
Detecting Awareness in the Vegetative State:
Electroencephalographic Evidence for Attempted
Movements to Command
Damian Cruse1*, Srivas Chennu2, Davinia Fernández-Espejo1, William L. Payne3, G. Bryan Young4,

Adrian M. Owen1

1 Brain and Mind Institute, University of Western Ontario, London, Ontario, Canada, 2Department of Clinical Neurosciences, University of Cambridge, Cambridge, United

Kingdom, 3 Parkwood Hospital, London Health Sciences Centre, London, Ontario, Canada, 4Department of Clinical Neurological Sciences, University of Western Ontario,

London, Ontario, Canada

Abstract

Patients in the Vegetative State (VS) do not produce overt motor behavior to command and are therefore considered to be
unaware of themselves and of their environments. However, we recently showed that high-density electroencephalography
(EEG) can be used to detect covert command-following in some VS patients. Due to its portability and inexpensiveness, EEG
assessments of awareness have the potential to contribute to a standard clinical protocol, thus improving diagnostic
accuracy. However, this technique requires refinement and optimization if it is to be used widely as a clinical tool. We asked
a patient who had been repeatedly diagnosed as VS for 12-years to try to move his left and right hands, between periods of
rest, while EEG was recorded from four scalp electrodes. We identified appropriate and statistically reliable modulations of
sensorimotor beta rhythms following commands to try to move, which could be significantly classified at a single-trial level.
These reliable effects indicate that the patient attempted to follow the commands, and was therefore aware, but was
unable to execute an overtly discernable action. The cognitive demands of this novel task are lower than those used
previously and, crucially, allow for awareness to be determined on the basis of a 20-minute EEG recording made with only
four electrodes. This approach makes EEG assessments of awareness clinically viable, and therefore has potential for
inclusion in a standard assessment of awareness in the VS.
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Introduction

Conventional assessments of consciousness following severe

brain-injury, such as the Glasgow Coma Scale [1] and the Coma

Recovery Scale - Revised (CRS-R [2]), rely on overt motor

responses to command in order for a patient to be considered to be

aware. Those patients who appear to be awake, but who show no

external evidence of awareness on the basis of these behavioral

assessments, are considered to be in a Vegetative State (VS [3–5] ).

However, it is a challenge for clinicians to identify appropriate

responses to command as these may be only minimal or

inconsistently present. Indeed, this difficulty is thought to be

a primary contributing factor to the ,40% misdiagnosis rate for

VS [6–8]. In recent years, however, it has become increasingly

apparent that the absence of behavioral evidence for command-

following is not necessarily indicative of the true absence of

awareness, or of the absence of an ability to follow commands

under appropriate conditions [9–13].

Owen et al. [11] re-characterized the way in which an

individual can be said to respond to command, by including the

hemodynamic response of the brain, as detected with functional

magnetic resonance imaging (fMRI). In that study, a patient who

appeared to be in a VS was asked to perform two mental imagery

tasks – imagining playing tennis and imagining walking through

the rooms of her house – that are associated with the differential

activation of a number of distinct brain regions. The resulting

patterns of activity were entirely comparable with those observed

in healthy, awake participants performing these same imagery

tasks to command. These results allowed Owen et al. to conclude

that the patient was responding to command and therefore

retained a level of awareness that was not apparent from her (lack

of) behavior. In spite of these advances, however, fMRI does not

provide a viable means of assessing covert awareness on a routine

basis. Alongside considerations of cost and scanner availability, the

physical stress incurred by patients as they are transferred to

a suitable facility is significant.

Electroencephalography (EEG), on the other hand, is consid-

erably less expensive than fMRI and is entirely portable. When an

individual imagines or plans a movement of a limb, sensorimotor

cortical activity is reflected in the scalp EEG as changes in the

power of oscillations in the mu and/or beta frequency bands (,7–

30 Hz) over central electrodes. Typically, these are manifest as

reductions in power – or event-related desynchronizations (ERD)

– over the scalp contralateral to the limb, and increases in power –
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or event-related synchronizations (ERS) – over the ipsilateral scalp

[14–16]. Cruse et al. [9] (see also [10]) exploited these patterns of

EEG activity in order to identify statistically reliable covert

command-following in 19% of 16 VS patients who were asked to

imagine moving their right-hands and their toes. Crucially, this

was determined for the first time at the patients’ bedsides. EEG

systems are portable, relatively inexpensive, and available in many

hospitals. Consequently, EEG-based assessments of awareness

may be included in standard clinical assessments with minimal

difficulty. However, before this can be widely deployed, the EEG

approach to detecting awareness must be optimized for the clinical

setting.

In their original study, Cruse et al. [9] employed EEG

recordings from up to 257 scalp electrodes. However, a typical

clinical setting will not have access to such state-of-the-art

equipment, and will have only 20 or fewer channels [17].

Therefore, in order for EEG assessments to become a standard

approach, they must return reliable results with only a minimal,

clinical EEG setup.

For any assessment to be clinically viable it must also maximize

the likelihood of detecting awareness when it is present – i.e. true

positives. The successful completion of the motor imagery task

employed by Cruse et al. [9] required many high-level cognitive

faculties, including the ability to hold the task instructions in mind

across a delay of up to 90-seconds. While this requirement allowed

Cruse et al. to draw strong conclusions regarding the high level of

cognitive functioning retained by those patients who returned

positive results, it is also likely to have excluded a proportion of

patients who were aware, but lacked sufficient cognitive resources

to complete the task, hence resulting in false negatives. Indeed,

during conventional behavioral assessments of awareness, a con-

siderably less cognitively demanding, though entirely motoric,

output is required. Under the guidelines for the CRS-R, the

international standard for the diagnosis of VS, a patient is given

a simple auditory instruction to try to move their hand and

provided with a brief period of time in which to perform this

action. When a successful movement to command occurs on 3 out

of 4 trials, the patient is diagnosed as ‘aware’, and therefore not

VS. For the same conclusion to be drawn based on EEG-detected

covert command-following, therefore, a similarly simple task may

be sufficient. Accordingly, Bekinschtein et al. [18] instructed VS

patients to try to move their hands in the fMRI scanner, and

observed appropriate premotor activity in two patients, despite the

absence of an overtly discernable motor output. The success of this

approach therefore indicates that functional neuroimaging can be

used to detect attempts to follow command, as indexed by the

appropriate premotor activity, even when these attempts are not

executed in a behaviorally discernable way.

Clinical assessments must also minimize the likelihood of false

positives – i.e. the chances of apparently detecting command-

following when none has occurred. In the absence of an accurate

estimate of false negative rates for motor imagery in the patient

population, the absence of a positive result is not automatically

a ‘negative’ finding, but a ‘null’ result. Since these can occur even

in healthy aware individuals due to the less than perfect sensitivity

of functional neuroimaging methods, null results are entirely

inconclusive with regards to the presence of awareness in the VS.

Since an inconclusive result is less likely to lead to changes in the

care of a patient, relative to a statistically verifiable positive result,

it is typical to place an emphasis on minimizing false positives over

null results. In order to estimate the likelihood of false positives,

previous studies have contrasted the results of healthy individuals

who listen to the task instructions and are asked to follow the

commands, with those same individuals who listen to the

instructions and are asked to not follow the commands [9,19].

When no positives are returned in the latter case, the test can be

considered to minimize the likelihood of false positives.

Here we describe a clinically viable approach to detecting

awareness in the VS. While EEG was recorded from a minimal set

of electrodes, we instructed a patient who had been diagnosed as

VS for more than 12-years to try to move his left and right hands.

We analyzed the data both at a traditional trial-average level, and

at a single trial level (as [9,10]). The average-level analyses identify

significant clusters of time-varying ERDs and ERSs, while the

single-trial analyses provide a measure of the consistency of these

responses following each individual instruction. A group of 6

healthy control participants also completed the task in the way

described above in order to estimate the likelihood of null results

and false positives.

Methods

Ethics Statement
The patient’s surrogate decision makers gave informed written

consent for his participation. The Health Sciences Research Ethics

Board of the University of Western Ontario provided ethical

approval for the patient study. Healthy participants gave informed

written consent. The Psychology Research Ethics Board of the

University of Western Ontario provided ethical approval for the

healthy study.

Patient
The patient was a 38-year old male who had been repeatedly

diagnosed as VS for 12-years following a traumatic brain injury

sustained in a road-traffic incident. On the day of his EEG

assessment, his CRS-R diagnosis was VS with a score of 6:

(auditory function: startle; visual function: none; motor function:

flexion withdrawal; oromotor/verbal function: oral reflexive

movement; communication: none; arousal: eye opening without

stimulation). The research team had behaviorally assessed the

patient with the CRS-R eight times across the three months prior

to his EEG assessment, and had always returned a diagnosis of VS

(CRS-R score range 4–7).

Healthy Controls
Six healthy participants (all male, median age 29, range 22–32)

gave informed consent and served as the control group.

Procedure
Each trial began with one of three instructions: ‘Try to move

your right-hand’, ‘Try to move your left-hand’, and ‘And now,

relax’. All instructions were 2-seconds in length and were followed

by between 4- and 7-seconds of silence (selected randomly from

a uniform distribution on each trial) before the onset of the next

instruction. The instructions were presented by earphone. The

task was completed in blocks of 36 trials (12 6 each instruction)

presented in a pseudorandom order so that no more than three

instructions of the same type were presented consecutively. The

patient completed five blocks during the assessment, for a total of

180 trials, with short breaks between each in order to reduce

fatigue.

All healthy controls completed the same task as the patient in

which they rapidly squeezed their hands into a fist four times

following the instructions to move. In a separate run, control

participants also listened to the same task but were instructed

simply to mind-wander rather than to follow the commands.

Order of task completion was counter-balanced across healthy

participants.

Detecting Awareness in the Vegetative State
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EEG Recording and Pre-Processing
EEG was recorded using the g.Gamma active electrode system

(g.tec Medical Engineering, Austria) from 9-electrodes at FC3,

FCz, FC4, C3, Cz, C4, CP3, CPz, and CP4, housed in an

electrode cap. Due to the expected laterality of EEG responses,

and the success of previous studies [20], only data from the 4 non-

midline electrodes were used for subsequent analysis (FC3, FC4,

CP3, CP4). Data were sampled at 256 Hz and referenced to the

right earlobe, with impedances kept below 5kohms. EEG data

were subsequently down-sampled to 100 Hz and filtered offline

between 1 and 40 Hz. Specifically, the EEGLAB function

‘pop_eegfilt’ was used to perform two-way least-squares finite

impulse response filtering, first with a high-pass cutoff of 1 Hz, and

then with a low-pass cutoff of 40 Hz. The data were subsequently

segmented into 6-second epochs time-locked to the onset of each

instruction (or equivalently, up to 4 seconds after the offset of the

instruction). Trials containing muscular artifacts were identified by

visual inspection and removed. For the patient, after artifact-

rejection, 36 left-hand trials, 33 right-hand trials, and 34 rest trials

contributed to the analyses (for a total of 103 trials, or 57% of

trials). In order to make the healthy data as comparable as

possible, the same numbers of clean trials were included in all

healthy analyses as those that contributed to the patient analyses.

Data were re-referenced offline to form two bipolar channels

(FC3-CP3, FC4-CP4) that shall be referred to as C3’ and C4’,

respectively. As compared to mastoid referencing, this bipolar

approach is known to detect sensorimotor mu and beta

modulations with a high level of accuracy across a large proportion

of healthy individuals, due to the smaller contribution of distal

EEG sources to the bipolar signal [20].

EEG Average Spectral Analysis
Spectral power estimates were calculated for each time-point at

C3’ and C4’ separately using a fixed-window (1-second, Hanning

window) time-frequency transformation (FieldTrip [21] ‘ft_freq-

statistics’ function). The time-frequency data at each electrode was

subsequently compared for left-hand vs. rest and right-hand vs.

rest. The statistical significances of these differences were

computed by means of cluster-based permutation testing which

inherently controls for multiple comparisons. Briefly, the statistical

procedure is as follows. For every time-frequency sample the

experimental conditions are compared by a t-test. All samples for

which the t-test value is significant at p,.05 (two-tailed) are

selected and clustered into groups based on their temporal and

spectral adjacency, and the sum of t-test values for each cluster is

calculated (with no lower or upper limits on cluster size). The

statistical significance of each cluster is then determined by means

of a Monte Carlo randomization test in which the original trials

are randomly partitioned (removing task-related differences) and

the procedure above is repeated 1000 times. The maximum

cluster sums from each repetition form a surrogate distribution to

test the null hypothesis that each cluster comes about by chance.

The significance threshold for the cluster statistics was set to.05/4

(.0125, two-tailed) to control for the use of four separate cluster

analyses (2 comparisons 6 2 EEG channels). The full statistical

procedure is described in detail by Maris & Oostenveld [22] and

was implemented with the open-source MATLAB toolbox

FieldTrip [21].

Alongside this analysis, in order to fully visualize the patient’s

EEG in a way similar to that of a clinical EEG recording, average

power spectra – i.e. non-time-varying spectral power – were also

calculated separately for each bipolar channel for each condition.

Specifically, the MATLAB function ‘pwelch’ was used to calculate

the average power (in dB) across the entire 6-second epoch. This

function divides each segment into eight sections with 50%

overlap, computes eight periodograms with a Hamming window,

and returns the average spectral density across the eight sections.

EEG Single-Trial Classification Procedure
The spectral analysis above was complemented by single-trial

classification of the data. The features employed for classification

were log bandpower values in four frequency bands: 7–13 Hz

(mu), 13–19 Hz (low-beta), 19–25 Hz (mid-beta), and 25–30 Hz

(high-beta), as employed by Cruse et al. [9,10]. Spectral power in

each band was estimated using a short-time Fourier transform

(MATLAB function ‘spectrogram’) with a sliding window of 1-

second (as recommended by [23]) moving in 50 ms steps. This

resulted in four bandpower values at each of 100 time-points per

trial per channel (i.e. four frequency bands in 50 ms increments

from 1000 ms before the offset of the instruction to 3950 ms after

the offset of the instruction).

Classification was performed between left-hand and rest, and

right-hand and rest, at each time-point separately using the 8 log

bandpower features (2 channels 64 frequency bands). In order to

estimate the classifier’s generalizability, 10-fold cross-validation

was performed. Specifically, the trials were separated into 10

approximately equal-sized groups. Due to its low computational

demands, a naı̈ve Bayes classifier was trained on the features from

9 of these groups – the training set (using MATLAB’s ‘naivebayes’

object). The classes of each of the trials in the remaining group –

the test set – were then predicted using this model in order to

calculate the classifier’s accuracy. Briefly, a naı̈ve Bayes classifier

estimates the parameters of a probability distribution (in this case,

the mean and standard deviation of a normal distribution) per

training feature per class. By applying Bayes’ Theorem, the test

sample is used to calculate posterior probabilities for each class

and is subsequently classified into the class with the highest

posterior probability (for further details on naı̈ve Bayes classifica-

tion, see [24]). This was repeated 10-times with a different test set

each time, so that each trial was tested exactly once. The average

classification accuracy across the 10 cross-validation folds was then

calculated at each time-point. This resulted in an accuracy time-

course that mirrored the dynamics of the spectral ERD/ERS. In

order to control for outliers, and to return a statistically robust

estimate of classification accuracy, this time-course was then

smoothed with a sliding-window of 500 ms.

The classification accuracies were evaluated to be statistically

significant by means of a familywise randomization test with 1000

repetitions [25]. Specifically, at each permutation the class labels

of the trials were randomly shuffled in order to remove any

systematic differences, and the above cross-validated classification

procedure was repeated. At the end of each repetition, the best

smoothed accuracy across all time-points was recorded in order to

jointly control the familywise error rate over time-points. The

maximum accuracies calculated over the repetitions formed

a surrogate distribution representing the null hypothesis that the

classifier was operating at chance. The participant’s original

accuracy was then evaluated against this distribution to calculate

a p-value at each time-point separately. A significance threshold

of.05/2 (.025, one-tailed) was employed to control for the two

independent comparisons (left-hand vs. rest, and right-hand vs.

rest).

Therefore, the average spectral analysis and the single-trial

classification procedure make use of the same type of measures

derived from the data – i.e. time-frequency estimates. The only

difference is that the average spectral analysis employs 1 Hz

resolution in order to identify the minutiae of spectral variation,

while the single-trial analysis uses a coarser frequency resolution (4

Detecting Awareness in the Vegetative State
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bands from 7–30 Hz), in order to maintain a low number of

features for classification, as well as for consistency with previous

research [9].

All calculations were performed with MATLAB, using a com-

bination of custom scripts and EEGLAB [26] and Fieldtrip [21]

functions.

Results

Average Spectral Analyses
For the patient, significant spectral power differences are shown

in Figure 1 for each comparison of conditions at left-hemisphere

(FC3-CP3: C3’) and right-hemisphere (FC4-CP4: C4’) separately.

As can be seen, when compared with rest, a significant ipsilateral

ERS occurred in the high-beta band ,1-second after the offset of

the instruction to move the left-hand. There were no significant

clusters in the comparison between right-hand and rest. At no

point was any behavioral response observed that would be

clinically indicative of awareness.

Figure 2 shows the average power – i.e. non-time-varying – in

each condition at each electrode from the patient’s data. As can be

seen, his overall EEG contains high power in the delta band over

the right-hemisphere, with no alpha peak evident. Importantly,

there are no broadband differences between conditions at either

electrode that may suggest the presence of artifacts.

All healthy participants produced significant post-instruction

clusters of ERD and/or ERS in at least one comparison. The

specific frequency bands and relative-laterality of ERD/ERS are

visualized in Figure 3. As can be seen, individual differences in

ERD/ERS are evident across healthy participants, consistent with

previous literature (e.g. [15,27,28]). Conversely, no significant

clusters of ERD or ERS were observed when the same participants

were instructed to mind-wander and not to follow the commands.

Single-trial Analyses
For the patient, the time-courses of smoothed classification

accuracies are shown in Figure 4 for the two comparisons. The

maximum classification accuracies (smoothed and unsmoothed)

and their timings are detailed in Table 1. Only the classification

between left-hand and rest was significantly above chance,

reaching a smoothed maximum of 67% at 1250 ms after the

offset of the instruction.

Five of the six healthy participants returned significantly above

chance classification in at least one comparison (median 66.5%,

range 60–80%; see Table 2). Conversely, when instructed to mind-

wander and not to the follow the commands, no healthy controls

returned significant classification in any comparison (median 57%,

range 52–63%). The grand average smoothed classification

accuracies across healthy controls are shown in Figure 5.

Patient Post Hoc Analyses
For the patient, while a statistically significant ERS and

classification accuracy were observed following instructions to

move his left-hand, no such significant effects were observed for

right-hand trials. To investigate this further, we narrowed the

frequency band employed in the single-trial classification pro-

cedure to only that which produced a significant ERS for left-hand

trials (high-beta: 25–30 Hz), and found significantly above chance

classifiability for right-hand as well as left-hand trials (versus rest;

65.3% and 66.9% respectively, smoothed).

The above analyses conducted on the bipolar-referenced C3’

and C4’ were also conducted on the mastoid-referenced C3 and

C4 and returned similar, though diminished effects, as would be

expected (see [20,29]).

Discussion

VS patients do not produce any behaviorally discernible

evidence that they can follow instructions to move, and are

therefore considered to be unaware of themselves and of their

environment. However, by recording EEG from only four

electrodes while giving the same instruction to move, we have

shown that it is possible to detect attempts to follow these commands

in a VS patient, even if no discernable overt motor output is

produced. Crucially this could be detected on a single-trial basis

Figure 1. Time-frequency plots for right-hand and left-hand trials for the patient. The significant ipsilateral high-beta ERS cluster is
highlighted. Plots on left and right reflect left- and right-hemisphere EEG channels (C3’ and C4’ respectively). Time is measured relative to the offset of
the verbal instructions. Color scale denotes the log ratio of power versus rest.
doi:10.1371/journal.pone.0049933.g001
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using clinically viable EEG methods at a significantly greater than

chance level.

The patient had been diagnosed as VS for 12-years following

a traumatic brain injury sustained in a road traffic incident.

Indeed, on the day of his EEG assessment, as well as over the three

months prior to it, the patient had continually been diagnosed as

VS using the international standard assessment tool, the CRS-R.

However, from the EEG evidence described here, it is clear that

behavioral assessments alone were not sufficient to provide him

with an accurate diagnosis.

When the patient was asked to try to move his left-hand during

the EEG assessment, a consistent ipsilateral ERS that passed

rigorous statistical significance testing was observed in the beta

band (relative to when he was asked to rest). The mu and beta

rhythms are thought to be idling rhythms of the sensorimotor

cortex [30,31]. When a region of sensorimotor cortex becomes

active a reduction in amplitude of these rhythms (an ERD) is

observed over the region that is no longer idling, but involved in

a motor plan/action. Ipsilateral ERSs during unilateral hand

movements/imaginations are considered to reflect the inhibition

of the contralateral hand representation [15] and have previously

been used to differentiate between motor tasks on a single-trial

basis in healthy individuals [20]. Statistically reliable beta ERSs

have also been observed in attempted movements of tetraplegic

and paraplegic patients [32]. Indeed, tetraplegic patients have

been trained to control hand orthoses through the modulation of

sensorimotor beta [33,34]. While the overall EEG of this patient

(and indeed VS patients as a whole) contains higher power in low

frequencies, such activity is equally distributed across trials of each

type (see Figure 2) and therefore not endogenously modulated by

the task. Indeed, as with the patient data, two of the six healthy

Figure 2. Average spectral power (dB) calculated across all of the patient’s EEG. Data are plotted for each condition at each bipolar
channel separately. A right-lateralised delta peak can be seen, with no alpha peak evident.
doi:10.1371/journal.pone.0049933.g002

Figure 3. Time-frequency plots for right-hand and left-hand trials for each healthy participant. The range of power values (log ratio
versus rest) that are plotted for each healthy control is indicated in parentheses. Significant clusters are highlighted. Plots on left and right for each
participant reflect left- and right-hemisphere EEG channels (C3’ and C4’ respectively), as in Figure 1. Time is measured relative to the offset of the
verbal instructions. Frequency (Hz) is indicated on the vertical axis.
doi:10.1371/journal.pone.0049933.g003
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controls also produced significant responses in only beta frequen-

cies (.12 hz; see Figure 3).

The statistically reliable modulations of the patient’s sensori-

motor rhythms are therefore consistent with attempts to move.

Under this assumption, we could conclude that the patient was

attempting to follow the commands. If he were to have successfully

followed the commands in a behaviorally identifiable way, he

would have been considered to be aware. At the very least, this

patient would be diagnosed as in the minimally-conscious state

(MCS [2,4,35]). The current EEG evidence for attempted

movement to command, therefore, should lead us to the same

conclusion – that this patient was aware. To further support this,

we asked six healthy participants to complete the same task and

found significantly reliable patterns of ERD and ERS for all

participants, and significantly above chance single-trial classifica-

tion for five out of six participants (see Results for details).

Crucially, when these same participants were asked to listen to the

same instructions but not to follow commands, no significant

effects were observed in either the average or single-trial analyses

for any participant (see Figure 5). These results confirm that simply

hearing the task instructions is not sufficient to return a positive

EEG result. Rather, an act of (attempted) command-following

must occur.

The outcomes of the post hoc analyses (see Results) suggest that

the patient was also attempting to move his right hand to

command – as indicated by classifiable modulations of his high-

beta rhythms. However, it is likely that there was too much

variability in the modulation of the other frequency bands for the

classifier to accurately generalize across trials, or for the average

spectral analyses to identify it in the a priori analyses. This putative

variability may also be the cause of the absence of statistically

reliable contralateral ERDs alongside the ipsilateral ERSs. While

contralateral mu ERDs are often observed in a range of motor

tasks (see [23]), single-subject variability is very high in this regard

(e.g. [27,28,32,36]) due to variations in the cognitive strategies

employed and neural generators involved ([28,37–39]). Indeed,

even within an individual participant, widely varying patterns of

motor-related EEG reactivity can be seen across sessions [36].

This variability has led to an inability to detect reliable mu/beta

modulations even with machine-learning techniques in some

healthy individuals [20]. The absence of a reliable contralateral

mu ERD in the patient’s data may therefore reflect differences in

the way in which he performed the task, such as the type of

movement he attempted to perform [28]. It has also been

suggested that the EEG of severely brain-injured patients may

react in a different manner to healthy controls during motor tasks

due to cortical reorganization that occurred post-injury [40].

Nevertheless, in this regard it is worth noting that two of our six

healthy controls also produced significantly classifiable EEG data

in only one of the two comparisons. One control only produced

a statistically reliable ipsilateral ERS in one comparison, and

significant contralateral ERDs were not observed in half of our

healthy controls. Figure 3 highlights this well-documented in-

dividual variability in the EEG response of the healthy partici-

Figure 4. Time-courses of classification accuracies (versus rest) for right-hand and left-hand trials for the patient. Lines show means of
the 10-fold smoothed classification accuracies. Shaded areas show 61 standard errors. Stars denote time-points with significantly above chance
classification for left-hand vs. rest (p,.025).
doi:10.1371/journal.pone.0049933.g004

Table 1. Maximum smoothed and unsmoothed classification accuracies for each comparison.

Comparison Maximum Smoothed Accuracy (Time) Maximum Unsmoothed Accuracy (Time)

Right-Hand vs. Rest 59% (900 ms) 68% (550 ms)

Left-Hand vs. Rest 67% (1250 ms)* 74% (1150 ms)

Time-point of maximum accuracy, relative to the offset of the instructions, is in parentheses. Statistical significance is denoted with an asterisk (p,.025; significance only
calculated on smoothed data).
doi:10.1371/journal.pone.0049933.t001
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pants, in terms of the significantly-varying frequency band, its

time-course, and laterality [15]. The variability in the pattern of

responses observed in the patient data is not inconsistent with

those of the healthy control group when following the commands.

Indeed, the significant responses to command therein manifest

despite the potentially large variations in arousal levels documen-

ted in VS and MCS patients across both short and long time

periods [2,41]. Nevertheless, the conclusion regarding right-hand

movements to command must be made cautiously since the choice

of frequency band for that comparison used data from the ‘rest’

condition, which had also been used in the left-hand analyses. As

with the guidelines for behavioral assessment, these results

therefore highlight the importance of employing both the grand

average and single-trial analyses in order to provide patients with

every opportunity to demonstrate their covert abilities.

The task employed in the initial proof-of-concept by Cruse et al.

[9] required many high level cognitive abilities in order for

a positive EEG result to be returned, including the ability to hold

task instructions in memory for ,90-seconds. The current task,

however, did not make such cognitive demands on the patient

since the movement attempt was to be executed immediately after

each instruction. The inclusion of a ‘rest’ condition in the current

task also reduced the cognitive load compared with Cruse et al. [9]

since this condition did not require an action, but rather the lack of

one, which could be compared with the active conditions. While

this less demanding task may not provide us with the same insights

about the upper extent of cognitive ability retained by this patient,

it is however capable of identifying a level of awareness that is not

evident from external behavior, and may therefore increase the

number of patients who are able to detectably follow command.

Nevertheless, the current task does require a number of cognitive

faculties, including language comprehension and task switching. In

order to reduce the possibility of false-negatives due to these

paradigmatic demands, therefore, this EEG approach should

ideally be a part of a battery of assessments that probe the range of

cognitive abilities extant in a particular patient (e.g. [42,43]).

The assessment of awareness described here made use of ,20-

minutes of EEG data recorded from only four electrodes. The

Table 2. Maximum smoothed classification accuracies for each comparison for each healthy participant.

Following Commands Not Following Commands

Healthy Participant Right-Hand vs. Rest Left-Hand vs. Rest Right-Hand vs. Rest Left-Hand vs. Rest

1 68% (1250 ms)* 67% (950 ms)* 54% (200 ms) 57% (200 ms)

2 78% (1350 ms)* 80% (1550 ms)* 63% (650 ms) 62% (950 ms)

3 67% (1300 ms)* 76% (1300 ms)* 58% (1350 ms) 52% (850 ms)

4 66% (400 ms)* 60% (2450 ms) 57% (1750 ms) 55% (3400 ms)

5 62% (0 ms) 61% (0 ms) 54% (700 ms) 54% (550 ms)

6 61% (1400 ms) 66% (2450 ms)* 60% (2400 ms) 60% (2100 ms)

Note how no healthy participant returns significant classification accuracy when not following commands (see Methods). Time-point of maximum accuracy, relative to
the offset of the instructions, is in parentheses. Statistical significance is denoted with an asterisk (p,.025).
doi:10.1371/journal.pone.0049933.t002

Figure 5. Grand average time-courses of classification accuracies (versus rest) for right-hand and left-hand trials for the healthy
control group. Classification time-courses are shown for the trials in which the participants were instructed to follow commands, as well as when
instructed to not follow commands. Lines show means of the mean smoothed classification accuracies across participants. Shaded areas show 61
standard errors.
doi:10.1371/journal.pone.0049933.g005
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majority of hospitals worldwide are equipped with the basic EEG

hardware that could perform the same recording. Such basic

requirements argue strongly for the incorporation of EEG

assessments of awareness into the standard clinical assessment

following brain injury. Indeed, a resting-state EEG recording is

currently performed as part of the standard clinical course

following brain injury. The EEG assessment of awareness

described here could therefore be incorporated into such a clinical

EEG protocol with minimal disruption, providing patients with

a greater chance of demonstrating their awareness when they are

incapable of doing so with overt motor behaviors. The preliminary

data described here indicate that the current approach is ready for

preclinical testing. A large-scale group study must be conducted in

order to determine the sensitivity and specificity of this bedside

EEG assessment of awareness.

Finally, our single-trial analysis approach also allowed us to

correctly identify occasions on which the patient was trying to

move his left hand with up to 74% accuracy (unsmoothed, see

Methods) from just 1-second of EEG data. These analysis

techniques are typical of those used in brain-computer interfaces

(BCI) which can provide a form of external control or

communication based on mappings of mental states – e.g. trying

to move the hand in order to answer ‘Yes’ to a question. The

development of techniques for real-time classification of these

covert ‘actions’ will not only improve diagnostic accuracy for VS

patients, but may also enable some of these patients to

communicate, and even gain a level of control over their

environment for the first time since their injuries.
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