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Abstract

Helminth infection in pigs serves as an excellent model for the study of the interaction between human malnutrition and
parasitic infection and could have important implications in human health. We had observed that pigs infected with
Trichuris suis for 21 days showed significant changes in the proximal colon microbiota. In this study, interactions between
worm burden and severity of disruptions to the microbial composition and metabolic potentials in the porcine proximal
colon microbiota were investigated using metagenomic tools. Pigs were infected by a single dose of T. suis eggs for 53 days.
Among infected pigs, two cohorts were differentiated that either had adult worms or were worm-free. Infection resulted in a
significant change in the abundance of approximately 13% of genera detected in the proximal colon microbiota regardless
of worm status, suggesting a relatively persistent change over time in the microbiota due to the initial infection. A
significant reduction in the abundance of Fibrobacter and Ruminococcus indicated a change in the fibrolytic capacity of the
colon microbiota in T. suis infected pigs. In addition, ,10% of identified KEGG pathways were affected by infection,
including ABC transporters, peptidoglycan biosynthesis, and lipopolysaccharide biosynthesis as well as a-linolenic acid
metabolism. Trichuris suis infection modulated host immunity to Campylobacter because there was a 3-fold increase in the
relative abundance in the colon microbiota of infected pigs with worms compared to naı̈ve controls, but a 3-fold reduction
in worm-free infected pigs compared to controls. The level of pathology observed in infected pigs with worms compared to
worm-free infected pigs may relate to the local host response because expression of several Th2-related genes were
enhanced in infected pigs with worms versus those worm-free. Our findings provided insight into the dynamics of the
proximal colon microbiota in pigs in response to T. suis infection.
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Introduction

Swine have been widely used as a model for human diseases due

to anatomic, physiological, and immunological similarities be-

tween the two species [1]. Moreover, the biodiversity of the gut

microbiota between pigs and humans is comparable [2,3]. Diverse

genetic resources in pigs are readily available, which frequently

leads to a whole spectrum of phenotypic changes in response to

infection with bacteria, viruses, and parasites common to humans

as well as similar dietary patterns. For example, Ossabaw

miniature pigs respond rapidly to high-fat, high-cholesterol

atherogenic diets and display numerous classical characteristics

of human metabolic syndrome [4] that are modulated by daily

feeding of probiotics (Solano-Aguilar et al. personal communica-

tions). Likewise, helminth infections are common in all pig

production systems around the world [5] and prevalent in humans

from resource poor areas worldwide. The whipworm Trichuris suis

in pigs is an example of a common helminth infection that results

in generally mild symptoms, such as diarrhea, anorexia, and

retarded growth commonly controlled by management and

anthelmintic drugs, but is a re-emerging problem especially in

organic and free-range pig production systems. Studies on T. suis

infection in pigs have important implications to human health

because they can be zoonotic [5] and therapeutic [6]. Morpho-

logical and biometric parameters between T. suis and T. trichiura

overlap and cannot be differentiated. The latter infects approx-

imately 1049 million people globally [7]. Evolutionary relatedness

and similar predilection sites in the mucosa of the upper large

intestine of both species suggest that the pig-T. suis system can

serve as an excellent model of human malnutrition and parasitic

infection [8]. Recently, the immune modulating properties of

helminths have been exploited to treat autoimmune diseases

including inflammatory bowel diseases (IBD) such as Crohn’s

disease (CD) [9] and ulcerative colitis (UC) [6]. The appeal of one

therapeutic agent to manage diseases as diverse as allergy, multiple

sclerosis, rheumatoid arthritis, psoriatic arthritis, and autism is a

powerful stimulator of further study to describe mechanisms of

action (Human Helminth Co-infections Clinical Trials Database

(www.niaid.nih.gov). While many trials have documented positive

clinical outcomes, T. suis therapy has nevertheless drawn criticism
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over concerns of the invasiveness of worms on human physiology

[10] as well as potential gastrointestinal side effects [11]. It is

known that the enteric microbiota plays a critical role in the

pathogenesis of IBD [12]. For example, enterobacteria are

observed more frequently in CD than in healthy control human

subjects [13]. Several studies have suggested that probiotics within

the genera Lactobacillus and Bifidobacterium may have favorable

impact on the treatment of patients with CD by altering the gut

microbiota and modulating the host immune system [14].

Recently, we demonstrated that a 21-day T. suis infection in pigs

induced a profound change in both microbial composition and

metabolic potential in the lumen of the proximal colon [2].

Changes in abundance of Succinivibrio and Mucispirillum were

associated with parasite-induced alterations in carbohydrate and

amino acid metabolism and niche disruptions in mucosal

pathology [2]. However, major determinants of phylogenetic

and functional composition of the porcine colon microbiota

remain unknown. In this study, we investigated the relationship

between adult T. suis worm burden and changes in the pig

proximal colon luminal microbiota. The results indicated that T.

suis-induced changes in the proximal colon microbiota were

similar regardless of the persistence or host clearance of adult

worms. In addition, the local host mucosal response was associated

with worm burden and the intensity of Th2-related and allergy/

asthma associated gene expression.

Results

Worm burden and changes in localized inflammation
The adult T. suis worm burden and associated pathology in the

proximal colon become more disparate in a group of out-bred pigs

between seven and nine weeks after inoculation with some pigs

showing fewer than 10 worms and an apparently normal mucosa

and others showing hundreds of worms with localized inflamma-

tion, mucus production, and smooth muscle hypertrophy; worm

clearance is virtually complete between weeks 9 and 11 [15]. We

selected three infected pigs at 53 days after inoculation that had

.300 adult worms (6676391 sd), five infected pigs with 0 worms,

and three uninfected pigs to evaluate changes in local gene

expression in the epithelial layer of the proximal colon and

associated changes in the luminal microbiota. The presence of

high numbers of adult worms (.300) significantly increased

expression of arg1, chia, cxcr2, il6, il13ra2, muc5ac, ptgs2, and retnlb

compared to uninfected control pigs and arg1, cxcr2, c3ar1, il6,

muc5ac, and ptgs2 were higher in infected pigs with worms versus

worm-free infected pigs (Fig. 1). Expression of ccl17, ccl25, c3ar1,

and tnf were not significantly higher than uninfected controls, and

levels of pprg, tlr2, and tlr4 were not increased among the groups.

Changes in the proximal colon microbial composition in
response to T. suis infection

Taxonomic profiles of the porcine proximal colon microbiota

were evaluated using both MetaPhyler [16] and MG RAST

programs [17]. The core microbiota of the porcine proximal colon

included 19 phyla, 39 classes, 93 families and 121 genera,

identified by the MetaPhyler method (Table 1). Of note, the 5

most abundant phyla accounted for approximately 99% of all

assigned sequence reads with Bacteroidetes (72.64%), Firmicutes

(20.33%) and Proteobacteria (3.69%) as among the most

abundant. The percentage composition at a phylum level derived

from both MetaPhyler and MG-RAST were similar (Fig. 2). In

addition, our findings on the phylum-level composition using

whole-genome shotgun (WGS) reads were comparable to those

obtained using bar-coded pyrosequencing of the V3–V5 regions of

the 16S rRNA gene [2].

Pigs infected with T. suis for 53 days had a profound change in

the proximal colon microbial composition. Of 27 phyla collectively

identified by MetaPhyler, Fibrobacteres, Spirochaetes, Tener-

icutes, and Gemmatimonadetes were significantly decreased

(P,0.05) by infection regardless of the worm burden in the colon.

The abundance of Fibrobacteres was 2.65% in the parasite naive

pigs compared to 0.38% in the infected pigs while the relative

abundance of Spirochaetes displayed a similar reduction from

0.79% in controls to 0.17% in infected pigs. The abundance of

both phyla in the proximal colon microbiota between infected pigs

with worms and worm-free was indistinguishable.

The abundance of 48 of the 372 genera collectively identified in

the proximal colon microbiota by MetaPhyler was significantly

affected by infection. The percentage of genera altered was similar

to that observed in pigs infected with T. suis for 21 days [2].

Fibrobacter and a potentially novel genus within the phylum

Fibrobacteres were among the most abundance genera significantly

affected by infection (Fig. 3). The abundance of Treponema, Dorea,

and a novel genus within the phylum Spirochaetes were also

significantly decreased by infection (Table 2). The abundance of

Ruminococcus was also reduced by 2-fold at 53 days (Fig. 3) after

inoculation similar to that observed at 21 days after inoculation

[2]. Interestingly, the relative abundance of Campylobacter was low

but reliably detected in the porcine proximal colon microbiota. Its

abundance in infected pigs with worms was 3-fold higher than in

the parasite naı̈ve pigs (Table 2); supporting the observation that

T. suis infection increases the risk of Campylobacter infection in pigs

[18]. There was, however, a notable 10-fold difference in

Campylobacter abundance in the proximal colon microbiota in

infected pigs with worm compared to infected worm-free pigs

(P,0.05). As Table 2 shows, the incidence of Campylobacter in

infected worm-free pigs was lower than in the parasite naive pigs

(P,0.05).

The protein repertoire and pathways impacted by T. suis
infection

Trimmed sequence reads were de novo assembled using

SOAPdenovo software [19]. The process resulted in 257,415 contigs

assembled at a mean length 445.02 bp (629.77 sd) per sample

(N50 = 482 bp). Genes or open reading frames (ORFs) were

predicted using FragGeneScan from these contigs. These ORFs

were annotated against the Pfam database (v24.0). Collectively, a

total of 5,157 Pfam Protein families were identified. The ten most

abundant Pfam families in the parasite naive pigs were ABC

transporter (PF00005, 0.9256%), TonB dependent receptor

(PF00593, 0.6344%), TonB-dependent Receptor Plug Domain

(PF07715, 0.5532%), ATPase family (PF00004, 0.5281%), AcrB/

AcrD/AcrF family (PF00873, 0.4989%), Glycosyl transferase

family 2 (PF00535, 0.4810%), Histidine kinase-, DNA gyrase B-,

and HSP90-like ATPase (PF02518, 0.4753%), Aminotransferase

class I and II (PF00155, 0.4617%), Elongation factor Tu GTP

binding domain (PF00009, 0.4508%), and Response regulator

receiver domain (PF00072, 0.4423%). To gain insight into possible

shifts in functionality and metabolic potentials in the proximal

colon microbiota in response to a 53 day infection with T. suis,

Gene Ontology (GO) terms associated with these Pfam protein

families were identified. 103 of the 1390 GO terms were

significantly affected by infection (P,0.05). As Table 3 shows,

the infection seemingly had a broad impact on biological processes

and molecular functions.

The protein repertoire of the porcine colon microbiota was also

assessed by the eggNOG database annotation using the MG-

Helminth Infection and Host Microbiota
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RAST pipeline. Of 39,777 eggNOGs identified, several proteins

involved in carbohydrate metabolism were among the most

abundant in the parasite naı̈ve pigs, such as a-L-fucosidase

(NOG04067, 1.05%), glycoside hydrolase family 43 (GH43,

1.01%), a-L-Rhamnosidase (NOG10735, 0.66%), and pectate

lyase (NOG44882, 0.56%). Indeed, xylosidase, glucosidase, a-

galactosidase, polysaccharide biosynthesis protein, and carbohy-

drate binding protein, as well as the above-mentioned rhamno-

sidase and pectate lyase, were among the most abundant in the

parasite naı̈ve pigs. Trichuris suis infection had a significant

influence on the functional composition in the proximal colon

microbiota. For example, infection induced a significant reduction

in the relative abundance of a-amylase (NOG71025), from 0.14%

in the control uninfected pigs to 0.04% in the infected pigs. The

abundance of GH43 followed a similar trend and was significantly

reduced by infection. Overall, infection resulted in a significant

change in the abundance of some key eggNOGs in the proximal

colon microbiota regardless of worm status, suggesting a relatively

persistent change over time in the microbiota due to the initial

infection (Fig. 4). Of 22 NOG functional categories identified by

MG-RAST, several classes such as amino acid transport and

metabolism and replication, were significantly affected (Fig. 5). In

addition, the number of sequences annotated to ‘‘defense

mechanisms’’ was significantly reduced by infection, from 1.35%

in controls to 1.03% in the infected pigs regardless of worm

burden.

Metagenomic sequences were also annotated against Kyoto

Encyclopedia of Genes and Genomes (KEGG) databases using the

MG-RAST pipeline. A total of 7150 KEGG entries were

identified. The five most abundant KEGG in the parasite naive

pigs were DNA-directed RNA polymerase subunit b (K03046,

0.90%), b-glucosidase (K01188, 0.90%), carbamoyl-phosphate

synthase large subunit (K01955, 0.89%), b-galactosidase (K01190,

0.77%), and excinuclease ABC subunit A (K03701, 0.73%). The

relative abundance of approximately 7% of all KEGGs identified

was significantly altered by infection. These KEGGs included

starch phosphorylase (K00688), its abundance from 0.42% in the

control uninfected pigs to 0.35% in the infected pigs. Similarly, the

abundance of b-mannosidase (K01192) was also decreased as a

result of infection. Approximately 10% of 297 KEGG Orthology

(KO) pathways identified were affected by infection. As Fig. 6

shows, ABC transportors (KO#02010), peptidoglycan biosynthe-

sis (KO#00550), lipopolysaccharide biosynthesis (KO#00540),

alpha-linolenic acid metabolism (KO#00592) were among the 29

KO pathways affected by infection.

Discussion

The gut microbiota plays a critical role in host nutrient

metabolism as well as in the development of host immune systems

[20,21]. However, the dynamics of the gut microbiota in response

to parasitic infections have only been examined recently [2,22].

We showed previously that infection of pigs with T. suis for 21 days

induced a profound change in proximal colon luminal microbiota

with approximately ,13% of all genera identified significantly

affected by infection [2]. For example, there was a significant

reduction in the relative abundance of important genera such as

Oscillibacter and Succinivibrio. The changes in taxonomical profiles

lead to alterations in the metabolic potential of the porcine colon

microbiota, including repressing carbohydrate metabolism and

lysine biosynthesis [2]. It is not clear if the worm directly altered

the metabolic potential by local depletion of volatile organic

compounds (VOC) that are co-factors in carbohydrate and lysine

Figure 1. Localized changes in gene expression in the proximal colon epithelium. The relative changes in gene expression were
determined by real-time RT-PCR (TaqMan) and compared between T. suis-infected pigs with a high worm burden (High) and low worm burden
(worm-free or Low), and uninfected naı̈ve control pigs (CTRL).
doi:10.1371/journal.pone.0035470.g001

Table 1. Taxonomic profiles of the porcine colon microbiota.

Phylum Class Family Genus

Total 27 (29) 64 (34) 213 (223) 372 (778)

Mean 6sd 23.1861.66 52.5565.45 159.45616.26 238.36628.77

(28.0960.30) (34.0060.00) (220.1861.25) (661.55618.85)

Core 19 (28) 39 (34) 93 (217) 121 (592)

Numbers of taxa identified by MetaPhyler (MG-RAST) are listed (N = 11).
doi:10.1371/journal.pone.0035470.t001

Helminth Infection and Host Microbiota
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metabolism or affected metabolism upstream in the small intestine

to alter the composition of metabolites in the proximal colon [2].

All pigs infected with T. suis for 21 days had oleic acid in the

proximal colon that was not detected in parasite naı̈ve pigs [2].

This observation suggested that the worm altered fatty acid

absorption in the small intestine and that local increases in oleic

acid could exert antibacterial properties to alter the local

microbiome or lipolytic properties that are pro-inflammatory to

the mucosa [2]. In the current study, we characterized the porcine

colon microbiota at 53 days after inoculation with infective T. suis

eggs. Specifically, we examined the effect of worm burden on the

persistence of the altered proximal colon microbiota that was

detected at 21 days post infection. Between seven and nine weeks

after inoculation with infective T. suis eggs there is development of

a self-cure reaction that is represented by some pigs having a

persistent adult worm burden and localized inflammation, and

others that have few or no adult worms and a normal mucosa [15].

This is typical of mammalian host resistance expressed as a skewed

distribution of adult worm burden in genetically robust out-bred

populations. While the percentage of the genera significantly

affected was similar between the 21-day (13%) and 53-day

infections (48 genera out of the 372 genera identified using

Figure 2. Phylum-level relative composition of the microbiome in the porcine proximal colon. Boxes denote the inter-quartile range
between the 1st and 3rd quartiles (25 and 75%, respectively, N = 11). Blue: detected using MetaPhyler; Red: detected using MG-RAST. Y-axis: log scale.
doi:10.1371/journal.pone.0035470.g002

Figure 3. Relative abundance of 15 genera in the porcine proximal colon microbiota detected using MetaPhyler. Boxes denote the
inter-quartile range between the 1st and 3rd quartiles (25 and 75%, respectively). Blue: Parasite naı̈ve pigs (N = 3); Red: Infected pigs (N = 8). Symbol {}
denotes a possible novel genus within the taxon indicated. For example, Ruminococcaceae{family} indicates a possible novel genus within the family
Ruminococcaceae. A significant repression of relative abundance of the genus Fibrobacter and a possible novel genus in the phylum Fibrobacteres
was detected in the proximal colon microbiota of Trichuris suis infected pigs. Y-axis: log scale.
doi:10.1371/journal.pone.0035470.g003

Helminth Infection and Host Microbiota
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MetaPhyler <13%), the difference in temporal composition

profiles in the proximal colon microbiota was distinct. The most

abundant genera significantly affected by a 21-day infection

include Oscillibacter and Succinivibrio (both significantly decreased) as

well as Paraprevotella (a six-fold increase in its relative abundance

from 0.47% in the uninfected controls to 3.03% in the infected

pigs). However, the relative abundance of these genera was not

changed at 53 day post infection. The relative abundance of

Spirochaeta and Dorea was significantly decreased in pigs infected

with T. suis for 53 days, confirming the previous findings in the 21-

day study [2]. Among the ten most abundant genera in the

proximal colon microbiota of the parasite naive pigs (Fig. 3),

Fibrobacter was one of the genera with its relative abundance

significantly repressed by infection regardless of the worm burden

(Table 2). In addition, the MetaPhyler results indicated a possible

novel genus in the phylum Fibrobacteres in the porcine colon

microbiota, which was also significantly reduced by infection.

Sequence reads were analyzed independently using BLAT against

the first sequenced genome from the phylum Fibrobacteres,

Fibrobacter succinogenes S85 [23], a species that plays a critical role in

fiber digestion in the rumen. Sequence alignment confirmed a

significant reduction in abundance of Fibrobacter by infection. The

lower level of Fibrobacter abundance derived from the DNA

sequence alignment, compared to what was calculated from

predicted protein sequences, suggests the presence of novel

bacteria within the genus Fibrobacter or the phylum Fibrobacteres

in the porcine proximal colon microbiota with sufficient sequence

divergence from the S85 strain. Fibrobacter is known to possess a

unique array of hemicellulose-degrading enzymes and is an

efficient and prolific degrader of cellulose as its sole energy source

[23]. The relative abundance of another group of important

bacteria determining the fibrolytic capability in the rumen and

hindgut, Ruminococcus, ranked the 3rd most abundant genus in the

porcine proximal colon of parasite naive pigs, showed a 2-fold

reduction in response to T. suis infection (Fig. 3). These data

indicated that the fibrolytic capacity of the proximal colon

microbiota may be impaired by T. suis infection.

Infection of pigs with T. suis is associated with exacerbation of

campylobacteriosis [24–26], which is caused by bacteria such as

Campylobacter jejuni and C. coli and results in a broad range of

complications, including acute diarrhea. Infections by Campylobacter

disrupt the absorptive capacity of host epithelial cells [27].

However, Campylobacter does not normally cause colonic infection

in pigs without a concomitant T. suis infection [18]. IL-4, which is

strongly up-regulated by helminth infection, enhanced internali-

zation of intestinal pig epithelial cells by C. jejuni and subsequent

bacterial invasion in a dose-dependent manner [26], suggesting

this Th2 cytokine plays a critical role in the exacerbated pathology

resulting from dual infections of pigs with T. suis and Campylobacter

spp. Localized gene expression for IL-4 was not significantly

increased in the proximal colon at 53 days after inoculation

(Fig. 1), but was increased earlier in the course of infection [28]

which could have facilitated Campylobacter invasion in situ. In this

study, we observed a 3-fold increase in the relative abundance of

Campylobacter in the T. suis infected pigs. However, in the infected

worm-free pigs Campylobacter abundance was significantly de-

creased (Table 2). The T. suis-facilitated uptake and antigen

processing of Campylobacter spp by lymphoglandular complexes in

the pig colon and subsequent induction of local anti- Campylobacter

antibody responses in the ileum and colon could explain the

significant reduction in Campylobacter from the proximal colon of

worm-free infected pigs [29]. Thus, clearance of adult T. suis from

infected pigs may have a therapeutic effect against selected

bacterial pathogens that is inhibited by adult worm persistence.

Parasitic nematodes activate potent Th2-associated immune

responses that support resistance to infection and an asthma/

allergy related response that, if left uncontrolled, can contribute to

mucosal inflammation [30]. Enhanced gene expression of arg1 and

chia represent markers of Th2-induced alternatively activated

macrophages (AAM) that were diminished in the pig as the worms

were cleared from the proximal colon (Fig. 1). The chemokine

ligands ccl17 and ccl25 are related to AAM development and were

increased in pigs with high numbers of worms, although not to

significant levels of stimulation. The AAM plays a protective role

against helminth parasites that invade the mucosa of the small

intestine [31] and can regulate intestinal smooth muscle hyper-

contractility in response to infection [32]. This worm-dependent

modulation of AAM markers in T. suis-infected pigs was recently

supported by the loss of expression of related markers in the

proximal colon of T. muris-infected Balb/c mice soon after

expulsion (Madden et al., personal communication). Local gene

expression of muc5ac and retnlb in T. suis-infected pigs are related to

products that contribute directly to resistance to T. muris in the

colon of mice [33,34]. Unregulated expression of retnlb, however,

can also lead to mucosal inflammation during infection of mice

with T. muris [35] as well as the expression of ptgs2 and c3ar1 [36]

that are induced by asthma/allergy associated inflammation and

were differentially expressed in pigs with high T. suis worm burden

with increased mucosal pathology.

Epithelial cells responses to infection are protective against T.

muris [37,38] and the expression of cxcr2 in T. suis infected pigs may

relate to epithelial cell signaling as well as the expression of il13ra2

for its role in both epithelial and smooth muscle signaling (Madden

et al., personal communication) and localized control of

inflammation [30,39]. The increased gene expression of il10 and

il13 in infected pigs that had cleared adult T. suis, although not

statistically significant, indicated a trend toward and an anti-

inflammatory response in the proximal colon that supported the

appearance of a normal mucosa in these pigs.

The host ability to control infection with T. suis and modulate

the level of localized inflammation is dependent on adult worm

burden and changes in the intestinal microbiome and related

metabolic changes during the course of infection [2]. The

Table 2. Genera significantly impacted by helminth infection
in the porcine colon microbiota.

Genus Uninfected Worm Worm-free

Fibrobacter 2.72861.150a 0.43560.454b 0.42060.488b

Treponema 1.46860.195a 0.38260.432b 0.28960.346b

Spirochaeta 0.28060.082a 0.08060.072b 0.07760.077b

Dorea 0.18160.020a 0.08960.043b 0.10860.048b

Campylobacter 0.10860.045a 0.34060.573a 0.03260.012b

Brachyspira 0.05760.014a 0.02560.016b 0.02360.014b

Mycoplasma 0.02860.004a 0.01360.007b 0.01360.008b

Thermotoga 0.02460.008a 0.01260.007b 0.01360.007a

Actinobacillus 0.02260.001a 0.01460.004b 0.01360.005b

Francisella 0.01060.001a 0.00560.003b 0.00560.003b

Erysipelothrix 0.01060.003a 0.00560.003b 0.00560.002b

Numbers denote mean 6SD of percentage composition (N = 4). Only genera
significantly impacted detected by both MetaPhyler and MG RAST are listed.
Different superscripted letters indicated significantly different at P,0.05 based
on a modified t-test.
doi:10.1371/journal.pone.0035470.t002
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PLoS ONE | www.plosone.org 5 April 2012 | Volume 7 | Issue 4 | e35470



regulatory mechanisms involved are important to the rapid

removal of the worm that reduces the spread of infection and

reduces inflammation as well as the control of bacterial pathogens

like Campylobacter spp. that contribute to secondary disease and

represent a zoonotic threat to humans. There is also the

importance of understanding these events to maximize the

therapeutic potential of this nematode as a modulator of

inflammatory diseases in humans. What remains is to distinguish

the worm, microbiome, and host factors that skew these responses

in favor of healthy outcomes.

Materials and Methods

Animals and parasitology
Infection protocols and sampling were essentially similar to

those reported previously [2]. Briefly, 14 female piglets (Cross bred

of Landrace X Yorkshire X Poland China) at three months of age

were maintained indoors on sealed concretes with free access to a

balanced ration and water. No antibiotics were used during the

study. A single dose of infective T. suis eggs (26104 egg/pig) was

inoculated per os (N = 9). The infection was allowed to progress for

53 days after inoculation. Five other pigs of the same age were

orally dosed with PBS and served as parasite naive controls. All

pigs were sacrificed at the same date when the infection reached

53 days. Animal management and handling were conducted based

on a protocol specifically approved by the USDA-ARS Beltsville

Area Animal Care and Use Committee (Protocol #10-011),

following Institutional Animal Care and Use Committees

(IACUC) guidelines. Luminal fecal contents were collected from

the proximal colon at ,30 cm from the ileal/caecal junction.

Colon tissue samples were also collected at ,30 cm from this

junction. The pH of the contents was measured using a hand-held

pH meter for semi-solid materials. Both fecal and tissue samples

were snap frozen in liquid nitrogen prior to storage at 280uC until

metagenomic DNA and total RNA were extracted. Colon

pathology was examined by virtual and microscopic observation

[18]. Trichuris suis worms at this stage of the infection can be

visually counted on the surface of the mucosa. The pigs were free

of inadvertent Ascaris suum infection based on the absence of worms

from the small intestines and white spot lesions on the liver.

Quantitative reverse transcriptase (RT)-PCR
Total RNA samples extracted from the epithelial cell layer of

the proximal colon that was separated manually by peeling it away

from the muscularis of T. suis-infected (three pigs with worms and

five with no detected worms) and five uninfected pigs [28],

Table 3. Gene Ontology (GO) terms significantly affected by helminth infection.

GO Term Description Uninfected Worm Worm-free

GO:0006412 translation 2.51560.039a 2.28560.108b 2.42060.087a

GO:0005622 intracellular 1.77460.061a 1.65060.079a 1.64760.053b

GO:0003735 structural constituent of ribosome 1.09760.053a 0.92860.059b 0.98660.061a

GO:0005840 ribosome 1.08360.050a 0.91860.057b 0.97360.061a

GO:0006096 glycolysis 0.33960.004a 0.35060.007b 0.35460.009b

GO:0016769 transferase activity 0.26560.007a 0.27860.010a 0.28660.007b

GO:0044237 cellular metabolic process 0.23260.013a 0.25260.008b 0.24860.014a

GO:0016829 lyase activity 0.22960.009a 0.21360.008b 0.22160.003a

GO:0009253 peptidoglycan catabolic process 0.16560.003a 0.18660.020a 0.18760.008b

GO:0016740 transferase activity 0.12560.006a 0.15660.017b 0.14460.014a

GO:0008484 sulfuric ester hydrolase activity 0.12460.005a 0.16360.021b 0.14560.014a

GO:0004672 protein kinase activity 0.11460.006a 0.08060.011b 0.08960.012b

GO:0006468 protein amino acid phosphorylation 0.10260.007a 0.07360.016b 0.08060.011b

GO:0008134 transcription factor binding 0.08260.008a 0.07060.006a 0.06960.004b

GO:0016620 oxidoreductase activity 0.07960.001a 0.07160.006a 0.07260.004b

GO:0016114 terpenoid biosynthetic process 0.07960.009a 0.09160.004a 0.08860.005b

GO:0016810 hydrolase activity [C-N bonds] 0.07760.002a 0.09160.008b 0.08760.010a

GO:0008237 metallopeptidase activity 0.07760.004a 0.08860.001b 0.09060.006b

GO:0009236 cobalamin biosynthetic process 0.07460.015a 0.12560.012b 0.10360.013b

GO:0005529 sugar binding 0.07460.005a 0.09160.011b 0.08960.008b

GO:0006526 arginine biosynthetic process 0.06660.005a 0.05660.004b 0.05660.003b

GO:0045261 ATP synthase complex [F(1)] 0.06360.004a 0.07360.010a 0.07660.005b

GO:0000902 cell morphogenesis 0.06160.003a 0.06960.005a 0.06960.004b

GO:0004332 fructose-bisphosphate aldolase activity 0.06060.002a 0.05360.003b 0.05560.002b

GO:0004356 glutamate-ammonia ligase activity 0.05460.003a 0.04460.009a 0.04560.003b

GO:0003883 CTP synthase activity 0.05060.001a 0.04060.005b 0.04260.003b

GO:0006221 pyrimidine nucleotide biosynthesis 0.05060.001a 0.04060.005b 0.04260.003b

103 out of the 1390 GO terms were significantly impacted based on a modified t-test. GO terms with relative abundance .0.05% were listed. Numbers denote the
percentage of Pfam protein families assigned to each category (mean 6sd). Different superscript letters indicate P ,0.05.
doi:10.1371/journal.pone.0035470.t003
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including all pigs used for the microbiome study. Briefly, frozen

tissue sections removed from pigs at necropsy and placed

immediately in liquid nitrogen followed by storage at 280C until

use. Tissues were subsequently homogenized in Trizol (Invitrogen,

Grand Island, NY) and RNA was extracted from homogenized

samples according to the manufacturer’s instruction. The

extracted RNA was treated with DNase in the presence of RNase

inhibitor. RNA integrity, quantity, and genomic DNA contami-

nation were assessed using the Experion RNA Analysis Chips (Bio-

Rad). cDNA was synthesized using iScript cDNA Synthesis kit

from Bio-Rad. The sequence of probes and primers and running

conditions of RT-PCR were obtained from the DGIL Porcine

Immunology and Nutrition Database http://www.ars.usda.gov/

Services/docs.htm?docid = 6065. Primers and high-performance

liquid chromatography-purified, 59,6-carboxy-4,7,29,79-tetrachlor-

ofluorescein-, 39 Black Hole Quencher-1-labeled fluorescent

probes were synthesized (Biosource, Camarillo, CA). Real-time

RT-PCR was performed using 15 ng/well of cDNA in 15 ml on an

ABI 7900 sequence detector system (Applied Biosystems, Foster

City, CA). Data for gene expression were normalized to the

housekeeping gene RPL32 and converted to DCT [40–41].

Metagenomic DNA extraction and sequencing
Metagenomic DNA was extracted from fecal samples using a

QIAamp DNA stool kit (Qiagen, Valenica, CA) with modifications

to the protocol described [22,42]. DNA integrity was verified using

a Bioanalyzer 2100 (Agilent, Palo Alto, CA). Metagenomic DNA

concentration was quantified by fluorometry. Approximately

1.0 mg of high-quality DNA was processed using an Illumina

TruSeq DNA sample prep kit following manufacturer’s instruction

(Illumina, San Diego, CA, USA). Final individual libraries were

validated, pooled based on their respective 6-bp adaptors and

sequenced at 100 bp/sequence read using an Illumina HiSeq

2000 sequencer. Approximately 47,958,917610,634,382 (mean

6sd) raw sequence reads per sample were generated for this study.

Sequence reads were deposited to the MG-RAST and are

publically accessible at the metagenomic analysis server (http://

metagenomics.anl.gov/) (accession# 4474250.3 to 4474257.3,

4474259.3, 4474261.3, and 4474262.3).

Data analysis and statistics
Metagenomic DNA samples extracted from the proximal colon

microbiota of three parasite naı̈ve and eight infected pigs (4 with

adult worms and 4 worm-free) were sequenced. Raw sequence

reads from the WGS approach were first trimmed using

SolexaQA, a Perl-based software package calculating quality

statistics from FASTQ files generated by Illumina sequencers [43].

Reads of host origin were then removed using Bowtie [44]. The

resultant quality reads were then analyzed using MetaPhyler [16].

The relative abundance data from MetaPhyler were analyzed

based on a modified t-test [45]

Raw sequence reads were uploaded into a MG-RAST server

[46] for quantitative views of the microbial populations in the

lumen of the pig proximal colon based on WGS sequence data.

The data were then analyzed following the MG-RAST pipeline

(v3.0) including quality filtering, dereplication to remove possible

sequencing artifacts, and removal of host contaminants. Open

reading frames (ORF) were then predicted using FragGeneScan

[47], a recently developed program combining sequencing error

models and codon usages in a hidden Markov model to improve

the prediction of protein-coding region in short reads. The

microbial classification was then obtained using the lowest

common ancestor method in the pipeline. Sequence counts

positively assigned to a given taxon at the phylum-, class-,

family-, and genus- levels were normalized. Compositional

differences between MetaPhyler and MG-RAST annotation

platforms were analyzed using an unpaired t- test.

Quality WGS sequences were de novo assembled using

SOAPdenovo software [19]. ORF were predicted from all contigs

Figure 4. Differences in functional profiles and metabolic
potentials of the porcine proximal colon microbiota between
uninfected (CT) and infected groups (Worm and Worm-free).
Principal component analysis (PCA) was performed using the ade4
package in R based on relative abundance of 50 selected function
classes assigned using the eggNOG database.
doi:10.1371/journal.pone.0035470.g004

Figure 5. Functional categories affected by Trichuris suis
infection in the porcine proximal colon microbiota annotated
using the eggNOG database. The class labeled ‘‘unknown’’, which
accounted for 61.34% of hits, were not included. * denotes significantly
impacted by infection, regardless of the worm burden.
doi:10.1371/journal.pone.0035470.g005
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greater than 200 bp using FragGeneScan (v1.14). Functional

annotation was further performed according to the KEGG and

Pfam (v24.0) databases. Pfam 24.0 seed alignments were

downloaded, and a database of core profile HMMs was compiled

using the HMMSCAN software package (v3.0), which was used to

annotate predicted proteins.

Acknowledgments

We’d like to thank Ashley Sperling and Alicia Beavers for their excellent

technical assistance. Mention of trade names or commercial products in

this publication is solely for the purpose of providing specific information

and does not imply recommendation or endorsement by the U. S.

Department of Agriculture. The USDA is an equal opportunity provider

and employer.

Author Contributions

Conceived and designed the experiments: RWL. Performed the experi-

ments: RWL EB HDD JFU. Analyzed the data: SW WL RWL. Wrote the

paper: RWL.

References

1. Dawson HD (2011) A comparative assessment of the pig, mouse and human

genomes. In: McAnulty PA, Dayan, A.D, Ganderup, N.C, Hastings, K.L, eds.

The minipig in biomedical research: CRC Press. pp 323–342.

2. Li RW, Wu S, Li W, Navarro K, Couch RD, et al. (2012) Alterations in the

colon microbiota induced by the gastrointestinal nematode Trichuris suis.

Infection and Immunity.

3. Xu J, Mahowald MA, Ley RE, Lozupone CA, Hamady M, et al. (2007)

Evolution of symbiotic bacteria in the distal human intestine. PLoS biology 5:

e156.

4. Neeb ZP, Edwards JM, Alloosh M, Long X, Mokelke EA, et al. (2010) Metabolic

syndrome and coronary artery disease in Ossabaw compared with Yucatan

swine. Comparative medicine 60: 300–315.

5. Roepstorff A, Mejer H, Nejsum P, Thamsborg SM (2011) Helminth parasites in

pigs: new challenges in pig production and current research highlights.

Veterinary parasitology 180: 72–81.

6. Summers RW, Elliott DE, Urban JF, Thompson RA, Weinstock JV (2005)

Trichuris suis therapy for active ulcerative colitis: a randomized controlled trial.

Gastroenterology 128: 825–832.

7. Stephenson LS, Holland CV, Cooper ES (2000) The public health significance

of Trichuris trichiura. Parasitology 121 Suppl: S73–95.

8. Boes J, Helwigh AB (2000) Animal models of intestinal nematode infections of

humans. Parasitology 121 Suppl. pp S97–111.

9. Summers RW, Elliott DE, Qadir K, Urban JF, Thompson R, et al. (2003)

Trichuris suis seems to be safe and possibly effective in the treatment of

inflammatory bowel disease. The American journal of gastroenterology 98:

2034–2041.

10. Van Kruiningen HJ, West AB (2005) Potential danger in the medical use of

Trichuris suis for the treatment of inflammatory bowel disease. Inflammatory

bowel diseases 11: 515.

11. Bager P, Kapel C, Roepstorff A, Thamsborg S, Arnved J, et al. (2011)

Symptoms after ingestion of pig whipworm Trichuris suis eggs in a randomized

placebo-controlled double-blind clinical trial. PloS one 6: e22346.

12. Shanahan F (2001) Inflammatory bowel disease: immunodiagnostics, immu-

notherapeutics, and ecotherapeutics. Gastroenterology 120: 622–635.

13. Seksik P, Rigottier-Gois L, Gramet G, Sutren M, Pochart P, et al. (2003)

Alterations of the dominant faecal bacterial groups in patients with Crohn’s

disease of the colon. Gut 52: 237–242.

14. Famularo G, Mosca L, Minisola G, Trinchieri V, De Simone C (2003) Probiotic

lactobacilli: a new perspective for the treatment of inflammatory bowel disease.

Current pharmaceutical design 9: 1973–1980.

15. Kringel H, Roepstorff A (2006) Trichuris suis population dynamics following a

primary experimental infection. Veterinary parasitology 139: 132–139.

16. Liu B, Gibbons T, Ghodsi M, Treangen T, Pop M (2011) Accurate and fast

estimation of taxonomic profiles from metagenomic shotgun sequences. BMC

Genomics 12 Suppl 2: S4.

17. Meyer F, Paarmann D, D’Souza M, Olson R, Glass EM, et al. (2008) The

metagenomics RAST server – a public resource for the automatic phylogenetic

and functional analysis of metagenomes. BMC Bioinformatics 9: 386.

18. Mansfield LS, Urban JF Jr. (1996) The pathogenesis of necrotic proliferative

colitis in swine is linked to whipworm induced suppression of mucosal immunity

to resident bacteria. Veterinary immunology and immunopathology 50: 1–17.

19. Li R, Yu C, Li Y, Lam TW, Yiu SM, et al. (2009) SOAP2: an improved ultrafast

tool for short read alignment. Bioinformatics 25: 1966–1967.

Figure 6. Select pathways were significantly affected infection with Trichuris suis in the porcine proximal colon microbiota. Numbers
denote the percentage of hits positively assigned to each pathway. Different colors (Red or Yellow) indicate a significant difference between the
cohorts infected with Trichuris suis that had adults worms (Worm) and the infected cohort where adult worms had been expelled (Worm-free). The
numbers with a Blue font denote significant difference in relative abundance between uninfected control and infected (Worm + Worm-free) groups.
doi:10.1371/journal.pone.0035470.g006

Helminth Infection and Host Microbiota

PLoS ONE | www.plosone.org 8 April 2012 | Volume 7 | Issue 4 | e35470



20. Festi D, Schiumerini R, Birtolo C, Marzi L, Montrone L, et al. (2011) Gut

microbiota and its pathophysiology in disease paradigms. Digestive diseases 29:
518–524.

21. Young VB (2011) The intestinal microbiota in health and disease. Current

opinion in gastroenterology.
22. Li RW, Wu S, Li W, Huang Y, Gasbarre LC (2011) Metagenome plasticity of

the bovine abomasal microbiota in immune animals in response to Ostertagia
ostertagi infection. PloS one 6: e24417.

23. Suen G, Weimer PJ, Stevenson DM, Aylward FO, Boyum J, et al. (2011) The

complete genome sequence of Fibrobacter succinogenes S85 reveals a
cellulolytic and metabolic specialist. PloS one 6: e18814.

24. Mansfield LS, Gauthier DT, Abner SR, Jones KM, Wilder SR, et al. (2003)
Enhancement of disease and pathology by synergy of Trichuris suis and

Campylobacter jejuni in the colon of immunologically naive swine. The
American journal of tropical medicine and hygiene 68: 70–80.

25. Shin JL, Gardiner GW, Deitel W, Kandel G (2004) Does whipworm increase

the pathogenicity of Campylobacter jejuni? A clinical correlate of an
experimental observation. Canadian journal of gastroenterology = Journal

canadien de gastroenterologie 18: 175–177.
26. Parthasarathy G, Mansfield LS (2009) Recombinant interleukin-4 enhances

Campylobacter jejuni invasion of intestinal pig epithelial cells (IPEC-1).

Microbial pathogenesis 47: 38–46.
27. Zheng J, Meng J, Zhao S, Singh R, Song W (2008) Campylobacter-induced

interleukin-8 secretion in polarized human intestinal epithelial cells requires
Campylobacter-secreted cytolethal distending toxin- and Toll-like receptor-

mediated activation of NF-kappaB. Infection and immunity 76: 4498–4508.
28. Kringel H, Iburg T, Dawson H, Aasted B, Roepstorff A (2006) A time course

study of immunological responses in Trichuris suis infected pigs demonstrates

induction of a local type 2 response associated with worm burden. International
journal for parasitology 36: 915–924.

29. Mansfield LS, Gauthier DT (2004) Lymphoglandular complexes are important
colonic sites for immunoglobulin A induction against Campylobacter jejuni in a

swine disease model. Comparative medicine 54: 514–523.

30. Wilson MS, Ramalingam TR, Rivollier A, Shenderov K, Mentink-Kane MM,
et al. (2011) Colitis and intestinal inflammation in IL10-/- mice results from IL-

13Ralpha2-mediated attenuation of IL-13 activity. Gastroenterology 140:
254–264.

31. Anthony RM, Urban JF Jr. AlemF, Hamed HA, Rozo CT, et al. (2006) Memory
T(H)2 cells induce alternatively activated macrophages to mediate protection

against nematode parasites. Nature medicine 12: 955–960.

32. Zhao A, Urban JF Jr., Anthony RM, Sun R, Stiltz J, et al. (2008) Th2 cytokine-
induced alterations in intestinal smooth muscle function depend on alternatively

activated macrophages. Gastroenterology 135: 217–225 e211.
33. Hasnain SZ, Evans CM, Roy M, Gallagher AL, Kindrachuk KN, et al. (2011)

Muc5ac: a critical component mediating the rejection of enteric nematodes. The

Journal of experimental medicine 208: 893–900.

34. Artis D, Wang ML, Keilbaugh SA, He W, Brenes M, et al. (2004) RELMbeta/

FIZZ2 is a goblet cell-specific immune-effector molecule in the gastrointestinal

tract. Proceedings of the National Academy of Sciences of the United States of

America 101: 13596–13600.

35. Nair MG, Guild KJ, Du Y, Zaph C, Yancopoulos GD, et al. (2008) Goblet cell-

derived resistin-like molecule beta augments CD4+ T cell production of IFN-

gamma and infection-induced intestinal inflammation. Journal of immunology

181: 4709–4715.

36. Khodoun M, Strait R, Orekov T, Hogan S, Karasuyama H, et al. (2009)

Peanuts can contribute to anaphylactic shock by activating complement. The

Journal of allergy and clinical immunology 123: 342–351.

37. Cliffe LJ, Humphreys NE, Lane TE, Potten CS, Booth C, et al. (2005)

Accelerated intestinal epithelial cell turnover: a new mechanism of parasite

expulsion. Science 308: 1463–1465.

38. Zaiss DM, Yang L, Shah PR, Kobie JJ, Urban JF, et al. (2006) Amphiregulin, a

TH2 cytokine enhancing resistance to nematodes. Science 314: 1746.

39. Morimoto M, Zhao A, Madden KB, Dawson H, Finkelman FD, et al. (2006)

Functional importance of regional differences in localized gene expression of

receptors for IL-13 in murine gut. Journal of immunology 176: 491–495.

40. Dawson HD, Beshah E, Nishi S, Solano-Aguilar G, Morimoto M, et al. (2005)

Localized multigene expression patterns support an evolving Th1/Th2-like

paradigm in response to infections with Toxoplasma gondii and Ascaris suum.

Infection and immunity 73: 1116–1128.

41. Higuchi R, Fockler C, Dollinger G, Watson R (1993) Kinetic PCR analysis: real-

time monitoring of DNA amplification reactions. Biotechnology (N Y) 11:

1026–1030.

42. Li RW, Connor EE, Li C, Baldwin Vi RL, Sparks ME (2012) Characterization

of the rumen microbiota of pre-ruminant calves using metagenomic tools.

Environmental microbiology 14: 129–139.

43. Cox MP, Peterson DA, Biggs PJ (2010) SolexaQA: At-a-glance quality

assessment of Illumina second-generation sequencing data. BMC Bioinformatics

11.

44. Langmead B, Trapnell C, Pop M, Salzberg SL (2009) Ultrafast and memory-

efficient alignment of short DNA sequences to the human genome. Genome

biology 10: R25.

45. White JR, Nagarajan N, Pop M (2009) Statistical methods for detecting

differentially abundant features in clinical metagenomic samples. PLoS

computational biology 5: e1000352.

46. Glass EM, Wilkening J, Wilke A, Antonopoulos D, Meyer F (2010) Using the

metagenomics RAST server (MG-RAST) for analyzing shotgun metagenomes.

Cold Spring Harbor protocols 2010: pdb prot5368.

47. Rho M, Tang H, Ye Y (2010) FragGeneScan: predicting genes in short and

error-prone reads. acids research 38: e191.

Helminth Infection and Host Microbiota

PLoS ONE | www.plosone.org 9 April 2012 | Volume 7 | Issue 4 | e35470


