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Abstract

Mycobacterium kansasii has emerged as an important nontuberculous mycobacterium pathogen, whose incidence and
prevalence have been increasing in the last decade. M. kansasii can cause pulmonary tuberculosis clinically and
radiographically indistinguishable from that caused by Mycobacterium tuberculosis infection. Unlike the widely-studied M.
tuberculosis, little is known about the innate immune response against M. kansasii infection. Although inflammasome
activation plays an important role in host defense against bacterial infection, its role against atypical mycobacteria remains
poorly understood. In this report, the role of inflammasome activity in THP-1 macrophages against M. kansasii infection was
studied. Results indicated that viable, but not heat-killed, M. kansasii induced caspase-1-dependent IL-1b secretion in
macrophages. The underlying mechanism was found to be through activation of an inflammasome containing the NLR
(Nod-like receptor) family member NLRP3 and the adaptor protein ASC (apoptosis-associated speck-like protein containing
a CARD). Further, potassium efflux, lysosomal acidification, ROS production and cathepsin B release played a role in M.
kansasii-induced inflammasome activation. Finally, the secreted IL-1b derived from caspase-1 activation was shown to
restrict intracellular M. kansasii. These findings demonstrate a biological role for the NLRP3 inflammasome in host defense
against M. kansasii.
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Introduction

Mycobacterium kansasii is an acid-fast bacillus that has emerged as

an important pathogen of the group of nontuberculous mycobac-

teria (NTM). It is the second most-common nontuberculous

opportunistic mycobacterial infection linked with AIDS, surpassed

only by Mycobacterium avium complex (MAC) [1–3]. Furthermore,

M. kansasii infects both immunocompetent and immunocompro-

mised patients [4–9].

Although geographical variability of infection exists, M. kansasii

is the most common cause of NTM-induced lung diseases in the

United Kingdom and Western Europe [10–14]. M. kansasii causes

pulmonary infection that resembles tuberculosis clinically and

radiographically and is indistinguishable from Mycobacterium

tuberculosis infection [12,13,15]. Comorbidity diseases are frequent-

ly closely related with M. kansasii pulmonary infection, including

chronic obstructive pulmonary disease, bronchiectasis, pneumo-

noconiosis, previous tuberculosis, or carcinoma [16,17]. In

addition, extrapulmonary infection of M. kansasii can cause

gastroenteritis, lymphadenitis, osteomyelitis, synovitis, cellulitis,

empyema or pericarditis [14,18,19]. Furthermore, disseminated

M. kansasii infections also commonly occur, especially in

immunocompromised patients with advanced AIDS [20,21].

Comparatively, unlike the widely-studied M. tuberculosis, most

reports on M. kansasii focus on epidemiological and clinical

features of infection [22–24]. Little is known about the innate

immune response against M. kansasii infection.

Macrophages represent the first line of host defense against most

bacterial pathogens. Following interaction with the bacteria,

macrophages initiate inflammatory responses by secreting cyto-

kines and chemokines [25,26]. Among these, one of the key

proinflammatory cytokines for antimicrobial responses is interleu-

kin-1b (IL-1b) [27]. Two signaling systems control the synthesis,

processing and secretion of IL-1b. Pathogen-recognition receptors

such as Toll-like receptors (TLRs) control synthesis of pro-IL-1b,
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and the nucleotide binding and oligomerization domain (NOD)-

like receptors (NLRs) lead to inflammasome activation and IL-1b
maturation and secretion [28].

During infection with pathogenic bacteria, assembly and

activation of the inflammasome result in caspase-1 activation

and IL-1b secretion, which are critical for an effective immune

response [29]. To date, among the four major inflammasomes

described [30], the most thoroughly characterized is the NLRP3

inflammasome, which is activated by a number of diverse stimuli,

including whole pathogens, microbial components and danger

signals [31]. Upon activation, NLRP3 oligomerizes and recruits

the adaptor protein ASC (apoptosis-associated speck-like protein

containing a CARD) through pyrin domain interactions. In turn,

procaspase-1 is recruited by ASC via CARD-CARD interactions,

thus forming the NLRP3 inflammasome and leading to caspase-1

activation. Caspase-1 is synthesized as a 45 kDa precursor (p45)

before being cleaved into 20 kDa (p20) and 10 kDa (p10) mature

proteins that form a hetero-tetrameric complex that express the

enzymatic activity [32]. Thus, the appearance of p20 and p10 in

culture supernatants reflects caspase-1 activation [33]. Similarly,

upon stimulation of a pathogen recognition receptor such as the

TLRs, proinflammatory cytokine IL-1b is generated as a 31 kDa

proform which is proteolytically processed to the biologically

active 17 kDa form by caspase-1 [34], and then released into the

extracellular space through mechanisms that remain poorly

characterized [35,36].

Previous studies have indicated that M. marinum and M.

tuberculosis and their components can activate an inflammasome

consisting of NLRP3 and ASC [37,38]. In addition to live M.

tuberculosis, the ESAT-6 protein from the mycobacteria has been

shown to induce activation of NLRP3/ASC inflammasome

maturation and release of IL-1b from THP-1 macrophages [39].

Furthermore, studies using primary macrophages demonstrated

that M. marinum activates the NLRP3/ASC inflammasome in an

ESX-1-dependent manner [40]. Recently, a rapidly growing

NTM, M. abscessus, has been reported to activate the NLRP3/

ASC inflammasome via dectin-1/Syk-dependent signaling and the

cytoplasmic scaffold protein p62/SQSTM1 in human macro-

phages [41]. However, whether M. kansasii, a slowly growing

NTM, infection could induce caspase-1 activation and IL-1b
secretion via the inflammasome activation has not been reported

yet. Therefore, the role of inflammasome activation and secretion

of IL-1b in prevention of M. kansasii infection was addressed in this

study. Using the human macrophage cell line THP-1, we

demonstrated that live intracellular M. kansasii triggers the

activation of the NLRP3/ASC complex, caspase-1 activation,

and IL-1b secretion. We further showed that potassium efflux,

lysosomal acidification, cathepsin B release and production of

reactive oxygen species (ROS) are required for the activation of

the inflammasome. Finally, we demonstrate a major role for the

secreted IL-1b in controlling M. kansasii infection. These results

demonstrate an important biological function for the NLRP3

inflammasome in host defense against M. kansasii infection.

Results

Live intracellular M. kansasii triggers caspase-1 activation
and IL-1b secretion in macrophages

To determine whether M. kansasii infection could induce

caspase-1 activation and IL-1b secretion, THP-1 macrophages

were challenged with M. kansasii at various multiplicities of

infection (MOI) for 16 h. Caspase-1 cleavage and IL-1b
processing were analyzed by ELISA and immunoblotting.

Compared to untreated cells, bacterial challenge resulted in a

dose-dependent caspase-1 activation and IL-1b secretion

(Figure 1A and B), indicating that M. kansasii infection activates

caspase-1 and promotes IL-1b release. By contrast, heat-killed M.

kansasii failed to induce caspase-1 activation nor IL-1b secretion

(Figure 1C). As macrophages can engulf mycobacteria, whether

internalization of M. kansasii is required for the processing of IL-1b
and caspase-1 was examined. Cytochalasin D, an inhibitor of actin

polymerization, was used to block phagocytosis before M. kansasii

infection. As shown in Figure 1D, caspase-1 activation and IL-1b
maturation were abolished when internalization of M. kansasii by

macrophages was inhibited. To determine whether activated

caspase-1 is responsible for M. kansasii induced maturation and

secretion of IL-1b, macrophages were pretreated with Z-YVAD-

FMK, a cell-permeable and irreversible caspase-1 inhibitor. When

caspase-1 activity was inhibited, the release of mature IL-1b into

supernatants was reduced in a dose dependent manner, and both

IL-1b processing and caspase-1 activation were reduced (Figure 2).

Thus, viable intracellular M. kansasii induce caspase-1-dependent

IL-1b secretion from macrophages.

The NLRP3/ASC inflammasome contributes to caspase-1
activation and IL-1b secretion during M. kansasii infection

To define the role of NLRP3 inflammasome components in

activation of caspase-1 by M. kansasii infection, NLRP3 or ASC in

THP-1 cells were depleted by shRNA. Compared to non-target

shRNA control, mRNA and protein levels of NLRP3 or ASC in

the respective knockdown cells were significantly reduced

(Figure 3A). NLRP3, ASC, or nontarget control knockdown

THP-1 cells were then challenged with M. kansasii at an MOI of 10

for 16 h, and caspase-1 activation was revealed by the appearance

of caspase-1 p20 and IL-1b p17 in Western blots. When compared

to non-target control cells, depletion of either NLRP3 or ASC

caused a significant reduction in the amount of secreted IL-

1b(Figure 3B), while IL-6 production was unimpaired (Figure S1).

Concomitantly, significant reduction of caspase-1 p20 levels was

also observed (Figure 3C). Taken together, the results show that

NLRP3 and ASC are required for M. kansasii induced caspase-1

activation and IL-1b processing in macrophages.

Potassium efflux, lysosomal acidification, ROS production
and cathepsin B release are involved in M. kansasii-
induced inflammasome activation

Previous studies have reported a number of signaling mecha-

nisms playing important roles in activating the NLRP3/ASC

inflammasome, including potassium efflux, lysosomal acidification,

generation of reactive oxygen species (ROS) and cathepsin B

release from lysosomes. To explore whether any of these factors

are involved in M. kansasii-induced inflammasome activation, a

series of defined inhibitors were used to treat M. kansasii-

challenged THP-1 macrophages. The amount of secreted IL-1b
in culture supernatants was used as an indicator of inflammasome

activation. A high extracellular potassium concentration (130 mM)

was first used to test if inhibiting K+ efflux can influence M.

kansasii-mediated activation of the NLRP3/ASC inflammasome.

Following infection of THP-1 macrophages in high extracellular

[K+], M. kansasii-induced IL-1b release was significantly inhibited

(Figure 4A). Moreover, glibenclamide, a selective inhibitor for

ATP-dependent potassium channels, was used to block potassium

efflux. Addition of 50 mM glibenclamide to macrophages prior to

bacterial challenge significantly reduced IL-1b secretion

(Figure 4A). Since ROS generation was reported to activate the

NLRP3/ASC inflammasome [42], the anti-oxidant, N-acetyl

cysteine (NAC), was used to determine whether ROS are involved

NLRP3 Restricts Mycobacterium kansasii Infection
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in M. kansasii-mediated NLRP3/ASC inflammasome activation.

IL-1b secretion was significantly reduced upon treatment with

25 mM NAC (Figure 4B), indicating that ROS also contributes to

NLRP3/ASC inflammasome activation during M. kansasii infec-

tion. As the NLRP3 inflammasome can be activated due to

lysosomal damage and release of cathepsin B, ammonium chloride

(NH4Cl) and chloroquine diphosphate (CQ), which inhibit

endosomal-lysosomal system acidification, and CA-074-Me, which

acts as a cell-permeable inhibitor of thiol proteases, were used to

block lysosomal acidification and cathepsin B activity, respectively.

The three inhibitors resulted in a significant reduction in IL-1b
release after M. kansasii challenge (Figure 4C), suggesting a role for

lysosomes in NLRP3/ASC inflammasome activation in response

to M. kansasii infection. However, these marked inhibitory effects

were not due to cytotoxicity from these treatments (Fig S2). Thus,

the results suggest that NLRP3/ASC activation during M. kansasii

infection involves most of the pathways known to activate the

Figure 1. Live intracellular M. kansasii activates caspase-1 and induces IL-1b secretion in THP-1 derived macrophages. Macrophages
were infected by M. kansasii, followed by analysis of caspase-1 activation and IL-1bsecretion in culture media. (A) The amount of IL-1b secreted from
infected macrophages at an MOI of 0.1–10 for 16 h. (B) The secreted mature caspase-1 and IL-1b from infected macrophages at an MOI of 0.1–25 for
16 h. (C) Macrophages were challenged with live or heat-killed M. kansasii at an MOI of 10 for 16 h. Secreted IL-1b was measured by ELISA (left panel).
Caspase-1 p20 and 17-kDa IL-1b were analyzed by immunoblotting (right panel). (D) Macrophages were treated with 1 mg/ml CytoD for 60 min to
block phagocytosis and then incubated with M. kansasii at an MOI of 10 in the presence or absence of CytoD. Secreted IL-1b was measured by ELISA
(left panel); activated caspase-1 and mature IL-1b were detected by Western blot analysis (right panel). Cells treated with 1 mg/ml LPS for 3 h and
1 mM nigericin for 1.5 h were used as control (LPS+Nig). Values represent the mean 6 standard deviations of at least three independent experiments.
doi:10.1371/journal.pone.0036292.g001
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NLRP3 inflammasome: potassium efflux, lysosomal acidification,

cathepsin B release, and ROS production.

IL-1b derived from caspase-1 activation restricts M.
kansasii infection

Caspase-1 activation has been reported to restrict bacterial

infection either directly, by affecting bacterial growth, or

indirectly, through IL-1b-mediated inhibition of infection

[38,39,43–46]. To address the contribution of caspase-1 in the

control of M. kansasii infection, macrophages were treated with

caspase-1 inhibitor, Z-YVAD-FMK, before M. kansasii challenge.

Intracellular bacterial growth was evaluated by quantifying the

colony forming units (CFUs) for 96 h following bacterial infection.

The number of CFUs recovered from macrophages treated with

caspase-1 inhibitor was greater than those from untreated cells,

indicating that caspase-1 activation contributes to control of M.

kansasii infection in macrophages (Figure 5A).

Studies from knockout mice with deficiency in either IL-1b or

its receptor, IL-1R, suggested that IL-1b plays an important role in

the immune response to M. tuberculosis or M. kansasii infection in

mice [47–49]. Whether IL-1b also affects M. kansasii infection of

human macrophages in vitro was next investigated. THP-1

macrophages were treated with IL-1b neutralizing antibody

during bacterial infection. The intracellular bacterial number

was evaluated by quantifying the CFUs at 48 h post-infection.

Blocking IL-1b signaling with IL-1b specific neutralizing antibody

resulted in a nearly 5-fold increase in the number of intracellular

M. kansasii (Figure 5B). Conversely, exogenously-added IL-

1bsignificantly reduced the bacterial counts in macrophages.

These results suggest that IL-1b secreted due to NLRP3

inflammasome activation is critical for the control of intracellular

M. kansasii, and that caspase-1 most likely affects infection

indirectly, through processing of IL-1b.

Discussion

In this report, we demonstrated that live and intracellular M.

kansasii can trigger caspase-1 activation and IL-1b secretion from

human macrophages by activating the NLRP3/ASC inflamma-

some. Heat-killed and extracellular M. kansasii failed to activate the

NLRP3/ASC inflammasome, suggesting that simple surface

contact of M. kansasii with macrophages is not sufficient for

activation of the inflammasome. Although the precise mechanisms

behind responsible for NLRP3/ASC inflammasome activation are

still under investigation, our results suggest that M. kansasii

infection of macrophages can induce potassium efflux, cathepsin

B release and ROS production, all of which are involved in

NLRP3/ASC inflammasome activation. Additionally, the results

from the intracellular survival assay revealed that M. kansasii-

induced caspase-1 activation and subsequent IL-1b secretion

restrict growth of intracellular M. kansasii. This is the first report

showing inflammasome activation induced by M. kansasii and

demonstrating a biological function for the NLRP3/ASC

inflammasome in host defense against this slow-growing NTM.

M. kansasii can cause a pneumonia that resembles classical lung

tuberculosis in many features, reflecting similarities in the

pathogenesis between M. kansasii and M. tuberculosis infection;

however, several reports have also referred to differences in host

and cellular responses to M. kansasii and M. tuberculosis. During

infection by M. tuberculosis or M. avium complex which is also a

pathogenic NTM, CD4+ T cells, interferon (IFN)-c, or IL-12p40

are crucial for the development of protective immunity in mice

[50–57]. However, CD4+ and IFN-c deficient mice display normal

resistance against pulmonary infection with M. kansasii, indicating

that a T helper cell type 1 response is not sufficient for control of

M. kansasii infection [58]. Since macrophages are the first line of

defense against pathogens such as mycobacteria, and following

phagocytosis, Mycobacterium species reside and multiply in macro-

phages, we characterized the ability of macrophages to control M.

kansasii infection in vitro. Recent studies have demonstrated that the

pathogenic mycobacteria, M. tuberculosis, M. marinum and M.

abscessus, induce activation of the NLRP3/ASC inflammasome

and subsequent release of IL-1bin macrophages [37,39–41,59,60].

Here, we found that macrophages infected by M. kansasii also

secrete IL-1b via activation of the NLRP3 inflammasome,

suggesting that all pathogenic mycobacteria may stimulate

inflammasome activation and IL-1b secretion.

The mechanisms leading to NLRP3 inflammasome activation

comprise mainly three signaling pathways, including potassium

Figure 2. Release of mature IL-1b by M. kansasii-infected cells
requires caspase-1 activation. Macrophages were infected with M.
kansasii in the presence or absence of the caspase-1 inhibitor, Z-YVAD-
FMK. At 16 h post-infection, secreted IL-1bwas quantified by ELISA (A),
and secreted caspase-1 p20 and mature IL-1b were analyzed by
Western blot analysis (B). Error bars represent standard deviations from
at least three independent experiments. ** denote a p value of ,0.001
compared to untreated infected cells.
doi:10.1371/journal.pone.0036292.g002

NLRP3 Restricts Mycobacterium kansasii Infection
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efflux, cathepsin B release, and generation of ROS [30]. The

current results showed that ROS production, potassium efflux,

lysosomal acidification, and cathepsin B release are all required for

M. kansasii induced NLRP3-dependent caspase-1 activation and

IL-1b secretion. In this study, a potent cathepsin B inhibitor, CA-

074-Me, was used to determine the involvement of cathepsin B in

NLRP3 inflammasome activation during M. kansasii infection.

However, CA-074-Me has been proposed to act on other cellular

proteases [61], suggesting the possibility that CA-074-Me may

inhibit M. kansasii-induced IL-1b secretion through a cathepsin B-

independent manner. Even so, a recent study with cathepsin B

knockdown cells confirmed that cathepsin B is involved in

inflammasome activation upon mycobacteria infection [62].

It has been shown that infection by M. tuberculosis and M.

marinum may induce ESX-1-dependent NLRP3 inflammasome

activation [37,39,40,60]. ESX-1 has been identified as a critical

virulence factor in pathogenic mycobacteria and is involved in

immune signaling, cytolysis, phagosome escape and membrane

pore formation [63–67]. As M. kansasii also expresses ESX-1 [68],

it seems reasonable to assume that pore formation of cell

membranes by M. kansasii ESX-1 could cause potassium efflux

and subsequent activation of the NLRP3 inflammasome. In

addition, ESX-1-induced vacuole escape could lead to lysosomal

damage and cathepsin B release, which have been implicated as

potential activators of the NLRP3 inflammasome [63,66,67].

Recently, ESAT-6, one of the secreted effectors of ESX-1, has

been shown to be a potent activator of the NLRP3/ASC

inflammasome, possibly due to its membrane-lysing activity [39].

Genetic analysis and the nucleotide sequences revealed that the

virulence genes, esx-1 and esat-6 of M. tuberculosis, are lacking in

most environmental mycobacteria except for M. kansasii and M.

marinum [69–71], both of which can cause disease in apparently

immunocompetent persons. Moreover, analysis of immunoblot-

ting with specific antibodies indicated that the ESAT-6 was

expressed by M. kansasii [68,71]. Thus, we propose that the

activation of the NLRP3 inflammasome by live intracellular M.

kansasii might be through ESX-1 or ESAT-6.

Although the role of ROS in the activation of NLRP3

inflammasome is controversial [72–78], several studies have

demonstrated that ROS are required for inflammasome activation

during bacterial infections [42,79–82]. In this study, NAC

significantly diminished IL-1b secretion triggered by mycobacte-

rial infection, suggesting that ROS are involved in M. kansasii-

induced NLRP3 inflammasome activation; however the source of

ROS is currently unknown. The intracellular ROS are mainly

generated from two sources: the mitochondrial electron transport

chain complex, and NADPH oxidase at the plasma membrane or

phagosomal membrane of phagocytes [45,83–85]. It has been

shown that M. tuberculosis infection leads to intracellular ROS

production via NADPH oxidase at phagosomal membranes, and

Figure 3. M. kansasii induces caspase-1 activation and IL-1b secretion through the NLRP3/ASC-dependent pathway. (A) THP-1 cells
were stably transfected with shRNAs that target NLRP3 or ASC, and mRNA expression of NLRP3 and ASC was determined by RT-PCR and compared
with nontarget control (sh Ctrl) (left panel). Protein levels of NLRP3 or ASC in the respective knockdown cells were analyzed by Western blot analysis
(right panel). (B and C) NLRP3, ASC, or nontarget control (sh Ctrl) knockdown cells were infected with M. kansasii at an MOI of 10 for 16 h. Secreted IL-
1b(B) and activated caspase-1 (C) were examined by Western blot analysis.
doi:10.1371/journal.pone.0036292.g003

NLRP3 Restricts Mycobacterium kansasii Infection
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ESAT-6 treatment induces a robust burst of intracellular ROS

production in human alveolar epithelial cells [86,87]. Moreover, a

low intracellular K+ concentration has been proposed to trigger

ROS generation [73], indicating the possibility that ESAT-6, a

pore-forming protein, could initiate potassium efflux and subse-

quently ROS production. Recent studies indicated that besides

NADPH oxidase, NLRX1, a member of the Nod-like receptor

(NLR) family that is localized in mitochondria, can enhance ROS

production following infections by Shigella flexneri and Chlamydia

trachomatis infection [80,88]. Moreover, mitochondrial dysfunction-

derived ROS has been shown to activate NLRP3 inflammasome

[89,90]. Thus, whether ESAT-6, NADPH oxidase, NLRX1 or

mitochondrial dysfunction are involved in M. kansasii-induced

ROS production remains to be determined.

Caspase-1, known as an inflammatory caspase, plays a key role

in the innate immune response of macrophages to various

infections [91–93]. Activation of caspase-1 is responsible for the

processing and secretion of the proinflammatory cytokines, IL-1b
and IL-18 [34,94,95]. In addition, active caspase-1 mediates either

cell death or survival, and regulates unconventional secretion of

leaderless proteins [33]. Even so, much remains to be learned

regarding the role of caspase-1 activation in the control of bacterial

infection. In cervical epithelial cells infected by C. trachomatis,

caspase-1activation contributes to the development of chlamydial

infection [81], but caspase-1-dependent caspase-7 activation

restricts Legionella pneumophila replication in macrophages and in

mice [96]. In mycobacterial infection, overexpression of caspase-1

represses M. tuberculosis growth in THP-1 macrophages [39]. In

Figure 4. Potassium efflux, lysosomal acidification, cathepsin B release and ROS production are involved in inflammasome
activation by M. kansasii. (A) Macrophages were treated with KCl and Glibenclamide (Gliben) at the indicated concentration for 30 min, and
subsequently infected with M. kansasii at an MOI of 10 for 16 h. Supernatants from infected cells were harvested and assayed for IL-1b by ELISA. (B
and C) THP-1 derived macrophages were infected with M. kansasii at an MOI of 10. N-acetyl cysteine (NAC), NH4Cl, chloroquine (CQ) and CA-074-Me
(CA-074) were added at the indicated concentration as described in Materials and Methods. Supernatants harvested at 16 h post-infection were
assayed for IL-1bsecretion by ELISA. Error bars represent standard deviations of at least three independent experiments, and significance was
calculated using a two-tailed t test. ** denote a p value of ,0.001 compared to untreated infected cells.
doi:10.1371/journal.pone.0036292.g004

NLRP3 Restricts Mycobacterium kansasii Infection
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this study, inhibition of caspase-1 activity by Z-YVAD-FMK

resulted in higher bacterial growth, suggesting that caspase-1

activity is required for restriction of M. kansasii growth in

macrophages. Secretion of IL-1b is downstream from caspase-1

activation, and IL-1 has been implicated in controlling a variety of

intracellular pathogens such as Listeria, Leishmania, and M.

tuberculosis [50,51,97–100]. Our result that blocking IL-1b with

IL-1b specific neutralizing antibody led to significantly higher

levels of intracellular M. kansasii, and that treatment of infected

cells with IL-1b reduced the bacterial load, suggested that caspase-

1-dependent IL-1b secretion is critical for control of M. kansasii

infection. The secreted IL-1b might be sensed by IL-1R. Possibly,

IL-1R signaling promotes phagolysosomal maturation, which

enhances bacterial degradation and clearance, as reported by

Master et al. [38]. Concordantly, a previous study with IL-1R1

knockout mice demonstrated that blocking of IL-1-mediated

signaling reduced the ability to clear M. kansasii from the lungs

of IL-1R1 deficient mice [48]. These results highlighted the

important role of IL-1band IL-1R signaling pathway in defence

against M. kansasii infection, and provided another evidence for the

protective role of IL-1b in mycobacterial infection.

IL-1b signaling has been reported to play an important role in

the control of mycobacterial infection and granuloma formation

[38,39,47–49,99–103]. In humans, IL-1b is upregulated at the site

of mycobacterial infection, and genetic studies demonstrated an

association of polymorphisms in the IL-1 or IL-1R genes with

tuberculosis susceptibility and disease expression [104–107].

Notably, higher levels of IL-1b and NLRP3 mRNA were observed

in monocyte-derived macrophage from active tuberculosis patients

as compared with healthy subjects [39], suggesting the involve-

ment of NLRP3 inflammasome in human response to mycobac-

terial infection. Consistent with our results, the involvement of

NLRP3/ASC in controlling mycobacterial infection in vitro has

been reported [41]. However, recent studies using NLRP3-, ASC-,

or caspase-1-deficient mice demonstrated that NLRP3/ASC

inflammasome is not essential for the control of M. tuberculosis

infection in vivo [108–110], although it cannot be excluded that

potential compensatory mechanisms can overcome NLRP3/ASC

inflammasome dependence in these deficient mice [110]. Thus,

the role of NLRP3 inflammasome for antimycobacterial response

seems to be controversial. A recent study demonstrated that

NLRP3 inflammasome activation is disparate between human and

mouse during Francisella infection [111,112], indicating that the

human innate response to intracellular pathogens may be distinct

from the murine response. Accordingly, the exact role of NLRP3

inflammasome for the control of mycobacterial infection should be

carefully evaluated. Furthermore, the protective role of NLRP3

inflammasome against M. kansasii infection in vivo will be clarified

in future studies.

In conclusion, this report demonstrates that the NLRP3

inflammasome was activated by live intracellular M. kansasii

through a process involving low intracellular potassium concen-

tration, higher ROS, and active cathepsin B. As a consequence,

activated caspase-1 by inflammasome activation triggers the

processing and release of IL-1b,which is required for macrophage

immunity against M. kansasii infection (Figure 6).

Materials and Methods

Cells, Bacteria, and Chemical Reagents
THP-1 cells, a human acute monocytic leukemia cell line, were

obtained from American Type Culture Collection (ATCC) and

were cultured in RPMI 1640 complete medium (Invitrogen) with

10% heat-inactivated fetal bovine serum (HyClone) and 16
antibiotic-antimycotic (Invitrogen) at 37uC with 5% CO2 in a

humidified incubator. THP-1 stably expressing shRNA against

NLRP3, ASC, and nontarget control were obtained as previously

described [113,114]. The M. kansasii strain (ATCC12478) was

obtained from ATCC and grown at 35uC on Middlebrook 7H11

agar medium (Difco Laboratories) supplemented with 10%

OADC (oleic acid, albumin, dextrose, catalase; Becton Dickinson).

Heat-killed bacteria were prepared by incubation for 30 min at

80uC, and loss of viability was confirmed by plating on 7H11

plates [115]. Phorbol 12-myristate 13-acetate (PMA), glibencla-

mide, bafilomycin A1, and Z-YVAD-FMK were purchased from

Enzo Life Sciences. LPS (Escherichia coli serotype O111:B4),

nigericin, N-acetyl-L-cysteine (NAC), cytochalasin D, chloroquine

diphosphate, potassium chloride (KCl), ammonium chloride

(NH4Cl) and dimethyl sulfoxide (DMSO) were from Sigma-

Aldrich. The cathepsin B inhibitor, CA-074-Me, was from

Figure 5. Caspase-1 activation and IL-1b secretion restrict M.
kansasii growth. (A) THP-1 macrophages were infected with M.
kansasii at an MOI of 1 for 1 h, before treatment with 50 mM caspase-1
inhibitor (Z-YVAD-FMK) or dimethylsulfoxide (DMSO) alone as control.
Cells were then lysed and the intracellular bacterial load was quantified
at indicated time points. (B) The M. kansasii-infected macrophages (MOI
1, 1 h) were treated with neutralizing antibodies specific for IL-1bor
with exogenous IL-1b for 48 h. The intracellular bacterial CFU was then
determined. Results represent the mean 6 standard deviations of three
independent experiments. Data were analyzed by Student’s t test.
*p,0.05 compared to untreated infected cells.
doi:10.1371/journal.pone.0036292.g005
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Calbiochem. The cytotoxicity of reagents used for inhibition

studies were evaluated by using the CytoTox 96 Non-Radioactive

Cytotoxicity Assay according to the manufacturer’s instructions

(Promega) (Figure S2).

Bacterial infection of macrophages
THP-1 cells were differentiated into adherent macrophages by

overnight culture in complete medium supplemented with

500 ng/ml PMA, and allowed to rest for 2 days prior to infection.

THP-1 derived macrophages were challenged with bacterial

suspensions prepared in supplemented medium without antibiotics

at the indicated multiplicity of infection (MOI). When using

inhibitors or other reagents, cells were preincubated 60 min with

inhibitors or other reagents at the indicated concentrations before

bacterial infection.

Cytokine measurement by enzyme-linked
immunosorbent assay (ELISA)

To determine IL-1b levels in supernatants from M. kansasii-

infected cells, the DuoSet ELISA development system kit (R&D

Systems) for human IL-1b was used according to the manufac-

turer’s directions. ELISA plates were analyzed using an Emax

Microplate Reader (Molecular Devices) at 450 nm.

Western blotting
Cell culture supernatants from infected macrophages were

resolved on 12% SDS-polyacrylamide gels and electrotransferred

onto the polyvinylidene difluoride membranes (Millipore). For

detection of the active caspase-1 subunit (p20), the membranes

were probed with 1:1000 diluted rabbit anti-human caspase-1

antibody (Millipore) and 1:10000 diluted horseradish peroxidase-

conjugated anti-rabbit IgG antibodies (Santa Cruz Biotechnology).

For detection of pro-IL1b and mature IL-1b (p17), the blot was

probed with 1:1000 rabbit anti-human IL-1b antibody (Santa

Cruz Biotechnology) and cleaved IL-1b antibody (Cell Signaling),

respectively. To detect NLRP3 and ASC, the blots were probed

with 1:1000 rabbit anti-human NLRP3 antibody (Sigma) and

mouse anti-human ASC antibody (Santa Cruz Biotechnology),

respectively. The signals on the blots were visualized using the

enhanced chemiluminescence system (Millipore).

RNA isolation and PCR
Total RNA was isolated using the Total RNA Mini Kit

(Geneaid), reverse transcribed into cDNA (Superscript III,

Invitrogen) and analyzed for NLRP3 and ASC mRNA expression

by RT-PCR using the following primer pairs. The primers for

human GAPDH were 59-AACGGATTTGGTCGTATTGGGC-

39 forward and 59-CTTGACGGTGCCATGGAATTTG-39 re-

verse. Primers for human NLRP3 were 59-CTTCTCTGATGA-

GGCCCAAG-39 forward and 59-GCAGCAAACTGGAAAG-

GAAG-39 reverse. Primers for human ASC were 59-ATCCA-

GGCCCCTCCTCAGT-39 forward and 59-GTTTGTGACC-

CTCGCGATAAG-39 reverse.

Evaluation of intracellular bacterial viability by the
Colony Forming Unit assay

THP-1 cells (56105 cells/well) were added to 24-well plates and

differentiated into macrophages with PMA. Monolayers of

macrophages were infected by M. kansasii at an MOI of 1. After

1 h, the medium was removed and the wells were washed with

serum-free medium to remove extracellular bacteria and then

fresh medium was added. The infected cells were further

incubated at 37uC for the indicated time. Some of the infected

Figure 6. NLRP3/ASC inflammasome activation restricts Mycobacterium kansasii infection. During M. kansasii infection, live and intracellular
bacteria trigger potassium efflux, ROS production and lysosomal damage with cathepsin B release (1), and then lead to NLRP3/ASC inflammasome
activation, resulting caspase-1 activation and IL-1bsecretion (2). IL-1b derived from inflammasome activation is released and followed by the
engagement of its receptor (IL-1R) (3). IL-1R signaling promotes phagosome maturation that ultimately leads to phagolysosome fusion and bacterial
degradation (4).
doi:10.1371/journal.pone.0036292.g006
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cells were treated with caspase-1 inhibitor, IL-1b neutralizing

antibody (R&D Systems) or exogenous IL-1b (R&D Systems) for

different time intervals as described. To evaluate the intracellular

bacterial load, cells were lysed with 500 ml of sterile water with

0.1% triton X-100, and the number of viable intracellular bacteria

was counted by plating serial dilutions of the lysis solution onto

Middlebrook 7H11 agar plates.

Statistical analysis
All experiments were performed at least three times, and the

results are presented as the mean 6 standard deviation (SD).

Statistical comparisons were performed using Student’s t test.

Supporting Information

Figure S1 IL-6 production is unimpaired in NLRP3 or
ASC knockdown cells. To determine whether the ability to

generate pro-IL-1b in response to LPS is diminished in NLRP3 or

ASC knockdown cells. ASC, NLRP3, or nontarget control (sh

Ctrl) knockdown cells were treated with 1 mg/ml LPS or M.

kansasii at an MOI of 10. IL-6 in supernatant was measured by

ELISA (R&D Systems). Values represent the mean 6 standard

deviations of at least three independent experiments. These results

indicated that ASC and NLRP3 knockdown cells can produce IL-

6 normally in response to LPS or M. kansasii.

(TIF)

Figure S2 No apparent cytotoxic effects of inhibitors on
THP-1 cells in the experimental conditions. To evaluate

cytotoxic effects of inhibitors used in this study, THP-1 derived

macrophages were treated with the indicated pharmacological

inhibitors. Cytotoxicity was quantitated by measurement of lactate

dehydrogenase (LDH) activity in the culture supernatants using a

CytoTox 96 assay kit (Promega) according to the manufacturer’s

protocol. Error bars represent standard deviation of at least three

independent experiments. These results indicated that the

experimental treatments have no apparent cytotoxic effects.

(TIF)
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