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Abstract

In an attempt to optimize a high yield, high efficiency artificial photosynthetic protein we have discovered unique energy
and spatial architecture limits which apply to all light-activated photosynthetic systems. We have generated an analytical
solution for the time behavior of the core three cofactor charge separation element in photosynthesis, the photosynthetic
cofactor triad, and explored the functional consequences of its makeup including its architecture, the reduction potentials
of its components, and the absorption energy of the light absorbing primary-donor cofactor. Our primary findings are two:
First, that a high efficiency, high yield triad will have an absorption frequency more than twice the reorganization energy of
the first electron transfer, and second, that the relative distance of the acceptor and the donor from the primary-donor plays
an important role in determining the yields, with the highest efficiency, highest yield architecture having the light absorbing
cofactor closest to the acceptor. Surprisingly, despite the increased complexity found in natural solar energy conversion
proteins, we find that the construction of this central triad in natural systems matches these predictions. Our analysis thus
not only suggests explanations for some aspects of the makeup of natural photosynthetic systems, it also provides specific
design criteria necessary to create high efficiency, high yield artificial protein-based triads.
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Introduction

Solar energy conversion machines found in nature utilize a

number of small molecules, called cofactors, which serve as

discrete sites for the binding of a single electron [1]. Charge

separation in these proteins is effected via a cascade of several

individual electron transfer (ET) events initiated by the absorption

of a photon at a central cofactor termed the primary-donor [2].

These protein machines typically contain numerous cofactors

arranged so as to enable the movement of the electron and the

oxidizing equivalent away from the primary-donor in opposite

directions [3,4]. The resultant potential energy is then coupled to

some chemical reaction or reactions which create a storable,

diffusable form of chemical energy.

Chemists have made an intensive effort over the past forty years

to recreate the charge separation capability of these devices in

synthetic systems [5–11]. The minimal construct that can achieve

long-lived charge separation contains a primary-donor along with

two other cofactors to facilitate the separation and prevent the fast

relaxation of the electron back to the groundstate of the primary-

donor (see Figure 1A). This has been termed the photosynthetic

cofactor triad (PCT) [7,11–13]. Research efforts have aimed at

engineering protein-based PCTs, either through the reengineering

of natural proteins [14,15] or de novo design of new artificial

proteins [16,17]. An optimal PCT construct will maximize the

yield of the charge separated state and minimize energy loss while

maintaining the state for as long as necessary before decaying to

the groundstate. These performance metrics are intimately related

to the microscopic ET rates which themselves are a function of the

reduction potentials and the spatial arrangement of the three

cofactors. Given the large expense and long time scale of these

design efforts [2,18–20], it is important to understand the optimal

structure and properties of this molecule from the beginning of the

design process. The key is to identify the set of microscopic

parameters which when manipulated can effect maximum benefit

during the design process.

Clearly, numerical simulations of the rate equations to map out

the optimal set of ET rates for the entire construct involve a large

parameter space [21]. For this reason there has been little

theoretical analysis of the optimal structure and properties of the

cofactor triad and its many sequential ETs. There are several

semiclassical equations which predict ET rates that are well

validated, in particular the semiclassical Marcus expression [22–

26]. These are all complicated functions with a number of terms.

The challenge in a complex system such as the PCT is to select the

formalism which will give a meaningful analytical expression for its

behavior. For example, Cho and Silby, in 1995, derived the time-

dependent behavior of a molecular dyad structure composed of

two cofactors and three states in the limit of a very large reduction

potential difference between the excited state primary donor and

the acceptor site [27].
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In this work, we solve the rate equations analytically for a

generic molecular triad with four states and obtain closed-form

expressions relating the lifetime and yield of the charge separated

state to the ET rates. The equations allow us to isolate the relevant

ratios of rate constants that control the yield and the lifetime.

These conditions are used to set bounds on the physical distances

and potentials that makeup the PCT using a standard semiclassical

model which incorporates Marcus theory for the DG dependence

and an exponential drop-off of the ET rate with distance [28] as

parameterized in the Moser-Dutton ruler [29,30]. We report two

major findings: first, that the highest yield occurs when the

primary-donor cofactor is closest to the acceptor cofactor and

second, that the highest yield and efficiency occurs when the

absorption frequency of the primary-donor is more than twice the

reorganization energy of the first electron transfer. Interestingly,

we demonstrate that natural systems seem to obey these rules

despite their much higher degree of complexity.

Methods

The basic PCT arrangement for long lived charge separation is

depicted schematically in Figure 1A [7], and the microscopic steps

leading to charge separation are shown explicitly in Figure 1B and

energetically in Figure 1C: upon photoexcitation of the site of

charge separation or primary-donor (P) to P�, the excited electron

transfers to an acceptor molecule (A). A donor molecule (D) then

transfers an electron to P, thus blocking the unproductive charge

recombination via back electron transfer, to create a fully charge

separated state, C: D+PA2.

The state C principally relaxes back to the ground state, G:
DPA, by one of two mechanisms: direct long ET between A2 and

D+, or a two step recombination process via the intermediate state,

I: DP+A2, followed by electron transfer from A2 to P+, i.e, from

state I? G. When the molecules are arranged linearly, as in

Figure 1A, the first short-circuit reaction mechanism is consider-

ably suppressed, and is therefore neglected in our model. The ET

rates for the two step process are kPD and kAP, respectively. The

reverse transition back to the excited state P� from A is also

suppressed; below we demonstrate that the corresponding ET rate

is exponentially suppressed for energy differences larger than 60–

100 meV between P� A and P+A2, which we show is much less

than 10% of the output energy and therefore does not affect our

general conclusions. Similarly, since the energy difference for the

ET from P to A is in the eV range, thermal excitation from the

groundstate to the acceptor is not considered at room tempera-

tures.

The master equations describing the transitions between the

states corresponding to the scheme in Figure 1C are:

dG�

dt
~{(k�zk�PA)G� ð1aÞ

dI

dt
~k�PAG�{(kDPzkAP)IzkPDC ð1bÞ

dC

dt
~kDPI{kPDC ð1cÞ

dG

dt
~k�G�zkAPI ð1dÞ

The transition rates between different configurations is

governed by the microscopic ET rates. The specific ET involved is

encoded in the subscript, for example, kDP, denotes the ET rate

for the D?P transition. The complete list of transitions are:

G� �?
k�

PA
I �?kDP

C �?kPD
I �?kAP

G and G� �?k
�

G. As explained

earlier, the C?G short-circuit and the reverse I?G� transitions

are suppressed in our scheme. The rate k� is the combined direct

relaxation rate, fluorescent and otherwise, from the photoexcited

state P� to its groundstate P.

Setting either of the two rates kAP or kPD to zero in Equation 1

prevents the state C (the charge separated state) from decaying into

the ground state G creating a steadystate at long times. A finite kAP

and/or kPD will, on the other hand, force C to decay in a finite

time, which we call the lifetime of the charge separated state. To

study this decay and determine the population (yield) of state C, it

is convenient to solve for the evolution of C(t) analytically. The

solution is presented in the next section.
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Figure 1. Structure and function of the photosynthetic triad. (A) Molecular detail of an idealized artificial charge separation construct, a self-
assembling de novo designed protein. (B) Discrete steps in the formation of the charge separated state: The primary-donor molecule P in the ground
state configuration G: DPA absorbs a photon of the correct frequency to form G�: DP�A, where P� is the photoexcited state of P. The excited
electron transfers to the acceptor cofactor, A, forming the intermediate state I: DP+A2. The donor cofactor, D, then transfers an electron into P,
resulting in the charge separated state C: D+PA2. (C) Energy level diagram of the states in B. The k-variables denote the corresponding microscopic
single-electron ET rates. In this scheme, the direct long range tunneling between D and A (i.e., C?G) and the ‘thermal back reaction’ [33] between P
and A (i.e., I?G�) are not considered. As explained in the main text, their magnitudes can be significantly suppressed without affecting the efficiency
and yield.
doi:10.1371/journal.pone.0036065.g001
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Results

Analytical solution of the PCT
Our goal in this section is two-fold: to obtain the conditions

under which a charge separated state can be maintained in a

quasi-steadystate (QSS) for a desired length of time, determined,

for example, by the optimal throughput rate, and to derive simple

explicit formulas for the lifetime of the QSS and the maximum

yield of C. To this end, we first analytically solve Equation 1 for

C(t). For the initial conditions, we note that the equations being

homogeneous, the solutions scale with the initial population G�(0),
which is determined by the efficiency of the photoexcitation

process. Hence, given a non-zero ‘‘source’’ G�(0) at t~0, we

assume that I(0)~C(0)~G(0)~0, i.e., they are initially un-

populated.

We first note that Equation 1a can be integrated to give

G�(t)~G�(0)e{(k�zk�
PA

)t. Substituting G�(t) into Equation 1c for

C and after taking a second time derivative to eliminate I, we

arrive at the following second order equation for C(t):

d2C

dt2
zk1

dC

dt
zk2C~Se

{(k�zk�
PA

)t ð2Þ

where

k1~(kAPzkDPzkPD) and k2~kAPkPD ð3Þ

The source term on the right.

S~G�(0)kDPk�PA ð4Þ

The boundary condition dC(t)=dtDt~0~0 is obtained by setting

I(0)~C(0)~0 in Equation 1c. Since the coefficients appearing in

Equation 2 are real, it can be written as:

(
d

dt
zkz)(

d

dt
zk{)C~Se

{(k�zk�
PA

)t ð5Þ

where the macroscopic rate constants

k+~
1

2
k1+

1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2

1{4k2

q
ð6Þ

are the roots of the algebraic equation: D2zk1Dzk2~0:
(Negative roots are used to keep the rates k+ positive.) Using

the following identity, where k is a constant,

(
d

dt
zk)f (t)~e{kt d

dt
(ektf (t)) ð7Þ

we rewrite Equation 5 as

e{kzt d

dt
e(kz{k{)t d

dt
ek{tC
� �� �

~Se
{(k�zk�

PA
)t ð8Þ

Equation 8 is now easily integrated to obtain the solution for

C(t). Separating the constant source term as C(t)~Sc(t), the

time-dependent part c(t) equals

c(t)~
e
{(k�zk�

PA
)t

(k�zk�PA{kz)(k�zk�PA{k{)
z

e{kzt

(kz{k{)(kz{k�{k�PA)
z

e{k{t

(k{{kz)(k{{k�{k�PA)

ð9Þ

This completes our derivation of C(t).

A typical time evolution of C(t) is depicted in Figure 2. This

graph exhibits several aspects characteristic of charge separation in

a PCT [12]: an exponential buildup of state C with a rate constant

kz, followed by a QSS plateau region that decays exponentially at

the rate k{. The length of time for which the QSS persists is

termed the charge separation lifetime (tC ), and the population of C

at the plateau stage is termed the yield of charge separation (YC ).

The rate (k�zk�PA) is the rate at which the state I is initially

populated by G� (see Equation 1b); I then subsequently populates

C at the rate kz. Physically, any system designed to spatially

separate charges has to be able to transfer an electron from the

photoexcited primary-donor P� to the acceptor A (which is

controlled by the rate k�PA) before it decays back to the ground

state at the rate k�. We thus restrict our analysis to

k�%k�PA ð10Þ

[We use the strong inequality (%) to emphasize at least an

order-of-magnitude smallness.]

The determinants of QSS lifetime and yield
In the previous section, we observed that a QSS is reached at

intermediate times provided
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Figure 2. The evolution of the charge separated state C(t)

derived in eqn:ct. C(t) is normalized by G�(0), which we take to be
unity. Rate constants are chosen as k�~109s{1,k�PA~5|109s{1,
kAP~5|106s{1,kDP~5|107s{1 , and kPD~1:2|104 s{1 . Relevant
timescales are labeled on the upper axis and are marked by vertical
lines (see eqn:kpm for definitions of k+). A central quasi-steadystate
(QSS) plateau region is formed when these timescales are well
separated. We define the decay time of the QSS, tC~1=k{, as the
lifetime of the charge separated state. The horizontal line marks the
yield, YC , defined as the value of C in QSS. Analytical expressions for tC

and YC are derived in Equations 14 and 17, respectively.
doi:10.1371/journal.pone.0036065.g002
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k{%kz and k�PA ð11Þ

When k{ is significantly different from kz and k�PA, the lifetime

of the QSS, and thus that of the charge separated state, can be

defined as tC~1=k{. Our key observation is that k{ in Equation

6 can be made as small as we require by arranging either or both

kPD and kAP to be sufficiently small. More precisely, we find that

the constraints on the macroscopic rate constants in Equation 11

are satisfied if the microscopic rates obey:

kPD%kDP and kAP k�PA ð12Þ

We recognize that kAP is a downhill transfer that can be fast or

slow depending on the driving force of the ET determined by

where it lies in the Marcus curve. kPD, on the other hand, involves

an energetically uphill electron transfer which is always slower

than its corresponding downhill transfer (i.e., kPDvkDP). We

therefore only demand a strong constraint for kPD compared to

that for kAP in Equation 12.

To prove that the conditions in Equation 12 are sufficient to

establish a QSS, we first show that independent of the magnitude of

kAP the term under the square-root in eqn:kpm, besides being

positive, satisfies the stronger constraint

k2
1&4k2 when kPD%kDP ð13Þ

We show this by expanding the square-root in eqn:kpm and

analyzing the behavior of k+ for small and large kAP. For small

kAP%kDP, we see that k{&kAP(kPD=kDP) and kz&kDP, while

for large kAP&kDP, they reduce to k{&kPD and kz&kAP. It is

immediately clear that assuming kPD%kDP is sufficient to satisfy

Equation 13 for all values of kAP. Note that, since kz&kAP for

large kAP, the second condition in Equation 11, namely k{%k�PA,

is automatically satisfied if we restrict kAP *v k�PA. Hence, the

conditions on the macroscopic rate constants in Equation 11 for a

QSS to exist are met when the microscopic rate constants obey the

constraints in Equation 12.

The importance of the observation that Equation 13 is satisfied

for all values of kAP is that it allows us to expand the square-root in

Equation 6 to derive simple closed-form expressions for tC and

YC . They can be analyzed to identify the key optimization

parameters controlling the lifetime and yield of the charge

separated state. Thus an almost exact expression for the lifetime

tC is obtained after expanding the square-root for the leading non-

zero value of k{

1

tC

~k{~
kPD|(kAP=kDP)

1z(kAP=kDP)z(kPD=kDP)
ð14Þ

Similarly, to find the yield YC , we first note in Equation 9 that

the QSS behavior of C(t) for times t&1=kz and 1=k�PA is well

approximated by the surviving third term denoted below as CQ(t).

CQ(t)~
G�f e{k{t

1z(kPD=kDP)z(kAP=kDP)
ð15Þ

G�f ~
G�(0)

1z(k�=k�PA)
ð16Þ

To obtain the above expressions we used Equation 11 to justify

keeping only the leading order terms in the expansion of the

square-root in Equation 6, namely, kz~k1 and k{~0. G�f
denotes the fraction of the initial population of the photoexcited

state G�(0) that remains after direct transition to the grounstate

(predominantly fluorescence). Since CQ(0) is the maximum value

that C(t) attains, namely, its value at the plateau (see Figure 2),

before decaying to the groundstate, we define the yield, YC , as:

YC~CQ(0)~
G�f

1z(kPD=kDP)z(kAP=kDP)
ð17Þ

The expressions for tC and YC derived in Equations 14 and 17

are the main results of this section. They are compared in Figure 2

with the exact solution for C(t) (Equation 9); the agreement is

excellent. When combined with the conditions in Equation 12 for

a QSS to exist, they provide all the necessary information for the

design of highly optimized PCTs.

Maximizing the QSS yield and lifetime: microscopic
constraints

The advantage of having formulas Equations 14 and 17 for tC

and YC is that they enable us to identify the primary control

parameters that have the largest affect on the performance of the

PCT. From Equations 10–17 we conclude that the relevant ratios

of the five microscopic ET rates fk�,k�PA,kAP,kDP,kPDg are

a~
kPD

kDP

, a�~
kAP

k�PA

andb~
kAP

kDP

, b�~
k�

k�PA

ð18Þ

They control the formation, yield and lifetime of the charge

separated state. To make the dependence explicit, we rewrite

Equations 14 and 17 as functions of the dimensionless ratios here:

kPDtC~
1zazb

b
ð19aÞ

yc~
YC

G�(0)
~

1

(1zb�)(1zazb)
ð19bÞ

where kPDtC and yc are the normalized lifetime and yield,

respectively. [Note that all the individual rate constants can be

expressed in terms of an appropriate combination of the

dimensionless ratios and kPD.]

In terms of these ratios, the conditions for the formation of a

QSS in Equation 12 translates to

a%1 and a� *v 1 ð20Þ

Although no fundamental restrictions on b and b� exist, it

follows from Equation 19b that the yield is substantially suppressed

when they are *>1. Hence, to maximize the yield, we demand

Fundamental Limits of the Charge Separation Triad
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b%1 and b�%1 ð21Þ

The condition b�%1 justifies the arguments leading to Equation

10 and therefore no new condition is obtained. Note that since

tC*1=b, a b%1 also implies long life-times. We wish to

emphasize that while restricting a and a� to %1 is necessary for

a QSS to form, the conditions on b and b� ensure a high QSS

concentration or yield and a long lifetime.

This completes our analysis of the fundamental constraints on

the microscopic rate constants derived to maximize the yield and

the lifetime of charge separated states in the QSS regime. It is

model-free in the sense that we have not utilized any particular

equation to calculate the ET rates and we have not determined

any specifics in terms of spatial constraints or electron affinities.

We have only derived the limits of optimal values for the rate

constants themselves. We now discuss in detail the physical

constraints that Equations 20 and 21 impose on the energetics and

architecture of the cofactor triads.

Engineering guidelines for optimal PCTs

The physical characteristics of a PCT involve the differences in

reduction potentials and distances between the cofactors. Such a

construct consistent with the scheme in Figure 1C is shown in

Figure 3 where the energies and the distances are marked

explicitly. Two more relevant metrics, geometric (overall size) and

energetic (efficiency), are introduced below.

Separation distance
We believe that a linear construct is better because it maximizes

the distance between the acceptor and donor, thus preventing

relaxation by short circuiting direct electron transfer between these

sites. We note, however, that this ideal is not found in all natural

systems. The maximum distance of charge separation is thus:

RC~rAzrD ð22Þ

where rA and rD are the edge-to-edge separations of the P-A pair

and D-P pair, respectively. Since the ET rates are determined

primarily by the edge-to-edge distance [29], the width of P does

not play a part in any of the microscopic rate constants delineated

in our scheme in Figs. 1B and 3. We do not therefore include the

actual width of the primary-donor site P, which even further helps

to eliminate the short circuiting A?D electron transfer. Instead,

we introduce a second distance parameter:

Dr~rA{rD ð23Þ

that can be varied, keeping RC fixed, to optimize the output.

Charge-separation efficiency
An optimal light-activated charge separation construct should

also maximize the available useful energy stored in the charge

separated state C~ D+PA2 (see Figure 3). The energy stored in C

can be expressed in terms of the driving force as

DG
:
DA~E

0={
A {E

z=0
D ~DG

:
PA{DG

:
PD (see Figure 3). Defining

the charge separation efficiency, g, as the ratio of the stored energy

DG
:
DA to the input photon energy, hn, we get:

g~
DG

:
DA

hn
~

1

hn
(DG

:
PA{DG

:
PD) ð24Þ

Thus, consideration of the reduction potentials of each cofactor

in the PCT adds a third performance metric g, to YC and tC , to

optimize.
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Figure 3. The physical characteristics of a PCT corresponding to the scheme in Figure 1C shown with the distances and reduction
potentials marked explicitly. The edge-to-edge separations of the D-P pair and the P-A pair are labeled as rD and rA , respectively. The vertical axis
is in the direction of increasing energy. The respective reduction potentials are defined in terms of the half-cell potentials, Ez=0~E0{Ez and
E0={~E{{E0 (final minus the initial state). The driving force, DG: , for an uphill electron transfer, say, D+P? DP+, is defined as
DG

:
PD~E

z=0
D {E

z=0
P w0. The corresponding driving force for the downhill transfer DG;~{DG: . Given the driving forces and the distances, the

rate constants are derived using the Moser-Dutton ruler. Note that the rate k� , which we take to be the combined relaxation rate, fluorescent and
otherwise, of the photoexcited state P� to its groundstate P, does not follow the Moser-Dutton ruler and must therefore be given. An incoming
photon with the correct frequency hn is absorbed by P to create the photoexcited state P� . We assume that the ET rates involving P�can be expressed
in terms of the reduction potential of the state P, i.e., E

z=0
P� ~E

z=0
P zhn, where E0

P�~E0
Pzhn and Ez

P�~Ez
P . Hence the input energy

hn~DG
:
PAzDG

:
AP� . The output energy is the stored energy DG

:
DA in the charge separated state.

doi:10.1371/journal.pone.0036065.g003
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The Moser-Dutton ruler
In Equations 20 and 21 we identified and derived constraints on

the ratios of the ET rate constants fa,a�,b,b�g for optimal charge

transfer in a PCT construct. These rates are determined by the

individual values of the reduction potentials and the spatial

separations of the cofactors. For this we need explicit equations

that relate the rate constants to these variables. To this end, we use

the Moser-Dutton ruler, a set of empirical equations that is widely

used to simply and accurately predict ET rates in proteins

[19,29,31]. The ruler predicts a rate constant, k
;
et, for a downhill

electron transfer at room temperature, i.e., when the driving force

DG;
v0 as

log k
;
et~13{0:6(r{3:6){3:1

(DG;zl)2

l
ð25Þ

l here is the reorganization energy in eV and the term in which it

appears is the Marcus term which depicts the hyperbolic

dependence of the ET rate on the driving force for electron

transfer [23]. Reverse or uphill electron transfer is modified by a

Boltzmann term to give:

log k
:
et~13{0:6(r{3:6){3:1

(DG:zl)2

l
z

DG:

0:06
ð26Þ

The transfer rates are predicted in units of s{1. The energies

DG:~{DG;
w0 are measured in eV, and r is the edge-to-edge

distance between the cofactors in Å. All logs are to base 10. We

note that the use of the Moser-Dutton ruler restricts our analysis

from here on only to protein-based PCTs. Other PCTs can be

analyzed in a similar way provided the appropriate expressions for

the ET rates are used.

Using the Moser-Dutton ruler to express the microscopic

variables fa,a�,b,b�g in terms of the physical variables

fDG
:
PD,DG

:
PA,Rc,Drg of the PCT, we get:

log a ~ {29DG
:
PD&{

DG
:
PD

0:035
ð27aÞ

log a� ~ {3:1|4
hn

2l
{1

� �
DG

:
PA{

hn

2

� �
ð27bÞ

log b ~ {
3:1

l
(DG

:
PA{DG

:
PD)(DG

:
PAzDG

:
PD{2l)

{0:6Dr

ð27cÞ

log kPD ~ 13{3:1
(DG

:
PDzl)2

l
z

DG
:
PD

0:06
{

0:3(RC{7:2)z0:3Dr

ð27dÞ

b� ~
k�

kPD

� �
aa�

b

� �
ð27eÞ

(Refer to Equations 22 and 23 for the definitions of RC and Dr
and hn~DG

:
PAzDG

:
AP� .) Since kPD is the only dimensionful

quantity we need, its form is given explicitly in Equation 27d. The

last parameter b� depends on k�, which because it involves the

combined relaxation rate, fluorescent and otherwise, of the

photoexcited state P� to its groundstate P, it cannot be estimated

using the Moser-Dutton ruler. It is assumed to be a given quantity

in our analysis. And finally, we have assumed that the

reorganization energy l is the same for the entire construct. Only

minor modifications to Equation 27c are necessary if this last

assumption is relaxed. The qualitative features of our conclusions

are robust, although certain quantitative predictions will have to

be reworked.

Our final goal is to use the relations in Equation 27 to set

general bounds on the physical makeup of a generic protein-based

PCT to optimize its performance. We do this by adjusting the

physical parameters fDG
:
PD,DG

:
PA,Drg (for a fixed size RC of the

construct) to satisfy the constraints in Equations 20 and 21 on the

rates. This way, we are guaranteed that the performance metrics

fYC ,tCg are optimized. The efficiency metric g (defined in

Equation 24) is then determined for a given tC and YC . Clearly,

configurations with a large difference in DG
:
PA and DG

:
PD will

ensure a high efficiency. It is therefore desirable to arrive at an

independent set of constraints for the energies and the distances.

We argue that this is mostly possible, primarily because the a
variables depend only on the driving forces and not on the

separation distances (see Equations 27a and 27b). Hence any

condition on the a variables translates to conditions on DG,

independently of the distance. These considerations are analyzed

in detail next.

Maximizing the QSS yield and lifetime: physical
constraints

In Equations 20 and 21 we identified two sets of conditions

necessary for the creation of a QSS with a high charge separation

yield and lifetime. We can now see what effects these constraints

impose on the physical makeup of a PCT. In particular, our aim is

to arrive at a set of independent constraints for the energies and

distances.

Energy constraints - fundamental limits on the
absorption wavelength of the primary-donor

From Equation 27a we note that the ratio a~kPD=kDP is a

factor 10 smaller for approximately every 35 meV difference in the

reduction potentials DG
:
PD. We conclude that the first constraint

for the existence of a QSS, a%1 stated in Equation 20, is satisfied

provided:

DG
:
PD *> 35 mV ð28Þ

Since a depends exponentially on DG
:
PD, the strong inequality

on a translates to a weak inequality on DG
:
PD. This simple

observation is the key to the viability of our general mathematical

analysis of a PCT. Small adjustments to the physical parameters

can drive the system into the QSS regime and affect large changes

in the performance metrics thus allowing us to arrive at a set of

practically realizable bounds on the physical parameters.

From Equation 27b we see that the second condition in

Equation 20, a�%1, is satisfied if DG
:
PA *> hn=2 for photon

energies

hn *> 2l ð29Þ
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The low energy range hn *v 2l results in a small DG
:
PA

*vhn=2 which reduces the efficiency as seen from Equation24,

and is therefore not a useful range for our purpose.

Equation 21 presents the constraints necessary to maximize the

yield YC . The energy dependent term for b in Equation 27c is

formed out of the product of the sum and difference of the driving

forces. The difference term is proportional to the efficiency g and

is therefore always positive. To maintain b%1 for all g, the sum

must satisfy DG
:
PAzDG

:
PD *> 2l. Since a large DG

:
PAwDG

:
PD

increases the efficiency from Equation 24, for practical purposes it

is sufficient to ensure that DG
:
PAw2l. The two conditions for

DG
:
PA can be combined as:

max
hn

2
,2l

� �
*v DG

:
PA *v hn ð30Þ

where max½a,b� implies the larger of the two variables a and b.

Thus, a DG
:
PAw2l satisfies conditions for both high YC and g,

and a DG
:
PAv2l will either result in a loss of efficiency or yield.

We thus predict that high yield, high efficiency QSS formation in a

triad requires that back electron transfer from A to P be so

downhill as to be well into the Marcus inverted region (see

Figure 4.) This greatly slows the rate of this ET, allowing the donor

molecule time to re-reduce the primary-donor molecule.

The upper limit is necessary to facilitate the electron transfer

from the photoexcited primary-donor P�?A. This, however, has

certain limitations: as DG
:
PA approaches the photoexcitation

energy hn, the back ET governed by the uphill rate k
�:
AP (which

is set to zero in our scheme) will become relevant - see Figure 3.

This will provide yet another route for the charge separated state

to decay to the groundstate thus reducing the performance.

Hence, we put an upper cut-off on DG
:
PA. To obtain this upper

cut-off, we study the behavior of the ratio of the uphill vs downhill

rates using the Moser-Dutton ruler and find that (similar to the

ratio a in Equation 27a)

log
k
�:
AP

k�PA

 !
~{

DG
:
AP�

0:035
~{

(hn{DG
:
PA)

0:035
ð31Þ

This clearly suggests that as long as the uphill driving force

DG
:
AP�~hn{DG

:
PAw35 meV, the back reaction is exponentially

suppressed. By direct simulation (not shown here), we find that our

results obtained by setting k
�:
AP~0 are unaffected if a difference of

the order of 60{100 meV or higher is maintained. Although

larger values will reduce the efficiency, a difference of 100 meV

affects the efficiency by less than 10%.

Finally, we analyze b� in Equation 27e. Since it can be

expressed in terms of the ratios a,a� and b, no new energy

constraints can be obtained. Instead, we show below that requiring

b�%1 (Equation 21) provides useful insight into the geometrical

construction of the PCT.

Distance constraints - optimal placement of the three
cofactors

Since b�*1=b (see Equation 27e), maintaining b%1 can only

be done at the expense of increasing b� which is counterproductive

as we require both b and b�%1 for maximum yield (Equation 21).

An optimal compromise can be reached by adjusting the distance

Dr~rA{rD. To see this, we write the Dr dependence explicitly in

Equation 27e by combining it with Equations 33 and 34 to give

log b�*0:3Drz(energy{dependent terms). Hence, once the

energy terms are optimized for a fixed total length RC , we predict

that arranging for

Drv0 ð32Þ

will significantly reduce b�. Provided b%1, an order-of-magnitude

suppression of b? is achieved if 0:3Dr*{1, i.e., Dr*{3 A.

Hence, Dr can be fine-tuned to increase the yield.

There is a relatively simple physical explanation for our

prediction. This is due in part to the fact that while electron

transfer rates in proteins are strongly distance dependent, the

equilibria are not. As noted in Equation 19b, there are three pairs

of rate constants which determine quantum yield, of which the a
parameter involves electron transfers that are the forward and

reverse of each other between P and D. Since ratios involving

forward and backward rates for any particular triad are not

dependent on distance, the a parameter is distance independent.

On the other hand, the remaining two pairs, b� and b, are

distance dependent: the first is the initial ET between A and P

which competes with the relaxation processes encompassed by k?.
In this case the actual rate, and therefore the distance, plays a

direct role in the final yield. This constrains the primary-donor

and acceptor cofactors to be close enough to out-compete k?. The

second is the competing pair of electron transfers which can occur

from state I: reverse electron transfer from A to P forming G vs. the

formation of C by electron transfer from D to P. This second pair

is a weaker constraint given the fact that electron transfer from A

to P is well into the Marcus inverted region. Viewed in this light it

is not surprising that optimal arrangements move the primary-

donor and acceptor closer together (see Figure 4 for a

demonstration of this using commonly observed parameters).

The full dependence of YC and g on Dr are discussed further in

the discussion.

Finally, regarding the total size RC~rAzrD: the RC depen-

dence of tC and YC in Equations 19a and 19b are fully governed

by the rate constant kPD defined in Equation 27d. It follows that

2 hh /2

G PA
 

G

GPA 

log10(rate)

∗

Figure 4. The optimal range for DG:
PA and DG:

AP� are shown on
the Marcus curve. A high yield, high efficiency QSS formation in a
triad requires that back electron transfer from A to P be so downhill as
to be well into the Marcus inverted region. To see this, we substitute
hn~DG

:
PAzDG

:
AP�k in Equation 27b so that log a�&{((DG

:
PAz

DG
:
AP� )=2{l)(DG

:
PA{DG

:
AP� ), from which it immediately follows that

the condition a�%1 is satisfied if the mean value (DG
:
PAzDG

:
AP� )=2~

hn=2wl. The condition a�%1 was derived in Equation 20 to be a
necessary condition for the formation of a QSS.
doi:10.1371/journal.pone.0036065.g004
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while the lifetime grows with RC as tC&100:3RC , the yield is

suppressed as YC&1=(1zconstant|100:3RC ).
This completes our analysis of the fundamental constraints on

the physical parameters for an optimized PCT. The guidelines

listed in Equations 28–32 are relevant to any protein based PCTs

where the Moser-Dutton ruler is applicable.

Discussion

In Equations 28–32, we arrived at a set of constraints on the

physical makeup of a high performance PCT capable of creating

and maintaining a high yield charge separated state in a QSS for a

significant length of time. We now apply these results to study the

efficiency of such PCTs.

While analysis of many PCT constructs focus on the charge

separation lifetime, tC [6], it is clear that the arrangement which

gives the longest possible lifetime will oftentimes make a less

efficient solar energy conversion component. The charge separat-

ed state must only last as long as the mechanism for extracting this

potential energy requires. After this condition is met, factors which

maximize the yield and efficiency of QSS formation (YC and g) are

paramount, as these determine the eventual power output. Thus,

in the following we fix the lifetime tC~1 ms in our analysis.

In Figure 5, we start with a set of parameters that are typical of

photonic energy transduction in proteins: The reorganization

energy l varies in the range of 0.7 to 1.4 eV for cofactors bound

within typical native proteins, with l taking higher values with

decreasing hydrophobicity in the local cofactor environment [19].

Light frequencies are in the near infrared and higher. We use

l~0:7 eV and hn~1:8 eV (690 nm) as a starting point. Note that

hnw2l is satisfied consistent with Equation 29. To satisfy the

energy constraint in Equation 30, we choose the range

DG
:
PA~1:4{1:7 eV. [Note that the highest value for DG

:
PA is

100 meV less than hn for the reasons described following Equation

31.] Electron tunneling distances in biology range from 4–14 Å,

with the shorter limit that of Van der Waals contact and the longer

setting a millisecond time limit on electron transfer rates [29,31].

Hence, the sum of the distances between the cofactors are typically

in the range 8AƒRCƒ28A; we use RC~16A. Instead of

specifying the final parameter, DG
:
PD, we specify the QSS lifetime

tC~1 ms and solve Equation 19a for DG
:
PD for different values of

DG
:
PA and Dr (for a fixed RC ). For self-consistency, we check that

the DG
:
PD values obtained using these parameters all satisfy

Equation 28 in the optimal range.

Several things are immediately apparent upon inspection of the

data in Figure 5. First, the yield YC in Figure 5B is strongly

dependent on Dr, with a maximum value in each case being

reached at a configuration where the primary-donor P is closer to

the acceptor site than the donor site as predicted in Equation 32.

Second, the efficiency g in Figure 5C is considerably enhanced as

DG
:
PA is increased closer to the maximum value hn.

To gain further insight on the dependence of the metrics YC

and g on the size RC and self-relaxation (fluorescence) rate k�, we

study the variation of the optimized PCT metrics, i.e., the metrics

obtained after adjusting Dr for maximum yield (i.e, we track the

location of maximum yield in Figue 5 as RC and k� are varied).

We find that once optimized for Dr, the two metrics YC and g are

mostly orthogonal in terms of their determinants. This is

demonstrated by Figure 6A where the maximum yield is seen to

be strongly suppressed with increasing Rc while the efficiency at

maximum yield is robust. The former is due to the decrease in b�

caused by the increase in distance, resulting in a smaller

partitioning factor G�f ~G�(0)=(1zb�) (Equation 16). As

Figure 6B demonstrates, this loss can be alleviated by decreasing

the rate of self-relaxation, k�, of the excited primary-donor P�.

Conclusions
We have generated an analytical solution for the time behavior

of the PCT and explored its dependence on the architecture, the

reduction potentials of its components, and the absorption

frequency of the primary-donor cofactor. Our primary findings

are two: First, that a high efficiency, high yield PCT will have an

absorption frequency more than twice the reorganization energy
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Figure 5. Sensitivity of the yield and efficiency of a typical PCT to DG
:
PA and Dr. The following parameters are fixed: The light frequency

hn~1:8 eV, the reorganization energy l~0:7 eV, the size RC~16A, and the relaxation rate at 1=k�~1 ns. The driving force DG
:
PD for each choice of

DG
:
PA and Dr is obtained by solving Equation 19a setting tC~1 ms. All the relations necessary to invert Equation 19a for DG

:
PD can be found in

Equation 27. (A) Illustration of possible changes in Dr made while keeping RC fixed. (B) Predictions for YC made using differing values of DG
:
PA

plotted as a function of Dr. Open symbols are used to indicate Drƒ0 and solid symbols for Drw0. Note that in each case, a maximum YC of &0:81 is
achieved at some optimal Drv0. (C) Re-plot of the same data explicitly showing the variation in yield and efficiency as DG

:
PA and Dr are varied. g is

defined in Equation 24. Legends mark different Dr values varied in 1A increments evaluated at the same points as in (B). The Dr value at the
maximum are labeled explicitly.
doi:10.1371/journal.pone.0036065.g005
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of the first electron transfer, and second, that the distance metric

Dr (the relative distance of the acceptor and the donor from the

primary-donor) plays an important role in the determination of the

yields.

We remark that our use of the Moser-Dutton ruler clearly does

not capture all the subtle details of protein ET reactions. For

example, the assumption that ET rates drop-off exponentially with

distance ignores possible effects of the intervening medium when

present [32]. Secondly, some experimental results point to an

asymmetric Marcus curve [33], that is known to be relevant when

certain high-frequency intramolecular vibrations are active, are

not accounted for. It is a simple matter to include these effects into

Equations 20 and 21, which as we noted earlier are model-free,

they provide fundamental constraints on the microscopic rate

constants derived to maximize the yield and the lifetime of the

charge separated states in the QSS regime. Further work is needed

to study the quantitative effects these corrections will have on our

conclusions. We show below, however, that our analysis incorpo-

rating the simple Moser-Dutton ruler is able to successfully explain

a number of remarkable features observed in Nature.

Implications for natural systems
The first implication sets a long-wavelength limit or red-edge

[34] for efficient solar energy conversion. It is estimated that the

reorganization energies scale from 0.7 eV to 1.4 eV for typical

proteins and cofactors bound in local environments varying from

less to more hydrophobic [19]. These values predict that the

longest effective wavelength for solar energy conversion is about

890 nm, correlating to the lower value. Longer wavelengths are

possible, but this would necessitate a loss in either yield or energy.

Our analysis is primarily limited by the fact that we include only

three discrete sites for electron localization. Natural photosynthetic

proteins have additional acceptor molecules, which enable the

stepwise diffusion of the electron further away from the primary-

donor. Their effect on the behavior of the PCT is unclear.

However, we do note in Figure 7 that at present the observed

wavelength limits for oxygenic photosynthesis, an energetically

demanding process in that it must create oxidizing potentials high

enough to oxidize water [2], are within the values [35] we predict.

Furthermore the limits observed for charge separation in any

natural organism, those from bacterial photosynthesis [34], are

within 150 nm, or 160 meV, of that predicted by our model, as

shown in Figure 7. This suggests that efforts to re-engineer natural

systems to utilize longer wavelengths of light, and thus garner a

greater fraction of the solar emission spectrum [36] will result in

considerable losses of either yield or conversion efficiency to do so.

The other prediction is that yields are maximized by placing the

primary-donor closer to the acceptor than the donor cofactor. This
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again may be altered when further discrete electron binding sites

are added to the construct, but we again note that for the limited

subset of photosynthetic proteins which have structures which

include the donor cofactor, the primary-donors are indeed

positioned in this manner (Figure 8).

Engineering parameters for artificial charge separation
constructs

This analysis sets out the optimal physical composition of an

artificial protein-based charge separation construct. It demon-

strates that efficient, high yield charge separation can be

engineered with DG values that are both feasible to engineer

and within the ranges observed in natural systems. It further

identifies the molecular properties which are important targets for

engineering improved PCTs. Principle among these is the control

of the reorganization energy, l. A smaller value of l will enable the

utilization of longer wavelengths of light, enabling the possible

utilization of a larger fraction of the solar emission spectrum.

There have been very few experimental determinations of l values

within a protein, and even less work on manipulating or

optimizing its magnitude. However, it is apparent that it will be

important to be able to manipulate this parameter effectively.

While we have identified Dr as a critical parameter for high

yield constructs, at smaller cofactor separation distances the

tolerances for Dr are very small. The large changes engendered by

even a 1A change in Dr make high yield small constructs difficult

to create. Larger constructs have broader Dr maxima, but in this

case yields are reduced due to unproductive primary-donor

relaxation rates, or k� (see Equation 16). Consequently the

creation of primary-donor cofactors with longer excited state

lifetimes is paramount. As Figure 6B demonstrates, longer lifetime

cofactors will enable significantly larger constructs, and thus eases

the optimization of Dr. We further note that while our analysis

uses the protein-specific Moser-Dutton ruler, which models

coupling as an exponential drop-off in electron transfer rate with

distance, the model-free portion of this analysis leading to

Equations 20 and 21 are applicable to synthetic constructs as

well. The distance dependence in these systems depends strongly

on the nature of the bridging elements which connect the triad

cofactors, and the analysis presented here predicts that the

coupling must in general be as strong as possible between the

primary-donor and acceptor. In a protein this means putting them

close together since the ‘‘bridge’’ is always the same. In a bridged

system this means choosing a bridge that maximizes the coupling,

but it doesn’t necessarily mean bringing them closer together.
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