Masi CEA, Maranville JW (1998) Evaluation of sorghum root branching using
fractals. J Agric Sci 131: 259–265.

79. Therneau TM, Atkinson EJ (1997) An introduction to recursive partitioning

using the rpart routine. Technical Report 61, Section of Biostatistics, Mayo
Clinic, Rochester. Available: http://www.mayo.edu/hsr/techrpt/61.pdf.

80. Strobl C, Malley J, Tutz G (2009) An introduction to recursive partitioning:
rationale, application, and characteristics of classification and regression trees,

bagging, and random forests. Psychol Methods 14: 323–348.
81. Liknes GC, Woodall CW, Perry CH (2009) Predicting forest attributes from

climate data using a recursive partitioning and regression tree algorithm. In:

McWilliams W, Moisen G, Czaplewski R, editors. Forest Inventory and Analysis
(FIA) Symposium 2008; Park City, UT. Proc. Fort Collins, CO: U.S.

Department of Agriculture, Forest Service, Rocky Mountain Research Station,
7 p.

82. Hothorn T, Hornik K, Zeileis A (2006) Unbiased recursive partitioning: A

conditional inference framework. J Comput Graph Stat 15: 651–674.

Drought Adaptation and Genetic Resources

PLOS ONE | www.plosone.org 10 May 2013 | Volume 8 | Issue 5 | e63107


