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Abstract

Background and Aims: The egg protein ovalbumin (OVA) belongs to six most frequent food allergens. We investigated how
thermal processing influences its ability to induce allergic symptoms and immune responses in mouse model of food
allergy.

Methodology/Principal Findings: Effect of increased temperature (70uC and 95uC) on OVA secondary structure was
characterized by circular dichroism and by the kinetics of pepsin digestion with subsequent HPLC. BALB/c mice were
sensitized intraperitoneally and challenged with repeated gavages of OVA or OVA heated to 70uC (h-OVA). Levels of
allergen-specific serum antibodies were determined by ELISA (IgA and IgGs) or by b-hexosaminidase release test (IgE).
Specific activities of digestive enzymes were determined in brush border membrane vesicles of jejunal enterocytes.
Cytokine production and changes in regulatory T cells in mesenteric lymph nodes and spleen were assessed by ELISA and
FACS. Heating of OVA to 70uC caused mild irreversible changes in secondary structure compared to boiling to 95uC (b-OVA),
but both OVA treatments led to markedly different digestion kinetics and Tregs induction ability in vitro, compared to
native OVA. Heating of OVA significantly decreased clinical symptoms (allergic diarrhea) and immune allergic response on
the level of IgE, IL-4, IL-5, IL-13. Furthermore, h-OVA induced lower activities of serum mast cell protease-1 and enterocyte
brush border membrane alkaline phosphatase as compared to native OVA. On the other hand h-OVA stimulated higher
IgG2a in sera and IFN-c secretion by splenocytes.

Conclusions: Minor irreversible changes in OVA secondary structure caused by thermal processing changes both its
digestion and antigenic epitopes formation, which leads to activation of different T cell subpopulations, induces shift
towards Th1 response and ultimately reduces its allergenicity.
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Introduction

Food allergy is a serious health concern affecting 6–8% of young

children and about 2–4% of adults. Allergies to eggs, milk and

peanut are currently the most frequent food allergies and their

prevalence, severity and persistence has been increasing during the

last decades. Food allergy is considered mainly as an IgE-mediated

type I hypersensitivity, characterized by an increased production

of IgE antibodies and Th2 cytokines, common markers found both

in human disease and in experimental models [1–4].

Depending on the route of exposure, dose of allergen and the

presence of suitable adjuvant, the immune response can result in

either sensitization or oral (mucosal) tolerance induction [4–6]. In

mouse models of food allergy, oral administration of allergen

usually results in oral tolerance induction, but its co-administration

with strong mucosal adjuvant such as cholera toxin or with anti

acid drugs (increasing gastric pH) could be used for allergic

sensitization [7–10]. Another reliable and effective approach to

overcome the oral tolerance induction is pretreatment of mice by

systemic intraperitoneal (i.p.) administration of allergen with

aluminum hydroxide (alum) as adjuvant followed by repeated
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intra-gastric treatments. This experimental model mimics a mild

form of human allergy with IgE–mediated mast cell degranulation

causing increased small intestine permeability [2,11,12] with

diarrhea as one of the symptoms of anaphylaxis. Histological

examination of small intestine reveals changes of epithelium, e.g.

alteration in number of goblet cells and mucin production and the

damage of tips of villi, as well as changes of lamina propria, e.g.

increased cell infiltration and/or activation [13–15].

The mucosa of small intestine is an actively metabolizing,

rapidly proliferating, absorptive epithelium with nutritional and

homeostatic functions. The activity of brush border enzymes is

sensitive marker of intestinal cell differentiation and postnatal

development, reflecting both dietary changes and microbial

colonization [16–18]. Partial and subtotal atrophy of the villous

apparatus was shown to correlate with the activity and expression

of alkaline phosphatase [19]. Moreover, this enzyme may be also

involved in host’s defense against pathological stress-induced

damage, such as during inflammation and infection [20].

Egg white contains several allergens such as ovalbumin (OVA),

ovomucoid, ovotransferin and lysozyme. Forming approximately

60% of the total egg white protein, OVA is by far the most

abundant of them [21]. Like the majority of food allergens OVA is

consumed after thermal processing and it has been shown that

after heating its molecular structure as well as allergenicity is

altered [22,23]. However, it should be considered that egg

allergens are processed at different temperatures (baked, scram-

bled or soft/hard boiled eggs or even native as whipped egg white)

and these processing conditions can have a major impact on the

secondary structure, susceptibility to enzymatic digestion in the

gastrointestinal tract and allergenicity. Partial decrease of IgE

binding after OVA thermal processing suggested that both linear

and conformational epitopes participate in the OVA-IgE specific

interactions [22–24]. Moreover, heating of allergens can lead to

their aggregation, which reduces their absorption and transport

through epithelial layer and thus decreases their allergenicity [25].

However, the impact of different temperature treatment on the

changes in the secondary structure of OVA and on its ability to

induce clinical symptoms of food allergy hasn’t been studied in

detail.

In the present study we show that heating of hen egg allergen

OVA to 70uC has only minor effect on its secondary structure.

However, these minor changes lead to different kinetics and

occurrence of fragments after digestion. This result in activation of

different T cell subpopulations and changes in both cytokine

production and specific antibody formation, which leads to

significant reduction of egg allergy symptoms.

Materials and Methods

Ethics Statement
All animal experiments were approved by the Laboratory

Animal Care and Use Committee of the Institute of Microbiology

v.v.i., Academy of Sciences of the Czech Republic, approval ID:

94/2006 and 244/2009.

Animals
Two month-old female BALB/c mice (H-2b) (Animal facility of

the Institute of Physiology ASCR, Czech Republic) were kept

under standard conditions, fed by OVA-free diet and water ad

libitum.

Ovalbumin Preparation
For i.p. sensitization, OVA (Worthington, Lakewood, NJ, USA)

and heated OVA (h-OVA; prepared by exposure of OVA to 70uC

for 10 minutes, enabling accurate and reproducible dosing) were

dissolved in phosphate-buffer saline (PBS) to a final concentration

of 300 mg/ml containing 5 mg/ml of alum adjuvant (Sigma,

Steinheim, Germany). For oral administration, OVA and h-OVA

were dissolved in PBS to a final concentration of 100 mg/ml. For

in vitro studies boiled OVA (b-OVA) was prepared by exposure of

OVA to 95uC for 10 minutes. EndoGradeH Ovalbumin (Hyglos

GmbH, Germany) with endotoxin content ,1 EU/mg was used

for enzymatic digestion and in vitro stimulation.

Circular Dichroism
Protein secondary structure elements were determined by CD

spectroscopy. Spectra were recorded in 5 mM sodium phosphate

buffer (pH 7.4) with a JASCO J-815 spectropolarimeter fitted with

a PTC-423S Peltier single position cell holder (Jasco, Tokyo,

Japan). All spectra are baseline-corrected and presented as mean

residue molar ellipticity [H]MRW at a given wavelength. Thermal

denaturation of proteins was monitored from 20uC to 70uC or

from 20uC to 95uC at the fixed wavelength of 222 nm with

a temperature slope of 1uC/min. The melting point (Tm) was

calculated from the inflection point of the resulting sigmoid curve

[26].

Enzymatic Digestion and HPLC Separation of Ovalbumin
Fragments

Peptides of OVA, h-OVA or b-OVA were prepared using

pepsin-agarose gel similarly as described previously [27]. Briefly,

digestion of proteins was stopped after 20, 40, or 60 minutes by

removing the pepsin-agarose gel by centrifugation (10 min;

1500 g) and by neutralization with 1 M NaOH to final pH 7.

Digested or undigested proteins were separated using SP 250/10

NUCLEOSIL 300-7 C18 column (Macherey-Nagel, Düren,

Germany) on the HPLC system Gold 125NM Solvent Module

(Beckman Coulter, Miami, FL, USA). Samples were applied on

columns and separated as described previously [27]. For in vitro

stimulations, digests were dissolved in complete RPMI-1640

(Sigma-Aldrich, St. Louis, MO, USA) to a final concentration of

500 mg/ml.

Experimental Protocol
Mice were divided into the three groups according to the

treatment – OVA, h-OVA and PBS (controls). Mice were

sensitized i.p., with a two week interval, with 60 mg of either

OVA or h-OVA together with 1 mg of alum in a final volume of

200 ml PBS on day 1 and 14. Control mice received only 200 ml

PBS containing 1 mg of alum. Two weeks later, the mice were

challenged 10 times at 2–3 days intervals by i.g. gavages of 15 mg

of OVA in a final volume of 150 ml PBS. Diarrhea was assessed

visually by monitoring mice for 30 minutes after each i.g. exposure.

Body weight was recorded before gavage and rectal temperature

both before and 30 minutes after each i.g. exposure.

Quantification of OVA-specific Antibodies and Mast Cell
Protease-1

Blood samples were collected before the first i.p. injection,

during the experiment and at sacrifice. Allergen-specific serum

IgG1, IgG2a and IgA levels were determined by ELISA [28].

Briefly, 96-well microtiter plates were coated either with OVA, h-

OVA or b-OVA (5 mg/ml). Serum samples were diluted 1/10000

for IgG1, 1/100 for IgG2a and 1/10 for IgA. Rat anti-mouse

IgG1, IgG2a and IgA antibodies (Abs) (1 mg/ml Pharmingen, San

Diego, CA, USA) were applied, followed by peroxidase-conjugat-

ed mouse anti-rat IgG Abs (1/1000; Jackson, Immuno Labs., West

Heated OVA in Mouse Model of Food Allergy
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Grove, PA, USA) for detection. Antibody levels were reported as

optical density (OD). As it was shown that allergen-specific IgG

interferes with allergen-specific IgE detection [29], allergen-

specific IgE levels in sera were quantified by degranulation of

rat basophil leukemia (RBL-2H3) cells (originally described by

[30], kindly provided by prof. Ursula Wiedermann). RBL-2H3

cells were plated in 96-well tissue culture plates (46104 cells/per

well) and passively sensitized by incubation with mouse sera in

a final dilution of 1/90 for 2 hours. After washing, OVA, h-OVA

or b-OVA (0.6 mg/ml) were added for 30 min at 37uC to induce

degranulation. Supernatants were incubated with 4-methylum-

belliferyl-N-acetyl-b-D-glucosaminide (Sigma-Aldrich, St. Louis,

MO, USA) for analysis of b-hexosaminidase using a fluorescence

microplate reader (lex:360 nm/lem:465 nm) Infinite M200 (Te-

can Group Ltd., Grödig, Austria). Results are reported as

percentage of total b-hexosaminidase release from cells after

disruption with 1% Triton X-100.

Levels of serum mouse mast cell protease-1 (MMCP-1) enzyme

were determined by commercial kit (eBioscience, San Diego, USA)

according to manufacturer’s instructions. Sacrifice sera were

diluted 1/250 and the MMCP-1 levels are reported as ng/ml.

Cell Culture and Cytokine Evaluation
Mesenteric lymph nodes (MLN) and spleens were removed at

sacrifice. Single-cell suspensions were prepared in RPMI-1640

containing 10% fetal bovine serum (BioClot GmbH, Aidenbach,

Germany) and 1% Antibiotic-Antimycotic solution (Sigma-Al-

drich). Cells (66105/well) were cultured in a flat-bottom 96-well

plate (TPP, Trasadingen, Switzerland) without any stimuli or in

the presence of either OVA or h-OVA (100 mg/well) for 72 hours

(37uC, 5% CO2). Supernatants were collected and stored at –40uC
until analyses. IL-4, IL-5, IL-6, IL-10, IL-13, IL-17, INF-c and

TNF-a were determined by the MILLIPLEX MAP Mouse

Cytokine/Chemokine Magnetic Panel (Millipore, Billerica, USA)

according to manufacturer’s instructions and analyzed with the

Bio-Plex System (Bio-Rad Laboratories, Hercules, USA) with

sensitivities ,0.3 pg/ml for IL-4, ,0.8 pg/ml for IL-5, ,2.1 pg/

ml for IL-6, ,2.6 pg/ml for IL-10, ,12.4 pg/ml for IL-13,

,0.7 pg/ml for IL-17, ,1.1 pg/ml for IFN-c and ,3.1 pg/ml

for TNF-a. Values are reported in pg/ml after subtraction of

baseline levels of non-stimulated cultures. Values below assay

sensitivity were considered non-detectable (n.d.). In order to

measure the capacities of OVA, h-OVA and b-OVA and their

peptic digests (100 mg/well) to induce Tregs, we cultivated them

with naı̈ve mouse splenocytes for 48 hours.

Flow Cytometry Analysis
Single-cell suspensions of spleens or MLN were stained for

regulatory T cells using Foxp3 Staining Buffer Set (eBioscience,

San Diego, CA, USA) with fluorochrome labeled anti-mouse

monoclonal Abs: CD3e-Fluorescein isothiocyanate (eBioscience;

clone 145-2C11), CD4-QdotH 605 (Invitrogen, clone RM4-5),

CD25-Alexa FluorH 700 (eBioscience; clone PC61.5) and Foxp3-

phycoerythrin (eBioscience; clone FJK-16s) according to the

manufacturer’s recommendation. Flow cytometric analysis was

performed on LSRII (BD Biosciences, San Jose, CA, USA) and

data were analyzed using FlowJo software (Tree Star, Ashland,

OR, USA).

Determination of Enterocyte Brush-border Enzyme
Activities

Jejunum was removed, washed with cold saline and brush

border membrane vesicles (BBMV) were prepared from jejunal

scrapings as described by Kessler et al. [31]. Protein concentration

in BBMV was determined by the method of Lowry et al. [32] using

bovine serum albumin, fraction V (Serva, Heidelberg, Germany)

as standard. The activity of alkaline phosphatase (EC 3.1.3.1), c-

glutamyltranspeptidase (EC 2.3.2.2), dipeptidyl peptidase IV (EC

3.4.14.5), lactase (EC 3.2.1.23/62/108) and sucrase (EC 3.2.1.48/

10) were determined as described previously [33]. Enzyme

activities were expressed in nkat/mg protein, 1 nkat being the

amount of the enzyme that converts 1 nmol of substrate per

second under the given conditions.

Histology and Morphometry
Intestinal tissue sections were fixed immediately in 4% formalin.

The fixed tissues were cut and processed using routine methods.

Paraffin sections (5 mm) were deparaffinized in xylene, rehydrated

through an ethanol gradient to water and stained by hematoxylin-

eosin. Villus height was evaluated under the Olympus BX 40

microscope equipped with Photo camera DP 70 using program

QuickPhoto Micro 23 program (Olympus, Japan). The mean

height of 20–30 villi 6 SEM was calculated.

Statistical Analysis
Differences between multiple experimental groups were evalu-

ated by one-way analysis of variance (ANOVA) with Tukey’s

multiple comparison test, and differences between two groups

were evaluated using unpaired two-tailed Student’s t-test. Data

were expressed as the mean 6 SEM unless otherwise stated.

GraphPad Prism statistical software (version 5.03 GraphPad

Software, La Jolla, CA, USA) was used for analyses.

Results

The Effect of Thermal Processing on OVA Secondary
Structure and Enzymatic Digestion

Since eggs could be consumed after various kinds of processing,

we analyzed the effect of different temperatures on the secondary

structure of OVA allergen. Employing the circular dichroism

technique, we found that heating to 70uC or 95uC causes

irreversible changes in secondary structure of OVA allergen

(Fig. 1). The structural changes induced by heating were

accompanied by different susceptibility to pepsin digestion. HPLC

elution profiles of pepsin-digested OVA, h-OVA or b-OVA were

documented after 20 and 40 minutes (Fig. 2). The majority of

native OVA was split to fragments after 20 min, while the majority

of both forms of heated OVA remained undigested. However,

while both h-OVA and b-OVA had similar peptide profiles after

20 or 40 min of digestion, these were both quite different from

those of untreated OVA (Fig. 2). The profiles after 40 min of

digestion remained almost unchanged after 60 min of digestion

(data not shown).

Experimental Allergic Diarrhea Induced by OVA and
Heated-OVA

Allergic diarrhea appeared in about 70% of mice already after

the 5th i.g. dose of OVA, but only in 20% of those fed with h-

OVA. After 7 i.g. doses, the disease symptoms were found in

more than 90% of OVA fed animals, but only in 35% of those

fed with h-OVA. At the end of the experiment (10 i.g. doses), the

diarrhea was found in all mice fed with OVA, but only in 70%

of mice fed with h-OVA (Fig. 3a, b). There were small, non-

significant differences in body weight and in rectal temperature

after each i.g. dose of either OVA or h-OVA and PBS control

group (data not shown). Morphometry analysis of histological

Heated OVA in Mouse Model of Food Allergy

PLoS ONE | www.plosone.org 3 May 2012 | Volume 7 | Issue 5 | e37156



pictures documented shortening of villi in mice treated with

either form of OVA, as compared to PBS-treated controls (PBS

190.265.1 mm, OVA 157.7614.0* mm, h-OVA 161.466.0**

mm).

OVA and h-OVA Treatment Changes Activity of Brush-
border Hydrolases

The brush-border membrane hydrolases are enzymes involved

in the final steps of digestion processes. We tested if these enzymes

are involved in small intestine homeostasis and could be therefore

considered as new markers in food allergy. We determined their

activities in the jejunum of OVA-, h-OVA- and PBS-treated mice

(Table 1). We found that the specific activity of alkaline

phosphatase was significantly higher in mice treated with native

OVA but only slightly increased in those exposed to h-OVA, as

compared with PBS-treated mice. On the other hand, as

compared to PBS-treated controls, both OVA and h-OVA

treatments significantly decreased the specific activity of dipeptidyl

peptidase IV. We did not observe any significant changes among

the three experimental groups in the levels of glutamyl

transpeptidase, lactase or sucrase (Table 1).

Thermal Processing of OVA Changes the Kinetics of OVA-
specific Antibody Responses and the Levels of Serum
MMCP-1

To determine the effect of thermal processing of the allergen on

the level and specificity of anti-OVA antibodies, the serum levels

of IgE, IgG1, IgG2a and IgA against either OVA or h-OVA were

determined in the course of the experiment. As shown in Fig. 3c

the level of IgE anti-OVA Abs was higher in response to native

OVA than to h-OVA. In contrast, OVA-specific IgG2a was

significantly higher after h-OVA feeding. The levels of the other

two isotypes (IgG1 and IgA) were increased compared to controls

but the differences corresponding to the two OVA forms were

diminished towards the end of experiment. At the end of the

Figure 1. Circular dichroism spectra of native and heated-OVA.
Circular dichroism spectra showed only minor irreversible structural
changes of hen egg ovalbumin-OVA heated for 10 minutes at 70uC (h-
OVA, dotted line) as compared to OVA heated at 95uC (b-OVA, dashed
line). Spectra were taken after renaturation at 20uC, native conformation
of OVA at 20uC is shown as control (solid line).
doi:10.1371/journal.pone.0037156.g001

Figure 2. RP-HPLC separation profile of native-OVA and heated-OVA peptic digests. RP-HPLC separation profile monitored at 280 nm
corresponds to OVA and OVA heated at 70uC (h)-OVA or boiled at 95uC (b)-OVA undigested (09) and after 20 (209) and 40 minutes (409) of digestion
by pepsin. RT – retention time.
doi:10.1371/journal.pone.0037156.g002

Heated OVA in Mouse Model of Food Allergy
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experiment, we characterized the specificity and the degree of

cross-reactivity of anti-OVA antibodies using ELISA with OVA,

h-OVA or b-OVA bound as an antigen (Fig. S1). The levels of

OVA-specific antibodies remained unchanged, when we used h-

OVA or OVA as a coating antigen, except for IgG1, which levels

were significantly higher, when h-OVA instead of OVA was used.

When b-OVA was used as coating antigen, the response of both

OVA- and h-OVA treated mice decreased significantly in all

measured isotypes.

Increase of allergen specific IgE is essential for mast cell

activation and development of allergic diarrhea symptoms. We

determined the level of MMCP-1 enzyme as the marker of mast

cell activation and degranulation. In this case, the reducing effect

of thermal processing was clearly demonstrated; the h-OVA

induced only half the level of serum MMCP-1 compared to the

native OVA (Fig. 4).

Ex vivo Cytokine Production by MLN and Splenocytes
Induced by OVA Allergens

Local and systemic cell responses to OVA and h-OVA were

evaluated in all three groups of animals as in vitro cytokine

production by MLN and splenocytes after exposure to corre-

sponding allergens. Cytokine production from controls (PBS

group) was low or not detectable and did not change after

exposure to either form of OVA (data not shown). As shown in

Fig. 5a, the levels of TNF-a, IL-4, IL-5, IL-10 and IL-13 were

higher in culture media obtained from MLN exposed to native

OVA. The differences in cytokine secretion were less pronounced

in the experiments with splenocytes cultures (Fig. 5b). Only the

production of IFN-c was higher after exposure to h-OVA as

compared to OVA. Levels of IL-6 and IL-17 didn’t differ among

the groups neither in MLN nor in spleen (data not shown).

Figure 3. Impact of heating on OVA-induced allergic response. Experimental design (a). Mice were sensitized twice intraperitoneally (i.p.)
with OVA/Al(OH)3, heated OVA (h-OVA)/Al(OH)3 or PBS/Al(OH)3 alone and subsequently challenged with ten doses of OVA, h-OVA or PBS by
intragastric tubing (i.g.). Blood samples were taken at indicated time points for antibody analysis. At the end of the experiment, spleens and
mesenteric lymph nodes were taken for FACS and cytokine assays, small intestine for histology and enterocyte brush border for enzyme activity
analysis. Occurrence of allergic diarrhea (b). Occurrence of allergic diarrhea in OVA (solid line) or h-OVA (dotted line) challenged mice, data
pooled from three independent experiments. PBS controls are shown as dashed line. The kinetics of specific Abs formation (c). Levels of specific
antibodies in sera from mice exposed to OVA (solid line), h-OVA (dotted line) or PBS (dashed line) were detected by ELISA (IgA, IgG1and IgG2a) or by
b-hexosaminidase release assay (IgE). Data are represented as mean 6 SEM (n = 10 mice/group), representative data from one out of three
independent experiments. *P#0.05, **P#0.01, ***P#0.001.
doi:10.1371/journal.pone.0037156.g003

Table 1. Specific activities of enterocyte brush-border
enzymes (nkat/mg protein) in jejunum of treated mice.

Enzyme (nkat/mg
protein) OVA h-OVA PBS

Alkaline phosphatase 14.2661.09*** 10.0860.84# 8.2760.29

GGT 10.7963.33 8.6461.59 9.7462.02

DPP IV 4.6160.50** 5.3960.45* 7.3960.77

Lactase 9.1960.63 8.3760.59 9.9961.61

Sucrase 32.1668.04 36.0064.10 27.3064.24

GGT – gamma-glutamyltranspeptidase, DPP IV – Dipeptidyl peptidase IV. Values
are expressed as the mean 6 SEM.
*P,0.05 ovalbumin-treated group (OVA) vs. PBS-treated group.
**P,0.01 ovalbumin-treated group (OVA) vs. PBS-treated group.
***P,0.001 ovalbumin-treated group (OVA) vs. PBS-treated group.
#P,0.05 heated-ovalbumin-treated group (h-OVA) vs. ovalbumin-treated
group (OVA).
doi:10.1371/journal.pone.0037156.t001

Heated OVA in Mouse Model of Food Allergy
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Differentiation of CD4+CD25+Foxp3+ T Cells in OVA and
h-OVA Fed BALB/c Mice

Since regulatory T cells (Tregs) are known to be crucial for

induction of oral tolerance to protein antigens [34], we analyzed

the changes in Tregs in spleen and MLNs of OVA-, h-OVA- and

PBS-treated mice at the end of the experiment. In spleen we

observed a decrease in Tregs in h-OVA treated mice, as compared

to OVA- and PBS-treated mice (Fig. 6). Only a non-significant

increase was found in MLNs of h-OVA treated mice.

Induction of CD4+Foxp3+ T Cells by h-OVA and b-OVA in
vitro is Increased After a 20-min Pepsin Digestion

To characterize the effect of heating and enzymatic digestion on

T cell subpopulations, especially on regulatory T cell differenti-

ation in more detail, splenocytes from naı̈ve (untreated) BALB/c

mice were cultured in vitro either with OVA, h-OVA or b-OVA as

well as with their peptic digests. As shown in Fig. 7, the in vitro

stimulation of splenocytes with undigested heated proteins led to

a slight increase in proportion of CD4+Foxp3+ Treg cells

compared to native form of OVA. Interestingly, 20 min peptic

digests of heated forms of OVA induced increased proportion of

Tregs, but this ability decreased again after 40 min of digestion. In

contrast the pepsin digestion did not change the ability of OVA to

slightly increase the proportion of Tregs as compared to un-

digested OVA.

Discussion

In this study, we showed that small irreversible changes in

secondary structure of egg allergen OVA caused by thermal

processing significantly affect its digestion by gut enzymes and

decrease its allergenicity in the mouse model of food allergy. While

both heated and native OVA induced allergic diarrhea in BALB/c

mice, the disease symptoms appeared much earlier and with

a higher frequency in OVA fed mice than in those fed with h-

OVA. As compared to OVA-treated group, the sera of h-OVA-

treated mice contained also significantly lower levels of specific IgE

and MMCP-1, known markers of mast cell activation and

degranulation [35]. It seems that even slight changes in the

secondary structure elements have a high impact on the

immunological behavior of the allergen. This could be explained

by differences either in allergen absorption, which could lead to

a decrease in allergen exposure, or in allergen digestion, which

leads to production of peptides with different allergenicity and to

a partial loss of conformational epitopes and/or exposure of new

linear epitopes to immune cells.

The small intestine is noted for its plasticity in response to

various dietary changes, which may be reflected in activation of

enterocyte brush-border enzymes. Here we demonstrated for the

first time that alkaline phosphatase (ALP) can be used as a new

marker in food allergy, because its specific activity was significantly

increased in OVA-treated group compared to controls. This is in

line with the recent findings that ALP has a crucial role in

regeneration of enterocytes and that its activity correlates with

villous atrophy [19,36]. We can speculate that the increased level

of ALP contributes to restoration of homeostasis in the enterocyte

membranes after long-term stimulation with OVA allergens. On

the contrary, dipeptidyl peptidase IV (CD26 - that cleaves L-

alanine or L-proline residues in the penultimate N-terminal

position) was significantly reduced in both OVA- and h-OVA-

treated groups, as compared to PBS controls. Interestingly,

a decrease in CD26 was found in patients with celiac disease

induced by gluten, which belongs to wheat components re-

sponsible for food- or wheat-dependent exercise-induced allergy

and for occupational asthma [37,38].

The changes in secondary structure by heating could influence

antibody response in vivo. Here we report that OVA induced

significantly higher levels of OVA-specific IgE and lower levels of

IgG2a, as compared to h-OVA. High levels of potentially

‘‘blocking’’ IgG2a (mouse homolog of human IgG4) may compete

for allergen [22]. The ability of heat-denatured allergens to induce

Th1 associated IgG2a was also shown for other allergens, such as

bee venom or birch pollen [39]. However, the effect cannot be

generalized, because in a recent study by van der Ventel [15]

a higher sensitizing potential was shown for cooked fish proteins.

Surprisingly, when we changed the coupling allergen (h-OVA was

used for OVA sensitized sera and vice versa) the binding of specific

Abs was retained. Moreover, the binding was significantly higher

when h-OVA antigen was used for specific IgG1 antibody

determination. We assume that this is caused by heating-

uncovered linear epitopes (supplementing the loss of the confor-

mational ones), which are then presented after processing by

antigen-presenting cells to T and B lymphocytes. On the other

hand, when the extensively heated b-OVA was used, we observed

a strong drop in the signal in all OVA-specific antibodies, which

correlated with observed circular dichroism structural changes,

and suggested the importance of structural epitopes in specific

antibody formation.

Next, we addressed the question if the differences in OVA and

h-OVA-specific antibody responses are also associated with

cytokine milieu. On the local level in MLNs, we found

a significantly higher production of Th2 cytokines in the OVA-

treated mice, accompanied by proinflammatory TNF-a production

after an in vitro exposure to OVA. Surprisingly, we determined an

up-regulation of regulatory cytokine IL-10, which could be a result

of a biological feedback aimed at dampening down the local

inflammation, similar to chronic experimental colitis [40]. OVA-

treatment did not significantly influence cytokine production in

splenocytes, except for IFN-c, which was produced predominantly

by h-OVA stimulated splenocytes. The same observation was

recently made by van der Ventel [15], who showed an increased

IFN-c production by splenocytes of mice challenged with heated

fish extract. Our findings suggest that heating of OVA induces

Figure 4. Decreased mast cell protease induction by heated-
OVA. Heated OVA (h-OVA, black bar) induced significantly lower
amounts of mast cell protease (MMCP-1), the marker of mast cell
activation, compared to mice fed with native OVA (white bar). Data are
represented as mean 6 SEM (n = 10 mice/group), representative data
from one out of three independent experiments. *P#0.05, **P#0.01,
***P#0.001.
doi:10.1371/journal.pone.0037156.g004
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changes in its digestion and processing by immune cells that lead

to changes in the local cytokine environment ultimately leading to

a shift from Th2- toward Th1-type response, reduction in the level

of specific IgE and an increased production of blocking IgG2a

antibodies [22]. These data fit well with clinical symptoms

observed in allergic subjects in response to heated egg allergens

[5,24].

Moreover, our results support recent data showing that thermal

processing interferes with OVA stability [23]. Here, we show that

h-OVA and b-OVA are initially (at 20 min) more resistant to

proteolysis than native OVA. The difference in degradation

kinetics could be explained by partial aggregation of heated forms

of OVA, which makes the target structures less accessible for the

enzyme. Nevertheless, after 40 min digestion the number of h-

OVA and b-OVA fragments was even higher and their spectrum

differed from those obtained from OVA. However, the spectra of

h-OVA and b-OVA fragmented peptides were similar, differing

only in the region corresponding to retention time of 50 min.

Surprisingly, when we stimulated splenocytes from naı̈ve mice in

vitro we found an increase in the percentage of regulatory T cells in

response to h-OVA and b-OVA. The capacity of both heated

forms of OVA to induce Tregs was increased after 20 min of

pepsin digestion and decreased again after 40 min digestion. The

prolonged digestion had no effect on Treg inducing capacity of

Figure 5. Cytokine production after in vitro restimulation with OVA. The cytokine production from mesenteric lymph nodes (a) and
splenocytes (b) of BALB/c mice fed with OVA (white bars) or h-OVA (black bars) and stimulated in vitro with appropriate allergen. Cytokine levels are
expressed after subtraction of base line levels of unstimulated lymph node cells or splenocytes. Data shown are mean values 6 SEM (n = 4–7 mice/
group), representative data from one out of three independent experiments. *P#0.05, **P#0.01, ***P#0.001, n.d. = not detectable.
doi:10.1371/journal.pone.0037156.g005

Figure 6. Numbers of Tregs in splenocytes and mesenteric lymph nodes of OVA treated mice. Typical plots depicting numbers of Tregs
in mouse splenocytes (a) and mesenteric lymph node (b) in gated CD3+CD4+CD8– T helper cells after feeding with OVA, h-OVA or PBS, respectively.
Numbers in upper quadrants shows proportions (mean 6 SD) of either CD25–Foxp3+ or CD25+Foxp3+ Th cells out of all cells. Representative data
from one out of three independent experiments. *P#0.05.
doi:10.1371/journal.pone.0037156.g006
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native (heat untreated) OVA digests. These data are supported by

recent evidence in experimental mouse model of suppressive

effects of some OVA T cell epitope peptides on allergic immune

responses via Foxp3+ T cell generation [41].

A direct continuation of the study would be the analysis of

intestinal DC subsets and goblet cells [42–44] in initial steps of

allergen sensitization in our model, which should contribute to

understanding how the tolerance or allergic response is achieved.

The analysis of the role of enzymes in brush-border membrane of

epithelial cells (activated after OVA gavages) will shed light on

allergen digestion and immunogenicity of fragments (esp. dipepti-

dases) and on regeneration of gut epithelium (ALP). Moreover, it

would be of great importance to apply this model for verification

of hygiene hypothesis using animals kept under conventional and/

or germ-free condition and subsequently colonized with various

bacterial strains.

In conclusion, we showed that even a mild change in the

secondary structure of OVA after thermal processing has far-

reaching consequences concerning its antigenic properties. After

digestion of h-OVA, fragments with different immunogenic

properties are formed leading to the shift from Th2 to Th1-type

response as compared to native OVA. Nevertheless, the h-OVA

fragments still have the ability to induce allergic symptoms, but

these are less pronounced and need longer time to develop.

Supporting Information

Figure S1 Cross-reactivity of anti-OVA specific antibo-
dies. At the end of the experiment we determined the levels of

OVA-specific antibodies in OVA and heated (h)-OVA treated

mice against OVA, h-OVA (70uC) and boiled (b)-OVA (95uC).

The levels were retained for IgE, IgG2a and IgA (a, c, d) when we

used OVA as coating antigen for h-OVA-treated mice or h-OVA

as coating antigen for OVA treated mice. In case of IgG1 (b) the

levels were significantly higher when we used h-OVA as coating

antigen for either OVA- or h-OVA- treated mice. When we used

b-OVA we observed a significant drop in the signal for all

measured antibodies. Representative data from one out of three

experiments (n = 8). Repeated measures ANOVA with Tukey’s

multiple comparison test was used for analysis of differences

between antibody levels of the same sample measured either

against OVA, h-OVA and b-OVA antigen. n.s. non-significant,

*P#0.05, **P#0.01, ***P#0.001.

(TIF)
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