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Abstract

Because classical music has greatly affected our life and culture in its long history, it has attracted extensive attention from
researchers to understand laws behind it. Based on statistical physics, here we use a different method to investigate classical
music, namely, by analyzing cumulative distribution functions (CDFs) and autocorrelation functions of pitch fluctuations in
compositions. We analyze 1,876 compositions of five representative classical music composers across 164 years from Bach,
to Mozart, to Beethoven, to Mendelsohn, and to Chopin. We report that the biggest pitch fluctuations of a composer
gradually increase as time evolves from Bach time to Mendelsohn/Chopin time. In particular, for the compositions of a
composer, the positive and negative tails of a CDF of pitch fluctuations are distributed not only in power laws (with the
scale-free property), but also in symmetry (namely, the probability of a treble following a bass and that of a bass following a
treble are basically the same for each composer). The power-law exponent decreases as time elapses. Further, we also
calculate the autocorrelation function of the pitch fluctuation. The autocorrelation function shows a power-law distribution
for each composer. Especially, the power-law exponents vary with the composers, indicating their different levels of long-
range correlation of notes. This work not only suggests a way to understand and develop music from a viewpoint of
statistical physics, but also enriches the realm of traditional statistical physics by analyzing music.
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Introduction

Because music has well accompanied human beings for

thousands of years, abundant scientific researches have been done

to understand the fascinating power of it. For example, a research

group used positron emission tomography to study neural

mechanisms underlying intensely pleasant emotional responses to

music [1]. Voss (1989) discovered self-affinity fractals in noise and

music [2]. Tzanetakis and Cook analyzed timbral texture,

rhythmic content and pitch content of audio signals to try to

classify musical genres [3]. Clearly, these discoveries are still far

from enough for people to fully understand interesting laws behind

music.

In this work, we attempt to understand music from a statistical

physics point of view. Traditional statistical physics mainly

concerns about natural systems, whose structural units are usually

molecules or atoms. Those units are not adaptive to the

environment because they have no mental faculties. From the

1990s, people gradually applied the methods originating from

traditional statistical physics to investigate the intelligent and

adaptive human systems. For example, Mantegna and Stanley

discovered a scaling behaviour of probability distribution for a

particular economic index in 1995 [4]. The competing and

collaborating activities in a complex adaptive system were also

studied to investigate risk-return relationships [5] and resource

allocations [6] in human society. Besides, methods of statistical

physics were also applied to study the birth (death) rate of words,

providing an insight into the research on language evolution [7].

In the light of such directions, here we try extending some of these

methods to the field of music, especially the study of notes. In fact,

a number of related works have been done before. Manaris et al.

(2005) applied Zipf’s Law to music and studied the distribution of

various parameters in music [8]. Liu (2010) constructed networks

with notes and edges corresponding to musical notes and found

similar properties in all networks from classical music to Chinese

pop music [9]. The research group of Levitin (2012) studied the

rhythm of classical music. They computed the power spectrum of

the rhythm by the multitaper method, and found a 1/f power law

in the rhythm spectra, which can classify different musicians

according to the predictability [10]. As far as the classical music is

concerned, it is an important branch of music originating in

Europe around the 11th century. The central norms and standards

of western classical music were codified from 1550 to 1900, also

known as the common practice period [11]. It contains three

periods: the Baroque era, the Classical era and the Romantic era,

when a number of outstanding musicians and masterpieces were

born [12]. Therefore, for our purpose, we also focus on the

compositions and musicians in this common practice period in the

present work. As we all know, a composition of classical music is

actually a time series of notes. The time series of pitch fluctuations

of notes in a composition correspond to types of melodies, which

can distinguish various musical genres and composers. Accordingly,
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in this work, we mainly calculate the cumulative distribution

function (CDF) and the autocorrelation function of pitch fluctua-

tions.

Methods

We analyze 1,876 compositions of five classical music compos-

ers across 164 years [11,12]. The five composers, including J. S.

Bach, W. A. Mozart, L. van Beethoven, F. Mendelsohn, and F. F.

Chopin, are the representative figures of three different genres in

chronological order, namely the baroque (1600–1750), classical

period (1730–1820) as well as the romantic era (1815–1910)

[11,13,14,15,16]. The information of the musicians and the

accurate number of compositions we selected are listed in Table 1.

All pieces of music in our work were downloaded from kern

humdrum music data base [17] as MIDI files, which contain

accurate and easily-read information of music. A note in a music

score can be named by a scientific pitch notation with a letter-

name and a number identifying the pitch’s octave [18]. Each

scientific pitch notation is corresponding to a certain frequency.

Details can be found in Table 2, where the left column (i. e., C, D,

E, F, G, A, B) is the note’s letter-name and the first line (namely, 0,

1, � � �, 9) is the pitch’s octave. To proceed, we regard the sequential

notes or pitches (representing frequencies) of a composition as a

time series.

Let us denote the pitch of time t as f (t) (t = 1, 2, 3, � � �, N),

where N is the length in notes of the concatenated parts of the

composition. Then we introduce the pitch fluctuation, Zf (t), to

describe the pitch change between two adjacent notes, which is

defined as

Zf (t)~f (tz1){f (t), t~1,2,3, � � � ,N{1: ð1Þ

Table 1. The information of composers and their compositions.

Composer Common practice period Compositions analyzed Total compositions

Bach (1685–1750) Baroque music 1114 w1200

Mozart (1756–1791) Classical period music 504 w780

Beethoven (1770–1827) Classical period music 188 w300

Mendelsohn (1809–1847) Romantic era music 52 w180

Chopin (1810–1849) Romantic era music 88 w120

doi:10.1371/journal.pone.0058710.t001

Table 2. Frequencies (Hz) of notes, each named by a scientific pitch notation with a letter-name and a number identifying the
pitch’s octave.

Note 0 1 2 3 4 5 6 7 8 9

C 16.352 32.703 65.406 130.81 261.63 523.25 1046.5 2093 4186 8372

D 18.354 36.708 73.416 146.83 293.66 587.33 1174.7 2349.3 4698.6 9397.3

E 20.602 41.203 82.407 164.81 329.63 659.26 1318.5 2637 5274 10548

F 21.827 43.654 87.307 174.61 349.23 698.46 1396.9 2793.8 5587.7 11175

G 24.5 48.999 97.999 196 392 783.99 1568 3136 6271.9 12544

A 27.5 55 110 220 440 880 1760 3520 7040 14080

B 30.868 61.735 123.47 246.94 493.88 987.77 1975.5 3951.1 7902.1 15804

Each scientific pitch notation corresponds to a certain frequency.
doi:10.1371/journal.pone.0058710.t002

Figure 1. Mozart-Eline Kleine Nachtmusik K.525. Extracted from http : ==imslp:org=wiki=.
doi:10.1371/journal.pone.0058710.g001
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The reason why we focus on two adjacent notes may be two-

folded. Firstly, if we focus on the pitch change between two notes

with f (tzi) (i§2) and f (t), according to Table 2, it can be easily

conjectured that the pitch change, f (tzi){f (t), cannot be

statistically distinguished well from Bach to Chopin especially

when i is large enough. Secondly, according to music appreciation,

two adjacent notes could be much more impressive for audience

than two separated notes with i§2. However, it is worth noting

that most compositions are composed of several tracks, as shown in

Fig. 1. Thus, for our fluctuation calculations, we turn them into

one track by adding tracks one after another. Nevertheless, the

difference between the ending note of the previous track and the

beginning note of the latter track was removed from the

calculations throughout this work.

Results

(1) Statistical analysis of pitches and pitch fluctuations
First, let us take a glimpse at the data of pitches of the five

composers, by calculating the mean value of pitches as we can see

in Fig. 2. The horizontal ordinate shows the musicians arranged in

chronological order according to their years of birth. As we can

see, the mean value of pitches is different for the five composers.

Particularly, Bach has the smallest value, 343.65 Hz, while the

values of the other four composers are all above 400 Hz. In

particular, the smallest value for Bach is probably due to the

different standards for assigning frequencies in his period, where

the tunings were usually lower [19].

Next, let us move on to statistical analysis of pitch fluctuations,

Zf (t). We calculated the mean value and the standard deviation of

pitch fluctuations as well as the kurtosis and skewness. All the

results are shown in Table 3. As we can see, the mean values of

pitch changes are all around zero for the five composers. The

kurtosis of Bach is the smallest 8.230 while the kurtosis of

Figure 2. Mean of pitches. The mean value of pitches for the five
composers: 343.658 Hz (Bach), 435.448 Hz (Mozart), 416.332 Hz
(Beethoven), 406.961 Hz (Mendelsohn), and 314.037 Hz (Chopin).
doi:10.1371/journal.pone.0058710.g002

Table 3. Statistical Analysis of the pitch fluctuations.

Composer Mean (Hz) Std. Dev. (Hz) Kurtosis Skewness

Bach 20.361 128.718 8.230 20.007

Mozart 20.240 118.987 11.110 0.296

Beethoven 0.784 139.665 16.445 20.322

Mendelsohn 0.034 158.376 95.953 1.618

Chopin 0.584 159.833 17.689 0.177

doi:10.1371/journal.pone.0058710.t003

Figure 3. CDF of pitch fluctuations in the log-log plot: (a) the
positive tails and (b) the negative tails. All the tails have a part in
the power-law (or scale-free) distribution as indicated by the straight
lines.
doi:10.1371/journal.pone.0058710.g003
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Mendelsohn is the largest, 95.953. Speaking of the skewness,

Mendelsohn has the value of 1.618 while the values for the rest are

much smaller.

After the statistical analysis of pitches and pitch changes, we are

now in a position to investigate the CDFs.

(2) CDF of pitch fluctuations
CDF (cumulative distribution function), FX (x), for a discrete

variable X describes the probability distribution of X to be found

larger than or equal to a number x [20,21]. It is also named as the

complementary cumulative distribution function or tail distribu-

tion. FX (x) is defined for every number x as

FX (x)~P(X§x): ð2Þ

Every CDF is monotonically decreasing. If we define FX (x) for

any positive real number x, then FX (x) has two properties:

lim
x?0

FX (x)~1 and lim
x?z?

FX (x)~0: ð3Þ

To comply with our notations, here X represents pitch fluctuation

Zf (t). Therefore the positive tail and negative tail of CDF can be

calculated separately to make a comparison [22].

The CDF of pitch fluctuations for each composition is

calculated at first, and then it is classified in accordance with

musicians, as shown in Fig. 3. Clearly, as time evolves from Bach

time to Mendelsohn/Chopin time, the biggest pitch fluctuation of

a composer gradually increases. The robustness of this time-

evolution result can also be shown because the biggest pitch

fluctuations of Mendelsohn and Chopin (born in 1809 and 1810,

respectively) are closed very much. Particularly, both positive and

negative tails of CDFs show a straight line in the log-log plot for

different composers, indicating that the time sequence of the

acoustic frequencies, instead of a random process, decays very

slowly. Then we applied the power-law fitting to both tails of the

CDFs. The fitting formular is

FX (x)~Cx{a(aw0), ð4Þ

where C is a constant. The corresponding fitting parameters are

shown in Table 4. As we can see, each tail of the CDF satisfies a

Table 4. The parameters of power-law fits for cumulative distribution functions shown in Fig. 3.

Positive Tail Negative Tail

Composer a R2 a Std. Dev. a R2 a Std. Dev.

Bach 12.059 0.973 0.270 12.396 0.975 0.269

Mozart 8.143 0.979 0.127 7.822 0.978 0.111

Beethoven 6.186 0.992 0.047 5.541 0.985 0.049

Mendelsohn 4.971 0.997 0.015 4.743 0.997 0.014

Chopin 3.11 0.996 0.011 3.021 0.996 0.011

a is the scaling parameter for each composer, R2 is the regression coefficient and a Std. Dev. is the standard deviation for the scaling parameter.
doi:10.1371/journal.pone.0058710.t004

Figure 4. The power-law exponent a for both the (a) positive and (b) negative tail. a decreases from Bach to Mendelsohn/Chopin [Note the
horizontal coordinates corresponding to the five symbols in either (a) or (b) denote the birth years of the five composers from Bach to Chopin,
respectively]. The lines are just a guide to the eye.
doi:10.1371/journal.pone.0058710.g004
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power law, where the power-law exponent a differs from

composers. Another discovery is that for the same musician, the

positive and negative tails are almost symmetrical except

Beethoven, where the a for positive tail is 6.2 and that for

negative tail is 5.5.

Next we examine the time evolution of this scaling property (a),

as shown in Fig. 4. The power-law exponent a of both the positive

and negative tails gradually decreases linearly with time. Because a
represents the degree of attenuation of the CDF tails, the smaller

the exponent is, the slower the tail decays. This reflects that large-

scale changes happened more often in the melody. The decay of

the tail exponent (a) reveals the evolution of classical music that the

melody has larger ups and downs from Bach to Mendelsohn/

Chopin.

(3) Autocorrelation function of pitch fluctuations
In statistical physics, the autocorrelation function of a time series

describes the correlation with itself as a function of time differences

[23]. For a discrete time series, X (t), the autocorrelation function,

r, for a time difference, Dt, is defined as

r(Dt)~
E½(X (t){m)(X (tzDt){m)�

s2
, ð5Þ

where m means the mean value of X (t), s2 the variance and E the

expected value operator. The value of autocorrelation function

changes in range [21,1], with 21 suggesting perfect anti-

correlation and 1 perfect correlation [24]. Here we use X (t) to

indicate the absolute value of pitch fluctuations, DZf (t)D.
Different from the calculation of CDF before, we calculate the

autocorrelation function of each composition at first, then average

the value of autocorrelation of the compositions for each musician.

Particularly, we only selected the compositions with more than 250

notes to avoid unusual large values of the autocorrelation functions

due to the short length.

The autocorrelation function for the absolute values of pitch

fluctuations is shown in Fig. 5. The values of autocorrelation

function for every musician are all positive, which indicate a

positive correlation of DZf (t)D. As we can see, the autocorrelation

functions for all the five composers in the log-log plot show a

Figure 5. The autocorrelation function r of the absolute values
of pitch fluctuations. The horizontal coordinate indicates the time
lag, Dt, from 1 note to 50 notes, while the vertical coordinate indicates
the value of r. It is worth noting that r is always positive. In this log-log
plot, the five panels respectively show a straight line, suggesting a long-
range correlation of notes for each of the five composers.
doi:10.1371/journal.pone.0058710.g005

Table 5. The parameters of power-law fits for autocorrelation
functions shown in Fig. 5.

Composer b R2 b Std. Dev.

Bach 0.114 0.989 0.002

Mozart 0.235 0.992 0.003

Beethoven 0.219 0.986 0.004

Mendelsohn 0.091 0.993 0.001

Chopin 0.337 0.959 0.009

b is the scaling parameter for each composer, R2 is the regression coefficient
and b Std. Dev. is the standard deviation for the scaling parameter.
doi:10.1371/journal.pone.0058710.t005
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straight line (namely, a power-law behavior), indicating a slow

decay of autocorrelation functions. Then we applied the power-

law fitting to the autocorrelation function. The fitting formular is

FX (x)~Cx{b(bw0), ð6Þ

where b is a constant. The results of power-law fitting are shown in

Table 5. As we can see, the power-law exponent (b) varies with

each musician as shown in Fig. 6. This means the decay rate of

autocorrelation function is different, or they have different levels of

long-range correlation of pitch fluctuations. For example,

Mendelsohn has the smallest value of b while Chopin the largest.

Conclusions

In conclusion, we have revealed that the biggest pitch change

(between two adjacent notes) of a composer gradually increases as

time evolves from Bach to Mendelsohn/Chopin. In particular, the

positive and negative tails of a CDF (cumulative distribution

function) for the compositions of a composer are distributed not

only in power laws (i.e., a scale-free distribution), but also in

symmetry (namely, the probability of a treble following a bass or

that of a bass following a treble are basically the same for each

composer). Particularly, the power-law exponent decreases as time

elapses. Furthermore, we have also calculated the autocorrelation

function of the pitch fluctuations. The autocorrelation function

shows a general power-law distribution for each composer.

Especially, the power-law exponents vary with the musicians,

indicating their different levels of long-range correlation of pitch

fluctuations. Compared with the previous works on analyzing

music, we focus on pitch fluctuations and study the time evolution

and development of the classical music. In particular, all of our

statistic results are based on MIDI files. We choose only those five

composers due to the limitation of database. However, in the

preparation of MIDI files different temperaments, tunings and

transpositions in the music were neglected. Works playing with

different instruments may correspond to different notes and even

form different styles. Thus the statistical results remain to be

improved in these aspects. Further, although we study the overall

statistical properties of each composer, we should mention that

each composer still has various styles in his career and we just have

a rough style comparison between composers. This work may be

of value not only for suggesting a way to understand and develop

music from a statistical physics point of view, but also for enriching

the realm of traditional statistical physics by including music.
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