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Abstract

Several different interventions improve depressed mood, including medication and environmental factors such as regular
physical exercise. The molecular pathways underlying these effects are still not fully understood. In this study, we sought to
identify shared mechanisms underlying antidepressant interventions. We studied three groups of mice: mice treated with a
widely used antidepressant drug – fluoxetine, mice engaged in voluntary exercise, and mice living in an enriched
environment. The hippocampi of treated mice were investigated at the molecular and cellular levels. Mice treated with
fluoxetine and mice who exercised daily showed, not only similar antidepressant behavior, but also similar changes in gene
expression and hippocampal neurons. These changes were not observed in mice with environmental enrichment. An
increase in neurogenesis and dendritic spine density was observed following four weeks of fluoxetine treatment and
voluntary exercise. A weighted gene co-expression network analysis revealed four different modules of co-expressed genes
that were correlated with the antidepressant effect. This network analysis enabled us to identify genes involved in the
molecular pathways underlying the effects of fluoxetine and exercise. The existence of both neuronal and gene expression
changes common to antidepressant drug and exercise suggests a shared mechanism underlying their effect. Further studies
of these findings may be used to uncover the molecular mechanisms of depression, and to identify new avenues of therapy.
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Introduction

A diverse set of interventions, in addition to drugs, is known to

have antidepressant action, including cognitive and electro-

convulsive therapies, sleep deprivation, and exercise [1,2].

Mechanistic understanding of what is common to environmental

and drug treatments may provide valuable clues about the mode

and site of action of antidepressants. Recent studies demonstrate

the importance of adult hippocampal neurogenesis for the action

of antidepressants [3,4]. Both exercise and enriched environment

have also been found to increase hippocampal neurogenesis [5]

and cause antidepressant-like behavioral change. Chronic exercise

reduces depressive-like behavior in rats [6,7] and mice [8], as

measured in standard models of depression such as the forced

swim test. Environmental enrichment has similar consequences [9]

and both produce notably similar effects on the brain in

stimulating cell proliferation and recruitment of new neurons into

the dentate gyrus of the hippocampus [5,10,11].

Currently no molecular pathway is known that is common to

these treatments. The finding that gene expression data show

structured correlation, together with the development of weighted

gene co-expression network analysis (WGCNA) [12,13], provide a

system-level approach for using gene expression to detect the

common mechanisms of different interventions. WGCNA orga-

nizes genes into modules that are co-regulated and therefore are

more likely to be functionally related and to participate in similar

cellular processes. WGCNA also alleviates the multiple testing

problem inherent in testing tens of thousands of transcripts, a

problem that otherwise substantially reduces the power of

standard differential expression analysis. Instead of testing the

changes in expression of each of thousands of genes, a small

number of gene co-expression modules are tested in the WGCNA

approach.

In this study we look for common molecular and neuronal

mechanisms for antidepressant action by studying the hippocampi

of mice exposed to three different interventions. We compared

changes in adult neurogenesis, neuronal plasticity, and gene

expression induced by exercise, environmental enrichment, and

fluoxetine, a specific serotonin reuptake inhibitor commonly

prescribed for major depression. We examined these phenotypes

in the hippocampus, because this brain structure has been

implicated in the pathophysiology and treatment of mood

disorders, and changes in adult neurogenesis in the hippocampus

are associated with exercise, environmental enrichment and

possibly also with the therapeutic effect of antidepressants.
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Materials and Methods

Ethics statement
This study was carried out in strict accordance with the

recommendations in the Guide for Laboratory Animals Facilities

and Care as promulgated by the Council of Agriculture. Executive

Yuan, ROC. The protocol was approved by the Institutional

Animal Care and Use Committee of Chang Gung University

(Permit Number: CGU11-008). In this Protocol, all efforts were

made to minimize suffering.

Animals
Eight week old C57BL/6J male mice were individually housed

in standard cages (28635613 cm) with ad libitum access to food

and water for 28 days. Groups of mice were treated with one of the

following four protocols: (1) Exposure to an enriched environment:

cages were filled with toys, including tubes, ladders, balls and

shelters (but not a running wheel). Toys were changed every three

days. (2) Voluntary exercise: mice were housed with a free access

to a running wheel (Bio-Serv, US). Running distance on the wheel

was measured using standard bicycle odometers (Cateye Velo 8).

Previous studies showed that mice given access to running wheels

for 3–4 weeks showed robust antidepressant behavior [8] (3)

Chronic fluoxetine treatment: The mice were given fluoxetine

(80 mg/L) in their drinking water. Average intake was 16 mg/kg/

day of fluoxetine. Administration of this dose by oral administra-

tion for 28 days was shown before to produce a robust

antidepressant behavior in mice and increase in neurogenesis in

the hippocampus [3] (4) The control group: the control group of

mice was not exposed to any of the treatments. All groups were

housed at a controlled environment and kept on a 12 hour light/

dark cycle.

Immunohistochemistry
All sections for KI67 and DCX staining were cut to a thickness

of 40 mm on a sliding microtome. For KI67 staining, sections were

mounted on the superfrost slides (BDH, UK) and dried overnight.

Subsequently, slides were incubated in the 0.01 mol/L citric buffer

for 40 min at 90uC, 3% H2O2 for 10 min, rinsed in PBS, and

incubated overnight at room temperature in rabbit anti-KI67

antibody (1:4000, Vector Lab). Next day, a standard rabbit IgG

ABC kit (Vector Lab) procedure was used and the slides reacted

for 5–10 min with Sigma DAB tablet. Sections were then

counterstained with cresyl violet and cover-slipped with DPX.

KI67-labeled cells were counted bilaterally on every eighth section

through the entire rostrocaudal extent of the granule cell layer. For

DCX staining, free floating sections were incubated with goat anti-

DCX antibody (1:400, Santa Cruz Labs), then following the same

ABC kit procedure, reacted with Sigma DAB tablet. DCX-labeled

cells were counted bilaterally on every sixteenth section through

the entire rostrocaudal extent of the granule cell layer.

Fluorescent staining
For BrdU/NeuN double labeling, fluorescent staining was

performed on 40 mm floating sections. The sections were

incubated in 2M HCl for 30 min at 37uC, neutralised in boric

acid (Sigma) for 15 min (pH 8.5) and washed 3 times in PBS

before incubation with BrdU antibodies (Accurate Chemical and

Scientific; 1: 200) and NeuN (Chemicon; 1: 400). Following three

washes in PBS (5 min each), sections were incubated with the

fluorescent secondary antibody (1: 200, Alex Fluor 488 and Alex

Fluor 568, Invitrogen) for 2 h in 0.3% Triton/PBS with 2% of

goat serum. Images of sections were captured on a Zeiss LSM 510

META confocal microscope.

Golgi staining
Brains were harvested and stained using an FD rapid

GolgistainTM Kit in accordance with the manufacturer’s instruc-

tion (FD Neuro Technologies) (n = 3 for control group, n = 4 for

exercise, enriched and fluoxetine groups). Brains were sectioned

coronally at a thickness of 80 mm using a microtome. Only spines

from apical CA1 dendrites in matched mid hippocampus sections

were used for analysis. Ten dendrites per brain were photo-

graphed using an Olympus BX-51 microscope equipped with a

1006 objective. Images freeware was used to measure dendrite

length and manually count spine number.

Expression analysis
The hippocampi of mice were isolated after 28 days and were

immediately frozen on dry ice. The hippocampi were homoge-

nized using 5-mm stainless steel beads (Qiagen) on a Tissue Lyser

(Retsch MM300 Mixer Mill) for 10 min at 25 Hz. Total RNA was

extracted using the RNeasy Lipid Tissue Kit (Qiagen) according to

the manufacturer’s instructions. RNA quantity and integrity were

assessed using a NanoDrop ND-1000 Spectrophotometer and an

Agilent 2100 Bioanalyser. All RNA samples had an RNA Integrity

Number (RIN).9.

One microgram of total RNA was used as starting material for

the expression analysis. The ribosomal RNA was removed using a

RiboMinus Mouse Transcriptome Isolation Kit (Invitrogen). RNA

samples were further processed according to the manufacturer’s

protocol using Affymetrix’s GeneChip Whole Transcript Sense

Target Labeling Assay. Fragmented and biotinylated cDNA were

added to the hybridization mixture and loaded on a Affymetrix

GeneChip Mouse Exon 1.0 ST array. After hybridization, the

array was washed and stained according to Affymetrix protocol

using the GeneChip Fluidics Station 450/250. The stained array

was scanned using an Affymetrix GeneChip Scanner 3000.

Quality control was carried out using Affymetrix Expression

Console Software Version 1.0. Signal estimates were derived from

the CEL files by quantile sketch normalization using the

IterPLIER for gene-level intensities using the Expression Console

software (Affymetrix). Only ‘‘core’’ level probe sets (probe sets

assigned to the highest confidence level) were used in the analysis.

Gene-level iterPLIER estimates are derived by combining

correlated probe sets, predicted to map into the same transcript

cluster (according to the meta-probe set list). The iterPLIER

algorithm iteratively discards probes that do not correlate well with

the overall gene-level signal and then recalculates the signal

estimate to derive a robust estimation of the gene expression value.

Genes were considered as expressed based on a ‘‘Detection Above

Background’’ (DABG) P,0.05 for 80% or more of the samples.

Figure 1. The enriched environment and running wheel used in
this study. (A) The photo shows cages with different toys, including
tubes, ladders, houses, balls. The toys in the enriched cages were
changed every three days. (B) The running wheel used with the exercise
group.
doi:10.1371/journal.pone.0035901.g001
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Processed data were exported to the R statistical computing

language and analyzed using analysis of variance (ANOVA). The

q-value (the proportion of false positives), for false discovery rate

control, was estimated using the ‘qvalue’ package for R.

Differential transcripts were identified as those with q-value#0.05.

The cell files from the study of Miller et al. that examine the effect

of fluoxetine on gene expression were retrieved from the Gene

Expression Omnibus (GEO), and reanalyzed using Affymetrix

Expression Console and normalized using the RMA algorithm.

The data and the experimental details can be found in the GEO

website (http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc =

GSE6476). In addition, we examined unpublished data that

examined the effect of chronic treatment of Clozapine and

Haloperidol on gene expression in the mouse brain (http://www.

ncbi.nlm.nih.gov/geo/query/acc.cgi?acc = GSE6511).

Network analysis
A weighted gene coexpression network was constructed

according to previously described methodology. The network

was constructed using the 4000 most variable genes across all

samples. The network was constructed based on a pairwise

correlation matrix of the expression values. To approximate a

scale-free network topology, the data was transformed by a fixed

power (b= 14). To identify gene modules, we followed the

standard WGCNA approach. Hierarchical clustering was per-

formed on the topological overlap dissimilarity matrix and the tree

was cut using a dynamic tree-cutting algorithm. Modules were

merged together if the modules eigengenes were highly correlated

(a correlation above 0.8). To test for association between

antidepressants and gene modules, the eigengene of each module

was tested for significant correlation to the trait. Testing for

overrepresentation of functional categories was carried out using

Database for Annotation, Visualization, and Integrated Discovery

(DAVID) tools, version 6.7 [14,15]. Categories analyzed included

GO categories, pathways database (KEGG Pathways), and

functional categories (SP PIR Keywords). The Benjamini

correction for multiple testing was applied with a threshold for

an adjusted P,0.05.

Behavior
For the open field test, mice were placed in a brightly lit, white,

and circular arena with a 60 cm diameter. This was divided into

an inner (40 cm in diameter) and an outer circular area. Mouse

movements were monitored for 5 min via an automated tracking

system (Videotrack. vNT4.0: Viewpoint). Marble burying was

tested by placing the mice individually into plastic cages

(20630 cm) containing a 5 cm layer of sawdust bedding and 12

glass marbles. Cages were placed on a Threshold system (Med

Figure 2. Cell survival and neurogenesis in the four different groups. BrdU (200 mg/kg) was injected into all mice before dividing them into
different groups. After 28 days, brain tissues (hippocampus) were stained for BrdU and NeuN (A–C). The exercise and fluoxetine groups, but not the
enriched environment group, showed higher number of BrdU and NeuN positive cells in the dentate gyrus (D) compared to the control group. Values
are means 6 SEM. **P,0.01, ***P,0.001.
doi:10.1371/journal.pone.0035901.g002
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Associates Inc., St. Albans, VT, USA) to monitor digging/burying

behavior for 30 min.

For novelty suppressed feeding, mice were food deprived for

24 h and then placed in a novel rodent cage (30650 cm) that

contained mouse predator odor (rat feces and fur) for 6 min. Four

regular food pellets were placed in the corner of the cage. The

total time that the mice spent eating was recorded. After the test,

mice were placed back in their home cage with food pellets. The

consumption of food pellets (g) were measured within the first

30 min. For novelty induced hypophagia, mice were given the

sweetened milk in their home cage, twice a day for three days. On

the fourth day, the latency and time spent drinking within 6 min in

their home cage under dim lighting conditions was measured. On

the fifth day, the latency to time spent on the drinking in their

home cage after relocation to a novel, brightly lit room was scored.

Results

Fluoxetine and voluntary exercise increase neurogenesis
and spine density

C57BL/6J mice (8 weeks old, n = 10) were divided into four

groups. All the mice were given one injection of BrdU to label the

dividing cells (ip, 200 mg/kg). The first group was exposed to an

environment enriched with toys, including different shaped tubes,

ladders, balls and housing (Figure 1A), which were changed every

three days. A second group of mice was housed with free access to

a running wheel (Figure 1B). The average running distance, as

measured by standard bicycle odometers, was 12 km per day. The

third group was given fluoxetine in their drinking water (80 mg/

L). A fourth control group of ten mice was not exposed to any of

the above treatments.

After 28 days, the mice were analyzed for the levels of adult

neurogenesis (n = 6) and neuronal spine density (n = 4). A higher

neuronal survival level was observed in mice belonging to the

exercise and fluoxetine groups relative to controls, as indicated by

the number of BrdU+/NeuN+ labeled cells (Figure 2 A–D)

(exercise vs. control: P,0.001, t = 5.15; fluoxetine vs. control:

P,0.01, t = 4.44). Approximately 80% of the BrdU positive cells

were also positive for the neuronal marker, NeuN; however there

were no differences in the percentage of BrdU/NeuN co-labeling

between the four groups (P = 0.76). Unlike the BrdU labeling, a

significant increase in KI67, which is a marker for proliferation,

was observed only for animals treated with fluoxetine (P,0.01,

t = 4.42). To estimate the level of ongoing neurogenesis, we used a

marker for immature neurons – doublecortin (DCX). Both the

exercise and fluoxetine groups showed an increase in neurogenesis

as indicated by the DCX staining (Figure 3 A and B) (exercise vs.

control: P,0.001, t = 4.7; fluoxetine vs. control: P,0.001, t = 7.9).

We also detected a higher level of neuronal spine density, by

sampling from the CA1 region, in animals from both exercise and

fluoxetine groups (Figure 3 C and D) (exercise vs. control: P,0.05;

fluoxetine vs. control: P,0.01, t = 3.4). Overall, these results show

that both voluntary exercise and fluoxetine treatment, but not

enriched environment, increase adult neurogenesis and dendritic

spine density after 28 days of intervention.

Similar changes in gene expression with fluoxetine and
exercise interventions

We examined gene expression in the hippocampus of seven

mice from each group, after 28 days of treatment. We analyzed

23,238 genes, out of which 11,318 genes (48.7%) were found to be

expressed. Using analysis of variance (ANOVA), we identified 87

Figure 3. DCX staining and dendritic spine density in the hippocampus. (A and B) The exercise and fluoxetine groups showed more
immature neurons in the dentate gyrus compared to controls. (C and D) Golgi staining images reveal higher level of dendritic spine density in the
hippocampus (CA1 region) in the exercise and fluoxetine groups. Values are means 6 SEM. *P,0.05, ***P,0.001. Scale bar show 200 mm (A) and
10 mm (B).
doi:10.1371/journal.pone.0035901.g003
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differentially expressed genes with a q-value,0.05 (Table S1).

Gene ontology enrichment analyses and functional annotation

clustering identified an enrichment of functional groups including:

secreted [SP PIR Keywords] (q-value = 2.061027), extracellular

region [GO:0005576] (q-value = 2.161027), glycoprotein [SP PIR

Keywords] (q-value = 1.561026), extracellular region

[GO:0005576] (q-value = 2.161027) and ECM-receptor interac-

tion [KEGG PATHWAY] (q-value = 5.461023).

Similar to the results obtained for neurogenesis, the gene

expression data pointed to a closer relationship between voluntary

exercise and the drug treatment than between enriched environ-

ment and either of the other interventions (Figure 4 A and B). The

correlation between the expression ratios (treatment vs. control) of

the two treatment groups, fluoxetine and voluntary exercise, across

all genes was 0.49, relative to a correlation of 0.15 between the

enriched environment and fluoxetine.

Out of the 87 genes showing significant differential expression

between the groups, four genes had a P,0.05 in the enriched

environment group, 37 had a P,0.05 in the exercise group, and

84 had a P,0.05 in the fluoxetine group, in comparisons with the

control group. Surprisingly, out of the 87 genes, the expression of

34 genes was significantly (P,0.05) altered in both the fluoxetine

Figure 4. Hippocampal gene expression profiles in response to different antidepressant treatments. (A) Changes in expression
following exercise compared with the changes in the fluoxetine treated group. Each point is the average expression level of the treated group
divided by the average expression level in the control group for one of the 87 genes showing significant differential expression. The Y and X axes are
on a log scale, base 2. The line is the best fit linear regression. (B) Changes in expression in an enriched environment as a function of the changes in
the fluoxetine treated group. (C) Changes in expression for 36 genes (out of 87) with the highest fold change following chronic fluoxetine treatment
compared to controls. (D) Comparison of the effect of fluoxetine on gene expression in the current study with the results obtained by Miller et al.
(2008) [17].
doi:10.1371/journal.pone.0035901.g004

Shared Mechanism of Exercise and Fluoxetine

PLoS ONE | www.plosone.org 5 April 2012 | Volume 7 | Issue 4 | e35901



and the exercise groups, and in 30 cases the change was in the

same direction (upregulated or downregulated) in both groups.

Moreover, even the genes that were not significant (P.0.05) in the

exercise group showed the same trend as was observed in the

fluoxetine group. Of the 84 genes showing significant differential

expression in the fluoxetine group (Figure 4C), 60 were

upregulated, and 24 were downregulated following fluoxetine

treatment. Out of the 60 fluoxetine upregulated genes, 55 also

showed higher expression in the exercise group relative to controls,

and out of the 24 fluoxetine downregulated genes, 13 were also

lower in the voluntary exercise group (P = 0.00027) (Table S1).

Among the genes upregulated in both fluoxetine and voluntary

exercise groups was Bdnf, a gene extensively studied as being a

possible mediator of the effect of antidepressant treatments [16].

We further measured the expression of three differentially

expressed genes (Bdnf, Nptx2 and Plekha2) by real-time PCR

(Figure 5). Similar to the array results (Figure 5A) the three genes

were upregulated relative to control (Figure 5B), with highest

expression in the fluoxetine group.

In order to further exclude the possibility of an artefactual

explanation for our results we searched for expression data carried

out by others on mice treated with any of the antidepressant

treatments, fluoxetine or voluntary exercise. We found one study

in the Gene Expression Omnibus (GEO), which profiled

hippocampal gene expression from DBA/2J males chronically

treated with fluoxetine [17]. Of the 87 genes regulated by

antidepressant treatment in our study, there were data for 75 on

the arrays of Miller et al. [17]. Of the 56 hippocampal fluoxetine

upregulated genes in our study, 55 had a ratio above 1 in the data

of Miller et al. (mean ratio = 1.45) and out of the 19 down

regulated genes, 15 had a ratio below 1 (mean ratio = 0.83) in the

previous study (P = 1.28610211). The correlation between the

expression ratios in the two studies (for the 75 significant genes)

was 0.57, with corresponding P = 1.2761027 (Figure 4D). This

very strong correlation confirms that the expression results we

obtained are unlikely to be due to factors specific to our

experiment.

We also compared our results with data from a study that

examined gene expression in mice treated with antipsychotic drugs

(unpublished data, GEO: GSE6511). We analyzed the expression

from brains of mice treated with Clozapine, Haloperidol and

Control (n = 3 in each group) for four weeks. Of the 87 genes

differentially expressed in our data, 48 were available in this

dataset, and only 1 of them (Rgs8) was among the 100 most

significantly differentially expressed genes following chronic

treatment with either Clozapine or Haloperidol. We conclude

that the genes influenced by antipsychotic drugs do not overlap

with the genes influenced by fluoxetine or exercise.

A gene co-expression network analysis identifies
modules associated with antidepressant interventions

To study the relation between antidepressant action and gene

expression, we applied a weighted-gene co-expression network

analysis (WGCNA) to identify modules of co-expressed genes. A

network was constructed using a pairwise correlation matrix of the

expression of the 4,000 most variable genes across all samples. We

performed hierarchical clustering on the topological overlap

dissimilarity matrix and found 11 modules after merging those

that were highly correlated. In order to discover modules

associated with the antidepressant treatments, we tested the

correlation between each module’s eigengenes (defined as the first

principal components) and both interventions (fluoxetine and

exercise versus control). Four modules showed significant (P,0.05)

association with antidepressant treatments (Table 1, and

Figure 6A). For each gene within the modules we also calculated

the gene significance – the correlation between the expression

profile across samples of each gene and the antidepressant

treatment. In addition, for each module, and for each gene, we

calculated the module membership, which is the correlation

between the gene expression and the module eigengene (summa-

rized in Table 1). The correlation between the gene significance

and the module membership score was significant (P,0.05) in the

four modules, illustrating that genes significantly associated with

antidepressant treatments are often also the most important

elements in this modules.

Out of the four modules, two were positively and two negatively

correlated with fluoxetine and exercise (Table 1). Gene enrich-

ment and functional annotation analyses revealed that the

modules are enriched for specific processes (Figure 6B). The

module showing the most consistent effect (Light green) in both

fluoxetine and exercise was upregulated compared to control, and

was enriched for genes belonging to the proteasome. Another

module that was modestly and negatively correlated with

fluoxetine and exercise when tested together, was the one most

significantly correlated to fluoxetine when tested alone (correla-

tion = 20.61, P = 561024). This module is downregulated by

antidepressants and is enriched for genes involved in neuronal

differentiation and maturation (Figure 6B).

Figure 5. Validation by real-time PCR of three genes that show
differential expression in the microarray analysis. The expression
of Nptx2, Bdnf and Plekha2 is shown for the fluoxetine and exercise
groups relative to control. (A) Relative expression based on (A)
expression arrays and (B) real-time PCR. Values are means 6 SEM.
*P,0.05, **P,0.01, ***P,0.001.
doi:10.1371/journal.pone.0035901.g005

Shared Mechanism of Exercise and Fluoxetine
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Table 1. Modules of co-expressed genes associated with antidepressant interventions.

Module Yellow Light green Dark grey Royal blue

No. of genes: 310 102 47 87

Correlation1: 0.6 0.56 20.47 20.37

Significance: 861024 0.002 0.01 0.05

10 most significant genes within each module

1 Dpy19l3 Snx25 Leng8 Vwa3a

2 Plekha2 Akirin2 Mfsd5 Igfbp5

3 Kcnk1 Uxs1 R3hdm1 Mkl2

4 Darc Psmb6 Tnrc6b Hap1

5 Slc7a14 Tmem223 Psmd2 Pnck

6 Grasp Park2 Abcb1a Smarca2

7 Dbc1 Nsg1 Gnb2l1 Ntng1

8 Bdnf AB041803 N28178 Sorbs1

9 Rgs8 Slc38a2 Pnet-ps Rasgrf2

10 Kif17 Dctn3 Nktr Tub

1correlation between module eigengene and antidepressant interventions (exercise and fluoxetine).
In bold are the gene with the highest module membership score.
doi:10.1371/journal.pone.0035901.t001

Figure 6. Modules significantly correlated with exercise and fluoxetine. (A) (Upper) Barplots of the values of the module eigengene (i.e., the
first principal component) derived from singular value decomposition are displayed for the four modules significantly correlated with exercise and
fluoxetine (yellow, light green, dark grey and royal blue). (Lower) Heat maps depicting expression levels for each module (Red, increased expression;
green, decreased expression relative to the mean), for all genes (rows) and group of mice (columns): C, control; E, enriched environment; F, fluoxetine;
R, exercise (running wheel). (B) Gene enrichment and functional annotation analyses of genes in the different modules using DAVID bioinformatics
[14,15]. No significant enrichment was found in the Dark grey module.
doi:10.1371/journal.pone.0035901.g006

Shared Mechanism of Exercise and Fluoxetine
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Exercise affects behavior in a similar way to chronic
fluoxetine treatment

We tested whether voluntary exercise had the expected

antidepressant effects by comparing exercising animals to controls

in behaviors that were found to be modulated in response to

fluoxetine: novelty suppressed feeding [18], marble burying and

digging activity in a new environment [19] [20], and novelty

induced hypophagia [21]. Mice given free access to a running

wheel did not show significant differences of total activity in an

open field arena (Figure 7A). However, they did exhibit

significantly less burying and digging activities in a new cage

compared to controls (t = 2.69, df = 14, P,0.05) (Figure 7B). In the

novelty suppressed feeding test, the exercise group showed a

significant increase in the time spent in eating food in an aversive

environment after overnight food deprivation (t = 2.72, df = 14,

P,0.05) (Figure 7C). However, there was no difference in the

amount of food consumption in the home cage within 30 minutes

immediately after the novelty suppressed feeding test (P = 0.18,

t = 1.38) (Figure 7D). Similarly, in the novelty induced hypophagia

test, the exercise group showed a significant increase in the time

spent drinking in a bright cage (P,0.01, t = 4.1) (Figure 7E), with

no differences in a dark cage (P = 0.7, t = 0.38) (Figure 7F).These

results confirm that voluntary exercise affects behavior in way

which is comparable to chronic fluoxetine treatment.

Discussion

Using a neurogenomics approach to uncover the changes

following antidepressant treatments at the molecular, neuronal

and behavior levels, we found significant alterations in multiple

levels that are common to both exercise and fluoxetine treatments,

but are not shared with environmental enrichment. Our results

suggest that there is a shared mechanism underlying the

antidepressant effect of fluoxetine and exercise. We have identified

similar changes in neurogenesis and structural plasticity in the

hippocampus of mice following chronic fluoxetine treatment and

voluntary exercise. A co-expression network analysis revealed

changes of specific groups of genes in the mouse hippocampus in

response to antidepressant treatments.

Gene expression is subject to a large number of confounds,

unrelated to the intervention under examination, but we believe

our findings are robust for a number of reasons. Most strikingly, an

independent analysis identified a highly significant overlap in the

differentially expressed set of genes: the correlation between the

expression ratios in the two studies was 0.57, with a corresponding

of P = 1.2761027. Second, the variances in our gene expression

data were low, due to the fact that we used an exon array which

has approximately 40 probes per gene, providing a very accurate

measurement of gene expression. Third, among the genes

upregulated in both the fluoxetine and exercise groups was Bdnf,

a gene extensively studied as being a possible mediator of the effect

of antidepressant treatments [16].

Several consistent changes were observed in response to exercise

and fluoxetine treatments, which may reveal a core mechanism of

antidepressant action. Increase in neurogenesis was observed in

both treatments as indicated by staining of immature neurons with

DCX. Neuronal survival rates, as indicated by BrdU+/NeuN+
double labeling, were also higher in the exercise and fluoxetine

groups. In addition, in both groups there was an increase in spine

density. These changes at the cellular levels can be also related to

the corresponding changes in gene expression. The most

consistent finding at the network level was the upregulation of

Figure 7. Antidepressant-like behavior in mice engaged in voluntary exercise for 28 days (n = 8). A series of antidepressant-like
behavioral tests were conducted. (A) There was no significant difference in the activity in the open field test. (B) Exercise group showed lower levels
of digging activity in a new cage with a 5 cm layer of sawdust bedding. (C) In the novelty suppressed feeding test, the exercise group increased the
time spent in eating in a rat odor cage compared to controls. No significant differences between the groups in food consumption at the home cage.
(D) In the novelty induced hypophagia test, the exercise group spent more time drinking sweet milk under bright lighting cage condition, but no
significant differences were observed under dim lighting cage conditions. Values are means 6 SEM. *P,0.05, **P,0.01.
doi:10.1371/journal.pone.0035901.g007
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the light green module, which is enriched for genes involved in the

function of the proteasome. The upregulation of proteasome genes

might be connected to the increase in dendritic spine density, since

this process has very high and dynamic degradative demands [22].

Our analyses indicate that genes showing altered expression

following antidepressant treatment cluster into specific co-

expression networks. These modules allowed us to identify key

genes in the pathways affected by antidepressant treatment based

on their membership in modules with known biological roles, and

to relate the modules to neuronal changes. From these results, we

conclude that at least part of the antidepressant effect of exercise

and fluoxetine is shared, in particular changes in neurogenesis and

dendritic spine density, and that these processes may be further

studied to identify new targets for the treatment of depression.
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