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Abstract

Neurexin and neuroligin are transmembrane adhesion proteins that play an important role in organizing the neuronal synaptic
cleft. Our lab previously reported a method for imaging the trans-synaptic binding of neurexin and neuroligin called BLINC
(Biotin Labeling of INtercellular Contacts). In BLINC, biotin ligase (BirA) is fused to one protein while its 15-amino acid acceptor
peptide substrate (AP) is fused to the binding partner. When the two fusion proteins interact across cellular junctions, BirA
catalyzes the site-specific biotinylation of AP, which can be read out by staining with streptavidin-fluorophore conjugates.
Here, we report that BLINC in neurons cannot be reproduced using the reporter constructs and labeling protocol previously
described. We uncover the technical reasons for the lack of reproducibilty and then re-design the BLINC reporters and labeling
protocol to achieve neurexin-neuroligin BLINC imaging in neuron cultures. In addition, we introduce a new method, based on
lipoic acid ligase instead of biotin ligase, to image trans-cellular neurexin-neuroligin interactions in human embryonic kidney
cells and in neuron cultures. This method, called ID-PRIME for Interaction-Dependent PRobe Incorporation Mediated by
Enzymes, is more robust than BLINC due to higher surface expression of lipoic acid ligase fusion constructs, gives stronger and
more localized labeling, and is more versatile than BLINC in terms of signal readout. ID-PRIME expands the toolkit of methods
available to study trans-cellular protein-protein interactions in living systems.
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Introduction

Neurexins (NRX) are presynaptic adhesion proteins that bind

across the synaptic cleft to postsynaptic neuroligins (NLG). This

trans-cellular binding is believed to play a role in synapse

formation, specification, and/or stabilization [1]. To facilitate

the study of NRX-NLG biology, it would be desirable to have a

non-invasive method that reports on their binding in living cells.

A recent study [2], building upon the GRASP technology (GFP

Reconstitution Across Synaptic Partners) introduced earlier [3],

identifies synapses using GFP complementation of the NRX-

NLG interaction. A fragment of GFP is fused to the ectodomain

of NRX while the complementary GFP fragment is fused to the

ectodomain of NLG. Formation of a NRX-NLG adhesion

complex at synapses recombines the GFP fragments, and

fluorescence is restored an hour or more later. The primary

limitations of GRASP for NRX-NLG interaction detection are

that GFP recombination is irreversible [4] and GFP fluores-

cence is dim. The irreversibility can shift the equilibrium

between the complexed and non-complexed states of NRX-

NLG, and preclude dynamic reporting of NLG-NRX interac-

tions upon stimulation.

In 2010, we presented an alternative approach to image trans-

synaptic NRX-NLG interactions based on enzymatic biotinylation

of an acceptor peptide (AP) by E. coli biotin ligase (BirA, Figure 1A)

[5] (paper now retracted). In this report, AP was fused to NLG and

BirA was fused to NRX. When expressed in different but

contacting neurons, site-specific biotinylation, detected by staining

of live neurons with streptavidin-fluorophore conjugates, was

reported at synaptic contacts. This method was named BLINC, for

Biotin Labeling of INtercellular Contacts [5]. Since this publica-

tion, we have discovered that the work in this paper cannot be

reproduced. Here, we examine the technical reasons for irrepro-

ducibility, make changes in the BLINC constructs and protocols in

order to achieve successful BLINC labeling in neuronal cultures,

and then introduce an improved method for NRX-NLG contact

imaging based on lipoic acid ligase instead of biotin ligase

(Figures 1B–C).

Materials and Methods

Plasmids Summary
All genetic constructs used in this work are summarized in

Table S1. For each construct, the domain organization, BirA, AP,

LplA, or LAP insertion site, epitope tag, promoter, and vector are

given. The table also indicates which plasmids were used in each

figure. Constructs were prepared by standard restriction cloning

methods and QuikChange mutagenesis (Stratagene). Overlap

extension PCR was used to clone pCAG- BirA36-NRX3b and

pCAG-BirA272-NRX3b.
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HEK Cell Culture and Transfection
Human embryonic kidney 293T (HEK) cells were grown in

minimal essential medium (MEM, Mediatech) supplemented with

10% (v/v) fetal bovine serum (PAA Laboratories) at 37uC under

5% CO2. Cells were typically transfected at ,70% confluence

using Lipofectamine 2000 (Life Technologies) using the manufac-

turer’s suggested protocol. Cells for imaging were grown on

150 mm glass coverslips pre-coated with 50 mg/ml human

fibronectin (Millipore). Approximately 24 hours after transfection,

cells were lifted by trypsinization, co-plated at ,80% density, and

labeled for BLINC or ID-PRIME ,24 hours later.

Rat Hippocampal Neuron Culture and Lipofection
Sprague Dawley rat embryos were sacrificed at embryonic

day 18. Dissected hippocampal tissue was digested with papain

(Worthington) and DNaseI (Roche), then plated on 0.09–

0.12 mm thickness glass coverslips (Carolina Biological Supply)

in a 1:1 volume ratio of growth medium A and growth medium

B and cultured at 37uC under 5% CO2. Growth medium A is

MEM (Sigma) with L-glutamine (Sigma) supplemented with

10% (v/v) fetal bovine serum (PAA laboratories) and 2% (v/v)

B27 (Life Technologies). Growth medium B is Neurobasal

medium (Life Technologies) supplemented with 2% (v/v) B27

and 1% (v/v) GlutaMAX (Life Technologies). Glass coverslips

were pretreated with poly-D-lysine (Sigma) and mouse laminin

(Life Technologies). At 2 days in vitro, half of the spent culture

medium was replaced with fresh growth medium B. This

process was then repeated every 24 hours starting at 5 days

in vitro. Transfection by Lipofectamine 2000 was performed

between 5 to 11 days in vitro, using 1 mL Lipofectamine 2000

reagent per 1.91 cm2 well (less than the manufacturer’s

recommendation, to reduce toxicity).

Ethics Statement
All animals were housed, cared for, and experiments

conducted in accordance with the Massachusetts Institute of

Technology Committee on Animal Care guidelines (Assurance

# A-3125-01) as specifically approved as part of animal

protocol # 0910-076-13. Pregnant Sprague Dawley rats were

euthanized at embryonic day 18/19 using carbon dioxide

asphyxiation. Euthanasia was considered complete when animals

were unresponsive to tail pinch, according to the recommen-

dations of the Panel on Euthanasia of the American Veterinary

Medical Association (AVMA). After euthanasia, the thoracic

cavity was opened or cervical dislocation was carried out. The

rat embryos were removed from the uterus and decapitated to

remove the brain. No pain was expected under this protocol

because of the carbon dioxide used and the under-developed

sensory nervous systems of the pups.

Figure 1. Scheme showing BLINC and ID-PRIME methods for imaging trans-cellular protein-protein interactions. (A) In Biotin Labeling
of INtercellular Contacts (BLINC), protein A is genetically tagged with the 35 kDa E. coli biotin ligase (BirA) on the extracellular side. Protein B is
genetically tagged with a 15-amino acid acceptor peptide (AP) for BirA. When proteins A and B interact, BirA ligates biotin onto protein B, which can
be detected using a monovalent streptavidin-fluorophore conjugate [23]. (B) In Interaction-Dependent PRobe Incorporation Mediated by Enzymes
(ID-PRIME), protein A is genetically tagged with a 38 kDa mutant of E. coli lipoic acid ligase (*LplA = W37A, T57I, F147L, H267R mutant of LplA) on its
extracellular side. Protein B is genetically tagged with a 13-amino acid ligase acceptor peptide (LAP) for LplA. When proteins A and B interact, *LplA
ligates lipoic acid onto protein B, which can be detected using an antibody-fluorophore conjugate. (C) Alternative ID-PRIME detection using picolyl
azide ligation onto protein B. Ligated azide can be detected by copper-catalyzed click chemistry with alkyne-fluorophore conjugates [7].
doi:10.1371/journal.pone.0052823.g001
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Neuron Nucleofection Using the Rat Neuron
Nucleofector Kit (Lonza)

Dissociated neurons were suspended in 100 mL nucleofection

solution provided by the kit at a density of 1–1.56107 cells/mL,

and mixed with 1 mg of each plasmid construct, then transferred

into a nucleofection cuvette and nucleofected with the O-003

program. Cells were rescued in growth medium A (pre-warmed to

37uC), then plated onto poly-D-lysine treated glass coverlips

(12 mm diameter) at a density of 150,000 cells per 1.9 cm2. We

note that the homemade nucleofection solution reported in [5]

works for some mammalian cell lines, but causes neuron sickness

in our hands.

BLINC Labeling of HEK and Neuronal Cultures
BLINC labeling was typically carried out 24 hours after co-

plating for HEK cell cultures, or 5–12 days after co-plating for

neuron cultures. Cells were incubated in growth medium B

containing 20 mM biotin (gift from Tanabe USA), 500 mM ATP,

and 1.25 mM magnesium acetate for 5–15 min. at 37uC. Cells

were then rinsed three times with Tyrode’s buffer (145 mM NaCl,

1.25 mM CaCl2, 3 mM KCl, 1.25 mM MgCl2, 0.5 mM

NaH2PO4, 10 mM glucose, 10 mM HEPES, pH 7.4) and

subsequently stained with wild-type streptavidin-Alexa Fluor 647

(AF647) or monovalent streptavidin-AF647 conjugate [6] in

Tyrode’s buffer supplemented with 0.5% (w/v) vitamin-free casein

(MP Biomedicals) for 5 min. at 37uC. Cells were rinsed three more

times with Tyrode’s buffer before imaging.

Alternatively, HEK cells were treated with 5 mM biotin-AMP

[6] for 2 min. at 37uC instead of biotin plus ATP (in Figure 2B).

We found that labeling with biotin-AMP was suitable for HEK

cells but not for neurons, as it produced high background (Figure

S6).

Biotinylation of total surface AP using purified enzyme was

performed in the same way except that 1 mM biotin ligase [6] was

also added during the first labeling step.

ID-PRIME Labeling of HEK and Neuronal Cultures
ID-PRIME labeling was typically carried out 24 hours after co-

plating for HEK cell cultures, 5–12 days after co-plating for

nucleofected neuron cultures, or 1–2 days after sequentially

lipofecting neurons. Cells were treated with Tyrode’s buffer

containing 500 mM ATP, 1.25 mM magnesium acetate, and

either 100 mM DL-a-lipoic acid (Alexis Biochemicals) or 100 mM

picolyl azide [7] for 15–20 min. at 37uC.

To detect lipoic acid, cells were rinsed three times in Tyrode’s

buffer and subsequently stained with a 1:200 dilution of rabbit

anti-lipoic acid polyclonal antibody (Calbiochem) for 5 min. in the

same buffer. Cells were again rinsed three times, followed by a

1:300 dilution of goat anti-rabbit secondary antibody AF647

conjugate (Life Technologies) for the same time in the same buffer.

Cells were imaged live after three further rinses.

To detect picolyl azide on HEK cells, cells were rinsed three

times in Tyrode’s buffer and treated with 50 mM CuSO4, 2.5 mM

sodium ascorbate, 20 mM alkyne-AF647 conjugate (Life Technol-

ogies), 250 mM THPTA ligand [8] and 100 mM 4-hydroxy-

2,2,6,6-tetramethylpiperidin-1-oxyl (TEMPOL, Calbiochem) in

the same buffer for 5 min. at room temperature. Ligand bound

Cu(I) complexes were pre-formed by mixing the CuSO4, sodium

ascorbate and THPTA, and incubating at room temperature for

10 min., before the alkyne and TEMPOL were added. Cells were

rinsed three times further, then fixed with 4% (v/v) formaldehyde

in a pH 7.0 buffer containing 0.12 M sucrose for 15 min. at room

temperature before imaging.

Azide detection in neurons was performed after fixation (Figure

S9). After picolyl azide ligation on living neurons as described

above, neurons were fixed with 4% (v/v) formaldehyde in Tyrodes

buffer, then blocked in Tyrode’s buffer supplemented with 0.5%

(w/v) casein for one hour. Cells were treated with 1 mM CuSO4,

2.5 mM sodium ascorbate, 5 mM alkyne-AF647 conjugate,

100 mM TBTA ligand [8] and 100 mM TEMPOL in the same

buffer for one hour at room temperature. Ligand bound Cu(I)

complexes were pre-formed by mixing the CuSO4, sodium

ascorbate and TBTA, and incubating at room temperature for

10 min., before the alkyne and TEMPOL were added. Cells were

imaged after three further rinses.

Immunofluorescence Detection of BirA and LplA Fusion
Constructs in HEK and Neuronal Cultures

For live-cell immunofluorescence detection, cells were incubat-

ed with a 1:200 dilution of either a mouse anti-c-Myc antibody

(Calbiochem) or a rabbit anti-HA antibody (Rockland) in Tyrode’s

buffer supplemented with 0.5% (w/v) casein for 15 min. at 37uC.

Cell were rinsed three times with Tyrode’s buffer, and subse-

quently stained with the corresponding secondary antibody: goat

anti-mouse-AF568 conjugate or goat anti-rabbit-AF568 conjugate

(Life Technologies) in the same buffer. Cells were rinsed three

times with Tyrode’s buffer before imaging live at room temper-

ature.

For immunofluorescence detection on fixed cells, samples were

fixed with 4% formaldehyde in Tyrode’s buffer, then permeabi-

lized with methanol at 220uC. Cells were blocked for one hour in

Tyrode’s buffer supplemented with 0.5% (w/v) casein, followed by

primary antibody detection for one hour in the same buffer. A

1:200 dilution of one of the following antibodies was used: mouse

anti-c-Myc antibody (Calbiochem), rabbit anti-HA antibody

(Rockland), or mouse anti-FLAG M2 antibody (Agilent). Cells

were then rinsed three times with Tyrode’s buffer and subse-

quently stained with the corresponding secondary antibody: goat

anti-mouse-AF488 conjugate, goat anti-rabbit-AF488 conjugate,

or goat anti-rabbit-AF568 conjugate (Life Technologies). Cells

were rinsed three times further with Tyrode’s buffer before

imaging.

Confocal Fluorescence Microscopy
Neuron cultures placed in Tyrode’s buffer or HEK cells placed

in Dulbecco’s phosphate buffered saline (Gibco) were imaged

using a Zeiss AxioObserver.Z1 inverted confocal microscope with

a 40X oil-immersion objective. The microscope was equipped

with a Yokogawa spinning disk confocal head, a Quadband notch

dichroic mirror (405/488/568/647 nm), and 405 (diode), 491

(DPSS), 561 (DPSS), and 640 nm (diode) lasers (all 50 mW). BFP

(405 nm laser excitation, 445/40 emission filter), GFP/Venus/

AF488 (491 nm laser excitation, 528/38 emission filter), dsRed/

tdTomato/AF568 (561 nm laser excitation, 617/73 emission

filter), AF647 (640 nm laser excitation, 700/75 emission filter),

and DIC images were collected using a Cascade II:512 camera

and processed using SlideBook software version 5.0 (Intelligent

Imaging Innovations). Acquisition time ranged from 10–2000

milliseconds. Neuron images in Figures S4 and S5 were projection

summations from 0.5 mm-step optical stacks spanning 3.5 mm total

depth.

Quantification of Lipoic Acid ID-PRIME Sensitivity in
Neurons

Analysis was performed on 10 fields-of-view using the SlideBook

software. For each field-of-view, one binary mask was created for

Imaging Neurexin-Neuroligin Interactions
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each of the two fluorescent protein transfection markers, Venus

and tdTomato. The two masks were then intersected to create an

intersection mask, which ranged from 26 to 172 puncta or oblong

segments (totaling 741 from 10 fields-of-view). Maximum lipoic

acid ID-PRIME pixel intensity was tabulated for the 741 puncta

or segments, and those with ID-PRIME signal-to-noise ratio

greater than 3:1 were tallied, giving 38%. If the signal-to-noise

ratio requirement was relaxed to 2:1, then 54% of Venus/

tdTomato overlaps were positive for ID-PRIME signal. Noise was

defined as the averaged ID-PRIME intensity on three non-

transfected cells. Microscope instrument noise, defined as the ID-

PRIME intensity on an area of the glass coverslip with no cell

coverage, was subtracted from both signal and noise before the

signal-to-noise ratio was calculated.

Chemicals and Reagents
The synthesis and characterization of biotin-AMP is described

in Methods S1. ID-PRIME reagents for picolyl azide labeling are

described in reference [7]. All chemicals were purchased from

Sigma-Aldrich unless otherwise specified.

Additional experimental methods can be found in Methods S1.

Results

BLINC in HEK cells
We started by applying the constructs from the 2010 work [5] in

human embryonic kidney 293T (HEK) cells (Figure 2). Two pools

of HEK cells were separately transfected with the BirA64-NRX1b
fusion (numbering indicates the BirA insertion site – at amino acid

64 of the immature NRX1b protein in this case) and the AP-

NLG1 fusion. The two HEK populations were then resuspended,

plated together, and allowed to form contacts over 24 hours.

Trans-cellular biotinylation was initiated with the addition of

biotin-AMP ester [5] for 2 min. Sites of AP biotinylation were

detected on living cells by staining with streptavidin-AF568

conjugate (Figure 2A). Images in Figure 2B show biotinylation

sites (BLINC signal) localized to NRX-NLG contacts, as indicated

by the YFP and BFP co-transfection markers. AP-NLG1-

expressing cells not contacting BirA cells were not labeled.

To test if BLINC labeling was interaction-dependent, we

introduced a point mutation (D137A) in NRX to abolish Ca2+

binding [9] and therefore eliminate trans-interaction with NLG1.

Figure 2B shows that the mutant construct, BirA64-NRX1b
(D137A), gave almost no detectable BLINC staining at contact

sites with AP-NLG1-expressing cells. As a positive control, we used

Figure 2. BLINC for imaging neurexin-neuroligin interactions in HEK cells. (A) Scheme showing the BLINC experimental protocol. Two
pools of HEK cells were separately transfected with BirA64-NRX1b plus YFP, or AP-NLG1 plus BFP. The pools were then mixed and allowed to form
contacts over 24 hours. BLINC labeling was performed with 10 mM biotin-AMP for 2 minutes (note that biotin+ATP was used instead for neuron
cultures in other figures, for reasons explained in Figure S6). Biotinylated AP sites were detected by live-cell staining with streptavidin-AF568 for 5
minutes. (B) BLINC imaging results. Controls are shown with a D137A mutation in BirA-NRX to abolish its interaction with NLG (rows 2 and 4), and
1 mM exogenous BirA added during the biotin-AMP step to label total cell surface AP-NLG1 (rows 3 and 4). When a NLG-expressing cell apposes a
NRX-expressing cell, BLINC signal is localized at contact sites (thin arrow heads, row 1). The same phenomenon was observed when exogenous BirA
was added to label the total NLG pool (thick arrow heads, row 3). All scale bars, 10 mm.
doi:10.1371/journal.pone.0052823.g002
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exogenous BirA (purified BirA enzyme added to the cell media) to

biotinylate the total surface pool of AP-NLG1, regardless of its

proximity to a BirA-NRX1b-expressing cell. The third row in

Figure 2B shows streptavidin staining of all AP-NLG1 expressing

cells, not only those in contact with BirA-NRX1b-expressing cells.

Interestingly, for blue cells in contact with green cells, the

streptavidin signal was still localized to cell-cell contact sites,

suggesting that when NRX and NLG expression levels are

matched, their binding affinity is strong enough to aggregate the

total surface protein pools at these contact regions. A similar

control with BirA-NRX1b (D137A)-expressing cells also showed

labeling of all AP-NLG1-expressing cells by exogenous BirA

(fourth row), but the streptavidin signal was not localized to

contact sites between green and blue cells. We believe that AP-

NLG1 distributes evenly around the perimeter of the transfected

cell because the NRX1b (D137A) mutant is unable to trap AP-

NLG1 at contact sites. From this experiment, we conclude that

NRX-NLG BLINC is robust and reproducible in HEK cells.

Unfortunately, we found that this was not the case in neuron

cultures. After many unsuccessful efforts to reproduce neuron

BLINC using the previously described NRX and NLG fusion

constructs and protocols [5], we decided to systematically examine

the fundamental aspects of the system.

Problems with the CMV-AP-NLG1 Construct from
Reference [5]

The design of the BLINC reporter system is such that AP and

BirA fusions must be introduced into separate but contacting cells.

HEK cells can be separately transfected, then lifted and replated

together, but neurons cannot be replated without damaging their

delicate processes and synapses. Therefore, it is necessary to

transfect them immediately after dissociation, while they are still in

suspension, and then plate them together thereafter. We previ-

ously opted for nucleofection-type transfection [5], because it is

compatible with suspended neurons, gives high transfection

efficiencies (necessary in order to see a reasonable number of

overlapping BirA- and AP-containing processes), and eliminates

the possibility of plasmid overlap, where BirA and AP fusions

express together in the same neuron.

We first examined the expression of BLINC constructs in

neurons by introducing the AP-NLG1 construct alone, using

nucleofection, into suspended hippocampal neurons at 0 days

in vitro (DIV0). Neurons were then plated, and five days later (since

previous experiments were all reported at DIV5 and DIV16 [5]),

we checked for expression by performing exogenous biotinylation

with purified BirA added to the culture medium. This assay is

expected to give a much stronger signal than any BLINC

experiment, because BirA is provided in great excess, and total

AP rather than just synaptic AP will be biotinylated. Figure S1

shows that no biotinylation was detected. We also found that

biotinylation was undetectable at DIV12. We were unable to

check at DIV16, because in order to see overlapping transfected

processes at DIV5, it was necessary to plate neurons at a high

initial density. As a result, neurons were often dense and unhealthy

at DIV16, making it difficult to distinguish specific biotinylation

from non-specific binding of streptavidin conjugates to unhealthy

cells. This published AP-NLG1 construct [5] used a CMV

promoter, which, according to previous reports, may give

inconsistent [10] and activity-dependent expression in transiently

transfected neuron cultures [11]. We therefore created an identical

construct driven by the CAG promoter [12] (CMV enhancer/

chicken b-actin) instead. This promoter has been used previously

for strong transgene expression in neurons [13,14]. Using CAG-

AP-NLG1, we were able to detect weak but specific biotinylation

in some neurons at DIV5 and DIV12 (Figure S1).

In another effort to improve the signal, we used a construct with

three tandem AP tags: CAG-3xAP-NLG1. Figure S1 shows that

exogenous biotinylation of neurons nucleofected with this

construct produced signal well above background and specific to

transfected cells, at both DIV5 and DIV12. All these comparisons

were performed in parallel under identical conditions. We

conclude that the CAG rather than CMV promoter was essential

to give long-lasting (.5 day) expression of this fusion construct in

transiently transfected neuron cultures, and the 3xAP rather than

1xAP tag on NLG was necessary to give streptavidin signal above

background in the majority of neurons at both DIV5 and DIV12.

The previous CMV-AP-NLG1 [5] construct lacked both persistent

expression and detectability above background, which explains

why it cannot be successfully used for BLINC in neurons.

Problems with the CMV-BirA-NRX1b Construct from
Reference [5]

We next turned our attention to the BirA-NRX fusion

construct. We introduced the previously published construct,

CMV-BirA64-NRX1b [5], by nucleofection into DIV0 hippocam-

pal neurons. Figure S2 shows that expression was not detected by

anti-c-Myc staining at both DIV5 and DIV12, although positive

controls with the same construct introduced one day before

labeling, by lipofection instead, were detectable.

We reasoned again that the CMV promoter could be part of the

problem, so we switched to a CAG promoter. Figure S3 shows that

CAG-BirA-NRX could be detected 4 days after lipofection of

neuron cultures whereas CMV-BirA-NRX could not. Based on

these experiments, we conclude that the CAG promoter is

essential to give persistent expression of this construct as well,

and the previously published CMV-BirA64-NRX1b [5] was

undetectable in neuron cultures five days after its introduction

by nucleofection. This explains why it cannot be successfully used

for BLINC in neurons.

New BirA Fusion Constructs
Using the improved CAG-BirA-NRX1b and CAG-3xAP-

NLG1 constructs that give persistent expression in neurons after

nucleofection, we attempted BLINC in neurons again, but were

still unsuccessful. Based on the images in Figure S3, we suspected

that part of the problem might be the poor trafficking of the BirA-

NRX fusion to the cell surface and to synapses; the majority of it

appeared to be intracellular and localized to the cell body rather

than distal processes. Indeed, immunofluorescence staining in

HEK cells (Figure S4C) showed that BirA64-NRX1b was mostly

trapped in the secretory pathway compared to c-Myc-LAP-

NRX1b (tag size 35 kD vs. 2.6 kD), suggesting that the large BirA

tag disrupted trafficking, and that its insertion site would have to

be optimized. Previous studies have inserted large tags, such as

fluorescent proteins, into the cytosolic tail of NRX [15,16] or into

its stalk domain [17,18], an extracellular region proximal to the

transmembrane segment.

We wondered if moving the BirA tag to different locations

might improve the surface targeting of our NRX fusion. We

prepared two new extracellular fusions of BirA to the NRX3b
gene. NRX3b is in many ways functionally interchangeable with

NRX1b; the two isoforms display similar endogenous localization

in neurons, possess similar trans-cellular binding affinity to NLG1

[19], and their crystal structures can be overlaid without significant

differences [19,20]. Figure S4C shows immunofluorescence

staining of BirA36-NRX3b (N-terminal fusion, after signal peptide)

and BirA272-NRX3b (stalk domain fusion), compared to HA-

Imaging Neurexin-Neuroligin Interactions
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NRX3b, in HEK. Again, the BirA fusions were impaired in their

surface targeting compared to HA-NRX3b, where the latter was

predominantly localized to the cell surface. We also prepared a

BirA fusion to NLG1 at its N-terminus after the signal peptide

(BirA48-NLG1) and found that it too was largely trapped inside the

cell compared to HA-AP-NLG1 (tag size 35 kD vs 2.9 kD) (Figure

S4C).

Nevertheless, we tested our three new BirA fusion constructs in

neurons. Figure S4D shows live-cell immunostaining of DIV12

neurons transfected with each construct. HA-NRX3b produced a

very strong signal specific to transfected neurons. BirA36-NRX3b
and BirA272-NRX3b were much weaker, but still detectable above

background. In contrast, surface expression of BirA48-NLG1 was

undetectable. Figure S4E shows the same experiment but with

immunofluorescence staining performed after neuron fixation to

detect total protein pools. From these images it wa apparent that

HA-NRX3b and AP-NLG1 proteins could be found in distal

processes, while the BirA fusions were predominantly localized to

the cell bodies. We concluded that while none of our fusion sites

tolerate the 35 kD BirA tag well, the NRX fusions are better than

the NLG fusion, so we proceeded to try BLINC experiments with

these.

BLINC in Neurons with New BirA and AP Fusion
Constructs

First, we verified that both BirA36-NRX3b and BirA272-NRX3b
gave detectable and localized trans-cellular BLINC labeling with

3xAP-NLG1 in HEK cultures (data not shown), demonstrating

that they are functionally competent. Then we performed a

BLINC experiment in hippocampal neurons, introducing each

construct into separate pools of suspended DIV0 neurons by

nucleofection. Figure 3A shows that whereas BirA272-NRX3b
produced BLINC labeling at sites of overlap with 3xAP-NLG1-

expressing neurons (indicated by overlap of green and blue

transfection markers), BirA36-NRX3b did not. This trend was

observed across .15 fields of view in this experiment. The

observation that the site of BirA insertion into the extracellular

domain of NRX3b influenced BLINC sensitivity is interesting in

light of the fact that no difference in signal between these two

constructs was seen in HEK cultures (data not shown). Perhaps the

presence of endogenous NRX interaction partners in neurons

alters NRX’s conformation and decreases the steric accessibility of

fused BirA36, but not BirA272. The immunofluorescence controls

in Figure S4D show that the difference in BLINC outcomes in

neurons cannot be explained by a difference in surface expression

levels for BirA36-NRX3b versus BirA272-NRX3b.

We noticed that the BLINC signal in neurons was strongest at

sites of overlap between transfected cells, but streptavidin staining

was also detected at non-overlapping regions on the 3xAP-NLG1-

expressing cell (Figure 3A), suggesting that AP-NLG biotinylated

in trans by BirA could subsequently diffuse away from the site of

interaction. This contrasted with our observations in HEK cells,

where the BLINC signal was tightly localized to cell-cell contacts

and not diffusive (Figure 2B). We hypothesized that this

discrepancy in localization of BLINC signal resulted from a

difference in BirA:AP stoichiometry in these two experimental

configurations. Since the insertion of BirA into NRX3b strongly

impeded NRX3b trafficking to the surface of neurons while AP-

NLG1 did not have an apparent trafficking defect (Figure S4D–E),

there was probably insufficient BirA-NRX3b to anchor biotiny-

lated 3xAP-NLG1, and the latter could diffuse away from the

contact site after biotinylation. This explanation is supported by

our observations in a mixed culture experiment, where HEK cells

expressing BirA272-NRX3b were plated on top of hippocampal

neurons expressing 3xAP-NLG1 (Figure 3B). Here, the resulting

BLINC signal tightly localized to contact sites and did not diffuse

outward. We believe this is because the quantity of BirA-NRX3b
presented on the surface of the overlaid HEK cell was much

higher than that presented on the surface of an overlaid neuron,

and therefore anchoring of the biotinylated 3xAP-NLG1 pool

could occur. Using this mixed culture assay, we also performed a

negative control with the non-interacting D137A mutant of NRX

and observed an absence of BLINC signal (Figure 3B).

Another feature of our BLINC signal in neurons (Figure 3A) is

that it is clearly not synaptic. Apposing neurons differentially

expressing the transgenic NRX and NLG fusions sometimes

‘‘zipped up’’ along one another’s processes, establishing large

zones of contact that were clearly not synapses. This is likely an

overexpression artifact. Interestingly, when neurons were trans-

fected with either BLINC construct alone, the constructs displayed

good overlap with pre- and post-synaptic markers (Figure S5), but

in a trans experiment, the affinity of the overexpressed fusion

constructs for one another greatly perturbed neuron morphology.

Optimization of BLINC Labeling Reagent
Since BirA has a higher affinity for the biotin-AMP interme-

diate than ATP [21], biotin-AMP can be supplied at micromolar

concentrations and still produce labeling signal comparable to

millimolar concentrations of ATP (+20 mM biotin) [6]. Initially, as

per the reported protocol [5], we attempted BLINC labeling in

neurons using biotin-AMP in place of biotin+ATP (Figure S6).

This option is less likely to activate endogenous purine receptors

on neurons and cause toxicity [22]. We observed, however, that

even 2.5 mM biotin-AMP resulted in much higher background

fluorescence on neurons than 20 mM biotin +1 mM ATP (Figure

S6). Higher biotin-AMP concentrations worsened the background

without increasing the BLINC signal. This problem was not

observed in BLINC experiments in HEK cells (Figure 2B), so we

surmise that the high-energy biotin-AMP reagent was covalently

reacting with nucleophiles on polylysine/laminin-coated cover-

slips. Our observations are inconsistent with the previous BLINC

study [5], in which 10 mM biotin-AMP was used without

detectable background. We note, however, that biotin-AMP can

be used successfully for biotinylation of total surface AP-NLG1

pools on neurons, as in reference [23], because the signal is so

much stronger than BLINC signal that it can be clearly detected

above the biotin-AMP-related background.

NRX-NLG BLINC in Neurons is not Robust
Even with our improvements to the BLINC reporter constructs

and labeling protocol, we found that BLINC labeling in neurons

was not robust. BLINC signal intensity varied from nucleofection

to nucleofection and sometimes was not detectable at all. We

believe this is a consequence of variations in BirA-NRX surface

expression levels – sometimes it fell below the threshold necessary

to produce detectable labeling signal. We conclude that BLINC in

its current form can be a powerful and robust tool for imaging

NRX-NLG interactions in HEK cultures (as in Figure 2B) and in

HEK-neuron mixed cultures (as in Figure 3B), but the technology

in its current form is too unreliable in pure neuron cultures. For

this reason, we turned our attention to an alternative methodology

for NRX-NLG contact imaging in neurons.

ID-PRIME for NRX-NLG Interaction Imaging
Our lab has previously developed a suite of methods for

targeting chemical probes to specific proteins in living cells using

engineered mutants of E. coli lipoic acid ligase (LplA). These

methods are collectively called ‘‘PRIME’’, for PRobe Incorpora-
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tion Mediated by Enzymes [7,24–27]. PRIME works in a similar

way to BirA-mediated biotinylation, with the ligase catalyzing

covalent conjugation of a small molecule to a recognition peptide

(the Ligase Acceptor Peptide, or LAP), but our engineering of the

LplA active site has made it possible to conjugate a wide range of

chemical structures besides lipoic acid, including fluorophores

[24], photocrosslinkers [26], and functional group handles [27].

We have also found that the LplA/LAP pair can be used for

detection of cytosolic protein-protein interactions by ID-PRIME

(Interaction-Dependent PRIME), when the affinity of LAP for

LplA is tuned such that probe ligation occurs only when the

proteins to which LplA and LAP are fused interact [28]. We

wondered if the LplA/LAP pair could be used for detection of

intercellular protein-protein interactions in a manner analogous to

BLINC, as shown in Figures 1B–C.

There were a few considerations before we could attempt such

an experiment. First, we previously observed that LplA and its

mutants have high activity in the mammalian cytosol, but the

activity drops for unknown reasons when LplA is targeted to the

secretory pathway or the cell surface [24]. Separate efforts in our

lab have produced, using yeast display evolution, a quadruple

mutant of LplA with higher activity in the secretory pathway and

on the cell surface [29]. Second, we considered which LAP

sequence to use: the regular, high affinity sequence used for most

PRIME experiments with a KM of 13 mM [30], or the lower

affinity sequence used for intracellular ID-PRIME with a KM

Figure 3. BLINC for imaging neurexin-neuroligin interactions in neuron cultures and in HEK-neuron mixed cultures. (A) BLINC
labeling of pure neuron cultures. Two pools of hippocampal neurons were separately nucleofected at DIV0 with BirA-NRX plus a membrane
tdTomato marker (shown in blue), or 3xAP-NLG1 plus a Venus marker (shown in green). For the top row, the BirA36-NRX3b construct was used, and
for the bottom row the BirA272-NRX3b construct was used. All constructs had CAG promoters. Labeling was performed at DIV5 with biotin+ATP for 15
minutes, followed by monovalent streptavidin-AF647 detection for 5 minutes. Confocal images of live neurons showed no detectable BLINC signal for
the BirA36-NRX3b fusion across 10 fields of view in which Venus- and Tomato-expressing neurons were observed to be crossing. For the BirA272-
NRX3b fusion (bottom row), BLINC signal was detected in 5 out of 10 such fields of view. (B) BLINC labeling of mixed HEK-neuron cultures. HEK cells
expressing BirA272-NRX3b and a dsRed marker (shown in blue) were plated on top of rat hippocampal neurons transfected with lipofectamine at
DIV10 with 3xAP-NLG1 plus a Venus marker (shown in green). Labeling was performed at DIV11 as in (A). BLINC signal could be detected in 22 out of
30 fields of view, and was localized to contact sites (arrow heads). The bottom row shows a control with a D137A mutation in NRX3b; BLINC signal
was not observed in any field of view. All scale bars, 10 mm.
doi:10.1371/journal.pone.0052823.g003
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.200 mM [28]. We opted for the high affinity sequence because

we predicted that the lower effective protein concentrations in a

trans-cellular experiment would render PRIME still interaction-

dependent – just as we observed BLINC to be interaction-

dependent with regular AP (KM of 25 mM [31]) (Figure 2B) even

though a modified, lower-affinity AP(-3) peptide was previously

necessary for interaction-dependent biotinylation by BirA in the

cytosol [32]. Third, we considered which of many PRIME probes

to use for trans-interaction readout at the cell surface. We selected

the natural substrate lipoic acid (Figure 1B) and picolyl azide

(Figure 1C). The former, detectable by antibody-fluorophore

conjugates, is advantageous for its superior ligation kinetics

compared to unnatural substrates [24,25,27]. The latter is

attractive because detection of the picolyl azide is performed

entirely with small-molecule reagents (‘‘click’’ chemistry with

alkyne-fluorophore conjugates [7]), which have better steric access

to crowded cellular junctions, do not induce crosslinking, and

minimize perturbation to the subsequent trafficking and internal-

ization of labeled proteins compared to detection by antibodies or

streptavidin.

ID-PRIME in HEK Cells
Three tandem LAP tags (3xLAP) were introduced onto the

N-terminus of NLG1, while the 38 kD LplA mutant with

improved activity in the secretory pathway (mutations: W37A,

T57I, F147L, H267R [29], referred to below as *LplA) was

fused to the N-terminus of NRX3b after amino acid 36. Lipoic

acid ID-PRIME was successfully performed in HEK cultures,

with antibody signal detected between transfected cells

(Figure 4A). Negative controls with lipoic acid omitted or the

LAP tag replaced by AP produced no signal. Like BLINC, ID-

PRIME labeling was interaction-dependent because a NRX3b
D137A mutation in the *LplA36-NRX3b construct eliminated

labeling (Figure 4A, bottom row).

Picolyl azide ID-PRIME using these same fusion constructs was

also successfully performed in HEK cultures (Figure 4B). Again,

negative controls with azide omitted, LAP replaced by AP, or a

D137A mutation in NRX3b showed no signal. Here, the ID-

PRIME signal (from Alexa Fluor 647-alkyne) was more clearly

concentrated at junctions between LplA- and LAP-expressing

cells. This is probably because the small molecule detection

reagents for picolyl azide ID-PRIME could better access the

crowded adhesion junctions compared to antibody detection

reagents used for lipoic acid ID-PRIME.

We also compared 1xLAP-NLG1 to 3xLAP-NLG1 for lipoic

acid ID-PRIME and found that the tandem LAPs did not boost

signal as strikingly as tandem APs did (data not shown), possibly

because the 3xLAP tag reduced NLG1 expression at the surface

(compared to 1xLAP), or because tandem lipoic acid molecules in

close proximity could not be simultaneously accessed by antibod-

ies.

Lipoic Acid ID-PRIME in Neurons
We proceeded to test labeling in neuron cultures. Using the

same nucleofection protocol developed for BLINC, lipoic acid ID-

PRIME signal was detected at overlap sites between neurons

expressing *LplA36-NRX3b and neurons expressing 1xLAP-

NLG1 (Figure 5A). Controls with lipoic acid omitted, LAP

replaced by AP, or a D137A mutation in NRX eliminated the

signal. In contrast to BLINC, ID-PRIME signal was localized to

overlapping sites and did not appear to spread outward on the

LAP-expressing neuron. We believe this is because the LplA-

NRX:LAP-NLG stoichiometry was better matched than the BirA-

NRX:AP-NLG stoichiometry in these neuron experiments. This is

supported by the observation that *LplA36-NRX3b surface

expression in neurons after nucleofection was much higher than

surface expression of our best BLINC construct, BirA272-NRX3b,

under identical conditions (Figure S7). This higher expression also

helps to explain why lipoic acid ID-PRIME labeling was much

more robust and reproducible than BLINC labeling in neurons.

We quantified the sensitivity of lipoic acid ID-PRIME in

neurons and found that 38–54% of contact sites between

transfected neurons (defined by the intersection of fluorescent

protein transfection markers for *LplA36-NRX3b and 1xLAP-

NLG) contained ID-PRIME signal. The lack of signal at ,46% of

contacts could be due to sensitivity limits of the methodology, or

an absence of true NRX-NLG interactions at fluorescent marker

intersection sites. Like in our neuron BLINC experiments, ID-

PRIME constructs also induced ‘‘zipping’’ of neuronal processes

(Figure 5A, marked sites in rows 1 and 2) when overexpressed.

Lipoic acid ID-PRIME also detected the trans-cellular interac-

tion between 3xLAP-NLG1 expressed in neurons and *LplA36-

NRX3b expressed in overlaid HEK cells (Figure 5B). A D137A

mutation in NRX eliminated ID-PRIME signal in this mixed

culture configuration.

To introduce reporter plasmids into separate pools of neurons

by nucleofection is labor intensive and consumes large numbers of

neurons. Lipofection of plated neurons [33] is much simpler and

uses fewer cells, so we also attempted lipoic acid ID-PRIME using

this strategy. Since lipofection usually transfects a somewhat

random and small subset of neurons, and the lipofecting medium

can be removed within hours of addition, we surmised that it

would be possible, by sequential lipofection, to generate a culture

in which some neurons express NRX only, some neurons express

NLG only, and some express both. Figure S8 shows neuron

cultures lipofected with *LplA36-NRX3b at DIV5, and again with

LAP-NLG1 one day later, at DIV6. After labeling and antibody

staining at DIV7, we detected trans signal in many fields of view

(evident from ID-PRIME signal on top of overlapping green and

blue processes), but contaminating cis signal from neurons co-

expressing both fusion constructs was also observed in some fields

of view. The cis signal was generally much stronger than the trans

signal, and spread over the entire surface of the transfected

neuron, instead of being localized to green-blue overlap sites. We

conclude that this experimental configuration is useful and much

Figure 4. ID-PRIME for imaging neurexin-neuroligin interactions in HEK cells. (A) ID-PRIME with lipoic acid readout (as in Figure 1B). HEK
cells were separately transfected with *LplA36-NRX3b plus a membrane-localized tdTomato marker (shown in blue), or 3xLAP-NLG1 plus a Venus
marker. After mixing and replating, cells were labeled with 50 mM lipoic acid +500 mM ATP for 15 minutes. Ligated lipoic acid was detected with an
anti-lipoic acid antibody followed by a secondary antibody-AF647 conjugate (shown in red) for 5 minutes each. For row 1, a magnified view
representing the boxed region, and a more contrasted view of the transfection markers are shown on the right. Controls were performed with lipoic
acid omitted (row 2), the acceptor peptide for BirA substituted for LAP (row 3), and the interaction-deficient NRX mutant (row 4). (B) ID-PRIME with
picolyl azide readout (as in Figure 1C). HEK cells were transfected as in (A), and labeling was performed with 100 mM picolyl azide +500 mM ATP for 15
minutes, followed by detection with copper-catalyzed click chemistry, using 50 mM copper and 20 mM alkyne-AF647. Color schemes and controls are
the same as for (A). All scale bars, 10 mm.
doi:10.1371/journal.pone.0052823.g004
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easier to implement, but one must be cautious about interpreting

signal as being trans or cis in origin.

Picolyl Azide ID-PRIME in Neurons
We also used sequential lipofection of plated hippocampal

neurons to test picolyl azide ID-PRIME. Figure S9A shows

fluorescent signal from the Alexa Fluor 647-alkyne (AF647-alkyne)

used for picolyl azide detection at contact sites between blue LplA-

NRX-expressing neurons and green LAP-NLG-expressing neu-

rons. A negative control with picolyl azide omitted showed no

labeling. The trans picolyl azide ID-PRIME signal was also

localized to contact sites, but was weak – considerably weaker than

Figure 5. ID-PRIME for imaging neurexin-neuroligin interactions in neuron cultures and in HEK-neuron mixed cultures. (A) Lipoic acid
ID-PRIME labeling of pure neuron cultures. Dissociated rat hippocampal neurons were separately nucleofected at DIV0 with either 1xLAP-NLG1 plus a
Venus transfection marker (shown in green), or *LplA36-NRX3b plus a membrane-localized tdTomato transfection marker (shown in blue). The two
pools of neurons were mixed and plated. At DIV5, neurons were labeled with lipoic acid and anti-lipoic acid antibody as in Figure 4A. ID-PRIME signal
was detected in 22 out of 23 fields of view, and was localized to contact sites (arrow heads, row 1). Negative controls with lipoic acid omitted (row 2),
AP-NLG1 in place of LAP-NLG (row 3), or with an interaction deficient mutant of NRX (row 4) are also shown. Asterisks in row 1 and 2 indicate sites
where the over-expression of ID-PRIME constructs caused neuronal processes to ‘‘zip up’’. (B) Lipoic acid ID-PRIME labeling of mixed HEK-neuron
cultures. HEK cells expressing *LplA36-NRX3b and a membrane-localized tdTomato marker (shown in blue) were plated on top of neurons, transfected
with lipofectamine at DIV 7 with 3xLAP-NLG1 plus a Venus marker (shown in green). Labeling was performed as in Figure 4A, at DIV8. ID-PRIME signal
was detected in 9 out of 11 fields of view in which Venus-expressing neurons contacted Tomato-expressing HEK cells. The bottom row shows a
control with a D137A mutation in NRX; no ID-PRIME signal was observed in any field of view. All scale bars, 10 mm.
doi:10.1371/journal.pone.0052823.g005
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lipoic acid ID-PRIME signal with the same reporter constructs,

perhaps because the two-tiered antibody detection of lipoic acid

offers signal amplification. Accordingly, we were unable to detect

picolyl azide ID-PRIME signal in nucleofected neurons which

express the reporters at lower levels than lipofected neurons (data

not shown).

Since the fusion site of BirA in NRX3b influenced the efficiency

of BLINC, we also prepared a stalk-domain fusion of *LplA in

NRX3b at the same site as BirA, (*LplA272-NRX3b) and tested

this construct for picolyl azide ID-PRIME in lipofected neurons.

Figure S9B shows that *LplA36-NRX3b and *LplA272-NRX3b
gave comparable ID-PRIME signals, suggesting that ID-PRIME is

less sensitive to the fusion geometry of *LplA, possibly because

both fusion constructs were expressed more abundantly than any

BirA-NRX3b construct in neurons.

Discussion

In summary, our work presents three findings: (1) The BLINC

methodology introduced in previous work [5] (paper now

retracted) could be reproduced in HEK cells, but not in neuron

cultures using the constructs and protocols previously described.

(2) By re-designing the NRX and NLG fusion constructs and

modifying the labeling protocol, we were able to achieve BLINC

labeling in neuron cultures. (3) Due to poor surface expression of

BirA fusion constructs, our new BLINC protocol was still not

robust in neurons, so we developed ID-PRIME for detection of

trans-cellular NRX-NLG interactions. ID-PRIME was much

more robust than BLINC in neuron cultures and the signal could

be read out by either antibodies or small-molecule reagents.

Regarding the first point, the reasons for the lack of

reproducibility of BLINC in neurons that we observed were: (i)

the CMV promoter plasmids used previously [5], when introduced

at DIV0 by nucleofection, expressed only transiently and could not

be detected by DIV5. All previously reported experiments were

performed in neurons at DIV5 and DIV16 [5], when BLINC

reporters were no longer present. (ii) Even after changing the

promoter from CMV to CAG to obtain persistent expression after

nucleofection, the 1xAP tag on NLG1 was barely detectable above

background. (iii) BirA inserted near the N-terminus of the mature

NRX, as in the previous study [5], did not give detectable BLINC

signal in neurons, even when the CAG promoter and a 3xAP-

NLG1 were used. (iv) Use of biotin-AMP gave high background

signal in neuron BLINC experiments. This reagent was used in all

experiments in the previous study [5].

Here, we achieved BLINC labeling in neuron cultures by

driving persistent expression with CAG promoters, installing 3xAP

in place of 1xAP on NLG, moving BirA to the stalk domain of

NRX, and using biotin+ATP instead of biotin-AMP. Nevertheless,

we found that BLINC in neurons was not robust and sometimes

failed, likely due to poor surface targeting of even our best BirA-

NRX fusion. It is, however, a strength of the labeling system that

such low, virtually non-detectable levels of surface BirA expression

could produce detectable BLINC signal, attesting to the high

sensitivity of streptavidin-fluorophore detection. Engineering of

the BirA sequence or exploration of alternative fusion sites may

improve surface BirA expression in future reporter designs.

In contrast to neurons, BLINC in non-neuronal cells (e.g.,

HEK) and in mixed neuron-HEK cultures, which comparatively

exhibit higher surface expression of BirA constructs, was very

reliable and specific. The signal was also interaction-dependent,

and well-localized to cell-cell contact sites, and should therefore be

a useful method with which to detect and image other trans-

cellular protein-protein interactions.

Lastly, we introduce in this study a new methodology for

imaging trans-cellular protein complexes using interaction-depen-

dent PRIME (ID-PRIME). In ID-PRIME, an LplA mutant

replaces BirA, and LAP replaces AP. The advantages of ID-

PRIME over BLINC are two-fold: (1) The *LplA-NRX fusion has

much better surface targeting than BirA-NRX (despite its slightly

larger size of 38 kD), leading to robust and reproducible signal in

neuron cultures that is localized to NRX-NLG contact sites. (2)

Using the picolyl azide detection strategy [7] (Figure 1C), NRX-

NLG interactions can be read out with small, bright fluorophores

that are less likely to introduce trafficking artifacts or be sterically

excluded from crowded synaptic regions compared to the

streptavidin reagent used for BLINC. This work demonstrated

ID-PRIME in three experimental configurations: HEK cultures

(Figure 4), mixed HEK-neuron cultures (Figure 5B), and neuron

cultures (Figure 5A). Given its advantages over BLINC, ID-

PRIME expands the toolkit available for imaging trans-cellular

protein-protein interactions in living cells.

There are still some issues to be resolved, however, before ID-

PRIME can be a minimally-invasive and faithful tool with which

to study physiologically relevant NRX-NLG interactions in

neurons. The major concern is that its sensitivity must be

improved to the point that signal can be easily detected even

when reporter constructs are not overexpressed. This is particu-

larly true for picolyl azide ID-PRIME, which currently has lower

sensitivity than lipoic acid ID-PRIME in neurons even though its

reagents are more suitable for reporting on synaptic protein

complexes. A second concern is that we did not examine the effects

of neurexin and neuroligin shedding on BLINC or ID-PRIME

signal in this work. Recent studies have shown that the

ectodomains of both NRX [34,35] and NLG [36,37] may be

cleaved by membrane-anchored metalloproteases in a potentially

activity-dependent manner. This could complicate the interpreta-

tion of BLINC and ID-PRIME data if some fusion constructs of

NRX and NLG are more prone to cleavage than wild-type (giving

false negatives), or if labeling signal on the cleaved NLG

ectodomain that ought to have escaped into the medium is

trapped by full-length NRX (giving false positives). We plan to

study and address these limitations in future work.

Supporting Information

Figure S1 Expression of CMV-AP-NLG1 from reference [5]

cannot be detected in neurons, but CAG promoter constructs can

be detected. The indicated plasmids were introduced by

nucleofection, along with a Venus marker (shown in green), into

DIV0 dissociated rat hippocampal neurons. At either DIV5 (left),

or DIV12 (right), surface AP fusion proteins were labeled with

1 uM exogenous BirA (+ biotin and ATP), followed by

streptavidin-AF647 (shown in red), then imaged live. Streptavidin

channel intensities are normalized within the DIV5 dataset and

within the DIV12 dataset, but not across datasets. Labeling of

CMV-1xAP-NLG1 was not detected across 10 transfected cells at

DIV5, and 23 transfected cells at DIV12. Labeling of CAG-1xAP-

NLG1 was detectable but weak in 4 of 10 transfected cells at

DIV5, and 12 of 23 transfected cells at DIV12. Labeling of CAG-

3xAP-NLG1 (with three AP tags in tandem) was generally

stronger, and detected in 8 of 9 neurons at DIV5, and 12 of 16

transfected neurons at DIV12. On the right, the arrowhead points

to a lightly streptavidin-labeled cell that expressed the Venus

marker weakly. Scale bars, 10 mm.

(TIF)

Figure S2 Expression of CMV-BirA64-NRX1b from reference

[5] cannot be detected in neurons after nucleofection. The CMV-
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BirA64-NRX1b plasmid was introduced by nucleofection, along

with a Venus marker (shown in green), into DIV0 dissociated rat

hippocampal neurons. Anti-c-Myc staining was performed on

living cells to detect surface expression of the BirA-NRX at DIV5

(top) and DIV12 (bottom). As a positive control, staining was

performed in parallel on neurons transfected with the same

plasmid, using lipofectamine instead of nucleofection, 1 day before

the labeling experiment. In general, we find that lipofection of a

plasmid gives much higher expression in neurons than nucleofec-

tion of the same plasmid. AF647 channel intensities are

normalized within DIV5 and DIV12 datasets, but not across

datasets. For samples nucleofected with CMV-BirA64-NRX1b
following the protocol in reference [5], c-Myc staining could not be

detected across 13 transfected cells at DIV5 and 16 transfected

cells at DIV12. For lipofected control samples, c-Myc staining

could be detected in 4 of 5 cells at DIV5, and 4 of 7 cells at DIV12.

In general, c-Myc staining on lipofected neurons was weaker at

DIV12 than at DIV5 in this experiment. Scale bars, 10 mm.

(TIF)

Figure S3 The CAG promoter gives more persistent expression

of BirA64-NRX1b in neurons than the CMV promoter. BirA64-

NRX1b with either a CMV or CAG promoter was introduced to

plated hippocampal neurons at DIV5 using lipofectamine, along

with a synaptophysin-YFP marker (shown in green). Expression

was detected 4 days later, at DIV9, by anti-c-Myc staining on

either living neurons (top) or fixed and permeabilized neurons

(bottom). c-Myc staining background was very high for fixed

neurons. Whereas CMV-BirA64-NRX1b expression could not be

detected across multiple fields of view, CAG-BirA64-NRX1b
expression was detectable 4 days after lipofection. Note that in

Figure S2, lipofected CMV-BirA64-NRX1b was detected 1 day

rather than 4 days after lipofection. Scale bars, 10 mm.

(TIF)

Figure S4 Trafficking of BirA fusion constructs in HEK and

neurons. (A) Domain structures of BirA and AP fusions to

NRX3b, NRX1b, and NLG1 used in this figure. Construct

numbering according to Table S1 is given at right. TM is the

transmembrane domain. (B) BirA and AP insertion sites in NRX

and NLG. A side-on view into the synaptic cleft is shown for the

dimeric extracellular domain of NLG1 (amino acids 52-634) in

complex with two extracellular domains of NRX1b (amino acids

82-288; colored orange). From PDB 3VKF [38]. Ca2+ ions are

shown in green. Note that amino acid 288 of NRX1b corresponds

to amino acid 259 of NRX3b. (C) Trafficking in HEK cells. Cells

were transfected with the indicated constructs, fixed and

permeabilized, then stained with the indicated antibodies.

Fluorescence images are not normalized. Bottom row shows

overlay onto DIC images. The BirA tag reduces surface trafficking

of NRX1b, NRX3b, and NLG1. (D) Trafficking in neurons.

Hippocampal neurons were lipofected at DIV11 with the

indicated constructs and a Venus co-transfection marker (shown

in green). One day later, neurons were stained live with anti-HA

antibody to visualize surface expression. (E) Same as (D) except

that neurons were fixed and permeabilized before staining with

anti-HA antibody to visualize total protein pools, rather than

surface pools only. Trafficking of NRX3b and NLG1 to processes

is impaired when either is fused to BirA. Scale bars, 10 mm.

(TIF)

Figure S5 Synaptic localization of optimized BLINC constructs

in neurons. Hippocampal neurons were lipofected with the

indicated constructs and synaptic markers at DIV11 and imaged

live at DIV12. The pre-synaptic marker synaptophysin-YFP was

used at left, and the post-synaptic marker Homer-GFP was used at

right, both shown in green. Anti-HA staining was performed on

living neurons to visualize surface pools of BirA (left) and AP (right)

fusion proteins. In the ‘‘merge’’ panel, yellow indicates sites of red-

green overlap. All scale bars, 10 mm.

(TIF)

Figure S6 Use of biotin-AMP for BLINC in neuron cultures

generates high imaging background. Hippocampal neurons were

nucleofected at DIV0 with BirA272-NRX3b plus dsRed (shown in

blue), or 3xAP-NLG1 plus Venus (shown in green). The two pools

were mixed together and allowed to form contacts. At DIV9, cells

were labeled with biotin+ATP, or biotin-AMP ester, as indicated

for 5 minutes, then stained with monovalent streptavidin-AF647

(shown in red) for another 5 minutes and imaged live. On the right

are images of untreated coverslips. From this experiment we

conclude that signal intensities are similar for biotin+ATP, and

2.5 uM biotin-AMP. However, the nonspecific background is

higher when using 2.5 uM biotin-AMP. In contrast, the

background when using biotin+ATP is the same as for untreated

coverslips, i.e., undetectable. Note that the problem of high

background with biotin-AMP is observed only for neurons, and is

not seen when performing BLINC or exogenous BirA labeling on

HEK cells (as in Figure 2B). Scale bars, 10 mm.

(TIF)

Figure S7 Comparison of surface trafficking in neurons for

BLINC and ID-PRIME ligase fusion constructs. (A) Domain

structures of LplA, BirA, and LAP fusion constructs used in this

figure and Figures S8 & S9. Construct numbering according to

Table S1 is given at right. TM is the transmembrane domain. HA

tags are colored red and a linker is colored green. (B) Comparison

of surface trafficking in neurons for BLINC and ID-PRIME ligase

fusion constructs. Hippocampal neurons were nucleofected at

DIV0 with *LplA36-NRX3b or BirA272-NRX3b, plus a mem-

brane tdTomato marker (shown in green). At DIV5, surface

expression of each construct was detected by live-cell immuno-

staining with anti-HA antibody, shown in red at two different

intensity levels. *LplA36-NRX3b surface expression was easily

detected in 19 out of 19 transfected neurons, while BirA272-

NRX3b surface expression was undetectable in 10 out of 10

transfected neurons. Note that in Figure S4D, surface detection of

BirA272-NRX3b was performed after lipofection, not nucleofec-

tion. Scale bars, 10 mm.

(TIF)

Figure S8 Lipoic acid ID-PRIME with lipofected neuron

cultures. Same as Figure 5A, except that constructs were

introduced by sequential lipofection into plated hippocampal

neurons at DIV5 and DIV6, instead of by nucleofection into

separate pools of DIV0 neurons (which ensures complete plasmid

segregation). For lipofection, *LplA36-NRX3b plus a membrane

tdTomato marker (shown in blue) were first introduced at DIV5,

then the same cultures were lipofected again at DIV6 with 1xLAP-

NLG1 plus a Venus marker (shown in green). All constructs had

CAG promoters. At DIV7, lipoic acid ID-PRIME labeling was

performed as in Figure 4A. Expression of *LplA-NRX and

1xLAP-NLG in the same neuron (indicated by overlap of green

and blue markers) resulted in diffuse cis ID-PRIME signal (row 1)

much stronger than the trans-cellular ID-PRIME signal (row 2) in

the same dish. Trans-cellular ID-PRIME signal was always

localized to contact sites (arrow heads). Omission of lipoic acid

suppressed both cis (row 3) and trans (row 4) ID-PRIME signal.

Scale bars, 10 mm.

(TIF)
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Figure S9 Picolyl azide ID-PRIME in lipofected neuron

cultures. (A) Same as Figure S8, but with picolyl azide rather

than lipoic acid readout. Neurons were transfected with two

sequential rounds of lipofection at DIV5 and DIV6. As a result,

some neurons express *LplA36-NRX3b with a membrane td-

Tomato marker, some express 1xLAP-NLG1 with a Venus

marker, and some express all four plasmids. Picolyl azide labeling

was performed live with 100 mM picolyl azide +500 mM ATP for

20 minutes. Neurons were then fixed, and ligated azide was

detected with 1 mM CuSO4 and 5 mM alkyne-AF647 for 1 hour.

(B) Geometry-independence of ID-PRIME signal in neurons.

Neurons were transfected as in (A) with two sequential rounds of

lipofection at DIV7 and DIV8. In the top row, *LplA36-NRX3b
(N-terminal fusion construct) was used, while in the bottom row,

*LplA272-NRX3b (stalk fusion construct) was used. Labeling with

picolyl azide and alkyne-AF647 was performed as in (A). Scale

bars, 10 mm.

(TIF)

Table S1 Genetic constructs used in this work.

(TIF)

Methods S1 Supporting materials and methods.

(DOCX)
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