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Abstract

Background: Clinical trials demonstrate the effectiveness of cell-based therapeutic angiogenesis in patients with severe
ischemic diseases; however, their success remains limited. Maintaining transplanted cells in place are expected to augment
the cell-based therapeutic angiogenesis. We have reported that nano-hydroxyapatite (HAp) coating on medical devices
shows marked cell adhesiveness. Using this nanotechnology, HAp-coated poly(L-lactic acid) (PLLA) microspheres, named
nano-scaffold (NS), were generated as a non-biological, biodegradable and injectable cell scaffold. We investigate the
effectiveness of NS on cell-based therapeutic angiogenesis.

Methods and Results: Bone marrow mononuclear cells (BMNC) and NS or control PLLA microspheres (LA) were
intramuscularly co-implanted into mice ischemic hindlimbs. When BMNC derived from enhanced green fluorescent protein
(EGFP)-transgenic mice were injected into ischemic muscle, the muscle GFP level in NS+BMNC group was approximate
fivefold higher than that in BMNC or LA+BMNC groups seven days after operation. Kaplan-Meier analysis demonstrated that
NS+BMNC markedly prevented hindlimb necrosis (P,0.05 vs. BMNC or LA+BMNC). NS+BMNC revealed much higher
induction of angiogenesis in ischemic tissues and collateral blood flow confirmed by three-dimensional computed
tomography angiography than those of BMNC or LA+BMNC groups. NS-enhanced therapeutic angiogenesis and
arteriogenesis showed good correlations with increased intramuscular levels of vascular endothelial growth factor and
fibroblast growth factor-2. NS co-implantation also prevented apoptotic cell death of transplanted cells, resulting in
prolonged cell retention.

Conclusion: A novel and feasible injectable cell scaffold potentiates cell-based therapeutic angiogenesis, which could be
extremely useful for the treatment of severe ischemic disorders.
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Introduction

Severe ischemic vascular disease is caused by atherosclerotic

occlusion of the arteries supplying blood to the myocardium and

limbs. We and other groups have reported the clinical efficacy and

safety of therapeutic angiogenesis by cell transplantation as an

optional treatment for these diseases [1–4], although the

effectiveness of this approach is still limited [5]. Various cell

types, including autologous bone marrow mononuclear cells

(BMNCs), stem cells, endothelial progenitor cells (EPCs), and

peripheral blood mononuclear cells (PBMNCs), have been

implanted to induce neovascularization for the treatment of

ischemic heart disease and peripheral arterial disease [1–4,6].

With few exceptions, the administration route is injection into the

ischemic tissue. Various angiogenic growth factors derived from

implanted cells are key mediators of therapeutic angiogenesis

[3,7,8]. However, about 70%–90% of the transplanted cells were

estimated to disappear from the injection site within 1 week after

transplantation [9–11]. Therefore, the efficacy of the cell-based

therapeutic angiogenesis could be dependent on the retention,

survival, and engraftment of implanted cells in ischemic tissue after

implantation.

In order to enhance the retention, survival, and engraftment of

implanted cells, several approaches have been reported including

genetic manipulation of donor cells (e.g., overexpression of

antiapoptotic genes) [1,6,7] and cell delivery strategies using
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matrix scaffolds [12–14]. These strategies were reported to

successfully promote long-term cell survival and capillary forma-

tion, resulting in functional recovery of perfusion in ischemic

organs. However, the cumbersome procedures and techniques

required may be an obstacle to the treatment of large numbers of

cells in clinical use. Therefore, simple, safe and effective novel

approaches to retain transplanted cells in place are urgently

required.

Hydroxyapatite (HAp) is the main mineral component of bones

and teeth, and artificially synthesised HAp has been used

extensively as a biomaterial because of its excellent adhesive

properties, not only to hard and soft tissues but also to cells of

various types [15]. However, due to the mechanical weakness and

brittleness of HAp ceramics, they have been confined to

applications with low mechanical stress. To overcome its

mechanical weakness, we recently developed a high-dispersed

and crystallised nano-scale HAp coating for flexible polymer

substrates [16–18]. The novel composite retained most of the

mechanical properties of the substrate [16] and showed improved

cell adhesion and reduced inflammatory reaction due to the

surface HAp nanocrystals [17–20]. Poly(L-lactic acid) (PLLA)

microspheres were used as a polymer substrate, to generate the

biodegradable and injectable cell scaffold. PLLA is one of the most

promising biodegradable polymers and has been used in the fields

of orthopaedic and reconstructive surgery and tissue engineering

[21] as it is not necessary to remove the material after healing.

However, PLLA has the disadvantage of low cell adhesion due to

its hydrophobic surface [22]. Our HAp nanocrystal coating is

expected to overcome the disadvantages of PLLA microspheres

[20]. Thus, nano-scale HAp-coated PLLA microspheres, named

nano-scaffold (NS), were generated using our nanotechnology as a

non-biological, biodegradable and injectable type of cell scaffold.

In this study, we investigated the ability of NS to enhance cell-

based therapeutic angiogenesis by retention of implanted cells.

Methods

Animals
BALB/cAJcl mice were purchased from Clea Japan, Inc.

(Tokyo, Japan). Enhanced green fluorescent protein (EGFP)-

transgenic C57/BL6-Tg (CAG-EGFP) mice and wild-type

C57BL/6NCrSlc mice were purchased from Japan SLC, Inc.

(Hamamatsu, Japan). The procedures used in this study were

approved by the Animal Care and Use Committee of Osaka City

University Graduate School of Medicine, Osaka, Japan (approval

number, 09023).

Materials
The PLLA microspheres (PLA-Particles), PLLA microspheres

containing rhodamine B (PLA-Particles-redF) and PLLA micro-

spheres containing magnetite (PLA-Particles-M) were purchased

from Micromod Partikeltechnologie (Rostock, Germany).

Rat anti-CD31 antibody (clone: MEC13.3) was obtained from

BD Pharmingen (San Diego, CA). The avidin-biotin complex

(ABC) kit and the 3,39-diaminobenzidine (DAB) substrate kit were

purchased from Vector Laboratories (Burlingame, CA). Rat

monoclonal anti-vascular endothelial growth factor (VEGF)

antibody (clone: RM0009-2G02) was purchased from Angio-

Proteomie (Boston, MA). Rabbit polyclonal anti-fibroblast growth

factor-2 (FGF-2) antibody was obtained from Abcam (Cambridge,

UK). Alexa Fluor 594-conjugated goat anti-rat IgG antibody and

Alexa Fluor 594-conjugated chicken anti-rabbit IgG antibody

were purchased from Invitrogen Life Technologies (Carlsbad,

CA). 49,6-Diamino-2-phenylindole dihydrochloride (DAPI) was

obtained from Pierce Biotechnology (Rockford, IL). Enzyme-

linked immunosorbent assay (ELISA) kits for VEGF, FGF-2,

interleukin 1-b (IL-1b), monocyte chemotactic protein-1 (MCP-1)

and stromal cell-derived factor-1 (SDF-1) were purchased from

R&D Systems (Minneapolis, Minn). The GFP ELISA kit was

obtained from Cell Biolabs (San Diego, CA). Barium sulphate was

purchased from Sakai Chemical Industry (Osaka, Japan) and used

as contrast material for three-dimensional computed tomography

(3D-CT) angiography.

Fabrication of HAp nanocrystals and injectable cell
scaffold

The dispersed HAp nanocrystals with an average diameter of

50 nm and rod-like shape were prepared with a wet chemical

process and used after calcination with an antisintering agent—

poly(acrylic acid, calcium salt)—at 800uC for 1 hour, as described

in our previous reports [23]. HAp nanocrystal-coated PLLA

microspheres were fabricated as described [24]. Briefly, the PLLA

microspheres (0.1 g) were treated with alkali (pH 11.0; adjusted

with 25% ammonia solution) for 1 h at room temperature to

introduce carboxyl groups onto the surfaces, washed with water,

and then dried under reduced pressure. The alkali-treated and

dried microspheres were washed with ethanol and immersed in a

1.0% HAp ethanol dispersion for 1 h at room temperature with

stirring. The HAp-coated PLLA was washed five times with

ethanol by sonication for 3 min, dried under reduced pressure,

and used as NS. Bare PLLA microspheres (LA) were used as

controls. The NS and LA were characterised in terms of size,

particle size distribution and morphology using scanning electron

microscopy.

BMNC isolation
Isolation of BMNCs was performed as described [25]. Briefly,

BMNCs were harvested from 8-week-old male mice [BALB/cAJcl

or C57/BL6-Tg (CAG-EGFP)] by washing of the tibiae and

femora with serum-free Dulbecco’s Modified Eagle’s Medium

(DMEM) and separated using Ficoll-Paque Plus (GE Healthcare

AB, Sweden).

BMNC adhesion on microspheres in vitro and scanning
electron microscopy observation

Murine BMNCs (56106 cells) were incubated with each

microsphere preparation (3,000 particles) at 37uC for 8 h. After

incubation, microspheres were harvested using a cell strainer (35-

mm nylon mesh; BD Falcon, Japan). The samples were fixed with

2.5% glutaraldehyde for 1 h and dehydrated with aqueous ethanol

(30%, 50%, 70%, 90%, 99%, 100%) media and 100% n-butanol

for 15 min in each step. They were subsequently lyophilized and

observed under scanning electron microscopy (SEM) (JSM-6301F;

JEOL Ltd., Tokyo, Japan) operated at 5 kV.

BMNC transplantation in hind limb ischemia model
Eight-week-old male mice (BALB/cAJcl or C57BL/6NCrSlc)

were used for the hind limb ischemia model. Unilateral hind limb

ischemia was induced by resection of the left femoral arteries, veins

and side branches under anaesthesia with sodium pentobarbital

(50 mg/g) injected intraperitoneally (i.p.) as described [26].

BMNCs (56106 cells) were suspended in 100 mL of serum-free

DMEM with or without 1.5 mg (3,000 particles) of NS or LA, and

incubated at 37uC for 3 h. Immediately after operative resection of

the artery and vein, 100 mL of the suspension including 56106

cells and/or 3,000 particles of each microsphere preparation was

injected intramuscularly into the ischemic thigh muscle at 4 sites
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(25 mL/site) using a 22-gauge needle as described elsewhere [27].

Ischemic operation, cell transplantation and evaluation of limb

necrosis were performed by separate operators in a blinded

manner.

Measurement of GFP and proangiogenic factors in
ischemic tissue

We collected whole thigh muscle tissues 3, 7 and 14 days after

induction of limb ischemia. The tissue lysate was prepared using a

modification of the technique described by Abbott et al. [28].

Briefly, tissue extracts from thigh muscle were prepared by

homogenization and lysis with 50 mM Tris-HCl, 5 mM EDTA,

250 mM NaCl, 50 mM NaF, 0.5 mM Na3VO4, 10 mM b-GP,

0.5% NP-40 and protease inhibitor cocktail (Nacalai Tesque, Inc.

Japan). The homogenate was centrifuged for 5 min at 10,0006g.

The clear supernatant was collected and used for quantification of

GFP, proangiogenic factors (VEGF, FGF-2, MCP-1, SDF-1 and

IL-1b) and total protein content. Total protein content of each

sample was determined by bicinchoninic protein assay. Proangio-

genic factors and GFP were quantified using the respective ELISA

kits in accordance with the manufacturer’s instructions.

Immunohistochemistry and analysis of vessel numbers
Thigh tissue sections were prepared using a modification of the

technique described by Clausen et al. [29]. Briefly, mice were

anaesthetized with pentobarbital (i.p.) and perfused through the

left ventricle using 20 ml of saline followed by 100 ml of cold 4%

paraformaldehyde (PFA) in phosphate buffer (PB). The thigh tissue

was post-fixed in 4% PFA for 2 h. The tissue was then embedded

in paraffin or immersed in 20% sucrose in PB overnight followed

by freezing in OCT compound (Sakura Finetek, Co. Japan).

Paraffin-embedded sections were used for immunohistochemical

staining of CD31 as described [30]. Following deparaffinization

and rehydration of the sections, endogenous peroxidase activity

was blocked using 0.3% hydrogen peroxide before application of

blocking serum. Sections were then incubated with anti-CD31

antibody. Immunohistochemical staining was performed by the

avidin-biotin complex method (ABC Kit). Colour was developed

with DAB. Sections were counterstained with hematoxylin (Sigma

Diagnostics, MO). CD31-positive capillary numbers were counted

in 4 fields of the injection site. The injection site landmarks were

the microspheres (NS or LA). The frozen sections were incubated

with anti-mouse VEGF antibody or anti-mouse FGF-2 antibody,

followed by incubation with fluorescent secondary antibodies and

counterstaining with DAPI. Immunofluorescence was observed

using a fluorescence microscope (BZ-8000; Keyence, Osaka,

Japan).

CT analysis, 3D-CT angiography, and vascular volume
measurement

We used PLLA microspheres containing magnetite (PLA-

Particles-M) as control LA and the core of NS to be detected by

X-ray CT scan. Angiography was performed using the technique

described by Zhuang et al. [31] with slight modifications. Briefly,

BALB/cAJcl mice were anaesthetised with sodium pentobarbital

(50 mg/g, i.p.) and injected with 5 ml/g barium sulphate

suspension (90 w/v%) directly into the left ventricle. CT images

were obtained using a micro-CT scanner (La Theta LCT200;

Aloka, Tokyo, Japan) according to the manufacturer’s protocol.

The 3D data were constructed from sliced CT images by summing

those images along the Z-axis, and vascular volume analysis was

performed with an image analyzer (VGStudio MAX software;

Volume Graphics, Heidelberg, Germany) according to the

manufacturer’s protocol.

Terminal deoxynucleotidyl transferase-mediated biotin-
16-dUTP nick-end labelling (TUNEL) Assay

Apoptotic transplanted BMNCs and host cells were evaluated

10 days after limb ischemia by TUNEL assay in frozen sections

with an In Situ Cell Death Detection Kit, TMR Red (Roche

Laboratories) in accordance with the instructions provided by the

manufacturer.

Statistical analysis
Data are presented as means (SD). Statistical significance was

evaluated by ANOVA and Scheffé’s test for comparison and

contrast between multiple groups. Plots of the estimated limb

survival ratio after the operation were constructed by the Kaplan-

Meier method and were compared using the log-rank test. In all

analyses, P,0.05 was taken to indicate significance.

Additional descriptions of experimental procedures can be

found in Methods S1.

Results

Characteristic of nano-scaffold (NS) with enhanced
adhesiveness of bone marrow mononuclear cells
(BMNCs) in vitro

NS are microspheres approximately 100 mm in diameter

(Fig. 1A-a), the surfaces of which are coated with a monolayer

of HAp nanoparticles 50 nm in diameter (Fig. 1A-b, -c, -d). To

assess the cell adhesiveness of NS, SEM was performed after

incubation of NS and bare PLLA microspheres (LA) as controls

with murine BMNCs at 37uC for 8 h in vitro. The number of cells

adhering to NS was much greater than that to LA (Fig. 1B-a and

b). High-magnification SEM images showed active cell adhesion to

NS (Fig. 1B-c).

NS prolonged localization of implanted BMNCs in
ischemic tissue

To determine the colocalization of implanted cells with injected

microspheres, BMNCs from EGFP-transgenic mice and rhoda-

mine B-containing PLLA microspheres (orange) as a scaffold core

or control microspheres were implanted into the ischemic hind

limbs of C57BL/6NCrSlc mice (Fig. 2A). Few implanted BMNCs

were observed around LA (Fig. 2A-a), while markedly larger

numbers of cells were seen with NS (Fig. 2A-b) in ischemic thigh

tissue 7 days after transplantation. Intramuscular levels of GFP

derived from transplanted BMNCs were consistently and signif-

icantly higher in the group injected with NS than that injected

with LA or BMNCs alone at 3, 7 and 14 days after implantation,

while GFP levels were not significantly different between BMNCs

alone and LA+BMNCs groups (Fig. 2B).

Co-implantation of NSs enhances limb salvage by BMC
implantation

Hind limb ischemia in BALB/c mice was used as an intractable

ischemia model as these mice show little spontaneous collateral

vessel formation in response to ischemia with ischemic hind limb

necrosis [1] (Fig. 3A). The limb survival ratios after the operation

in each group were compared using Kaplan-Meier analysis and

log-rank statistics (Fig. 3B). In this limb ischemic model,

approximately 90% of mice treated with vehicle alone developed

hind limb necrosis within 5 days after the operation. Injection of

NS alone did not improve limb survival, while BMNC
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implantation slightly but significantly improved the limb survival

ratio to about 20%. Implantation of BMNCs with NS

(NS+BMNCs group) markedly improved limb survival compared

Figure 1. SEM image of NS (A) and marked cell adhesiveness to NS in vitro (B). (A) NS are microspheres approximately 100 mm in diameter
(a). The NS surface uniformly coated with nano-scale hydroxyapatite (HAp) crystals was observed at different magnifications (low and high
magnification in b and c, respectively). SEM image of an NS cross-section indicating a single layer of nano-scale HAp particles on the NS surface (d). (B)
Murine BMNCs were incubated with LA (a) or NS (b, c) at 37uC for 8 h. Large numbers of BMNCs adhered to NS (b, c) but not to LA (a). Scale bars:
100 mm (A-a, B-a, B-b), 5 mm (B-c), 1 mm (A-b), 100 nm (A-c, A-d). Abbreviations: SEM, scanning electron microscopy; NS, nano-scaffolds; LA,
unmodified PLLA microspheres; BMNCs, bone marrow mononuclear cells.
doi:10.1371/journal.pone.0035199.g001

Figure 2. Prolonged localization of implanted BMNCs in
ischemic tissues by NS. (A) Colocalization of BMNCs with NS and
LA in vivo. Murine BMNCs derived from EGFP-transgenic mice were
transplanted together with LA or NS into the thighs in the hind limb
ischemic model. Cores of NS and LA containing rhodamine B (orange)
were used to indicate localisation of the injected microspheres in
ischemic tissues. Tissue sections 7 days after transplantation of
LA+BMNCs (a) or NS+BMNCs (b) were counterstained with DAPI (blue),
and merged images of DAPI, GFP and rhodamine B are shown. BMNCs
(green) were observed as densely clustered around NS (b) but not LA
(a). Scale bars: 100 mm. (B) Quantitative evaluation of implanted cells
existing in ischemic tissues. Quantitative analysis of intramuscular GFP
was performed 3, 7 and 14 days after transplantation. BMNCs were
derived from EGFP-transgenic mice. BMNCs were transplanted alone or
together with LA or NS into ischemic thigh muscles. Intramuscular GFP
values of whole thigh muscles were corrected for total protein and
expressed in arbitrary units (n = 6 in each group). *P,0.05 for the
NS+BMNCs group compared to the BMNCs alone and LA+BMNCs
groups. GFP concentration in normal murine muscle was measured as
background (BG). Abbreviations: NS, nano-scaffolds; LA, unmodified
PLLA microspheres; BMNCs, bone marrow mononuclear cells.
doi:10.1371/journal.pone.0035199.g002

Figure 3. NS enhance limb salvage by BMNC transplantation.
(A) Representative photographs of mice with limb necrosis (left) and
limb salvage (right). Limb necrosis was evaluated every day after the
ischemic operation in a blinded manner. (B) The survival curve for limb
necrosis of hind limb ischemic mice (BALB/cAJcl) after ischemic
induction and simultaneous intramuscular implantation of NS+BMNCs
(n = 32), BMNCs alone (n = 33), LA+BMNCs (n = 7), NS alone (n = 11) or
vehicle alone (n = 17). The curve was obtained using the Kaplan-Mayer
method and the difference between the 2 groups was compared using
the log-rank test. *: P,0.05. Abbreviations: NS, nano-scaffolds; LA,
unmodified PLLA microspheres; BMNCs, bone marrow mononuclear
cells.
doi:10.1371/journal.pone.0035199.g003
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with implantation of BMNCs alone, while co-injection of LA did

not.

Co-implantation of NSs and BMNCs enhances
angiogenesis and arteriogenesis

To determine whether NS enhances cell implantation-induced

angiogenesis, capillary formation associated with implanted

BMNCs derived from EGFP-transgenic mice was determined by

immunostaining for the endothelial cell marker CD31 (Fig. 4A).

The density of CD31-positive capillaries in mice implanted with

NS alone (Fig. 4A) was the same as that in the group injected with

vehicle alone (data not shown). In the LA+BMNCs group, most of

the GFP-positive BMNCs disappeared from around the LA and

were no longer colocalized with LA 7 days after transplantation

(Fig. 4A), and capillary density around migrating BMNCs was

somewhat increased. In contrast, capillary density was markedly

increased when BMNCs were co-implanted with NS. Similar

enhanced CD31-positive capillary formation in the NS+BMNCs

group compared with the LA+BMNCs group was observed in

another severe ischemia model in BALB/cAJcl mice (Fig. 4B-a, b,

c). If BMNCs alone are implanted, there will be hardly any

BMNCs in the implanted area after 7 days (Fig. 2B), thereby

complicating the evaluation of capillary formation in the

implanted area. Because BMNCs do not adhere to LA, the

BMNCs implanted in the LA+BMNCs group will also migrate

from the implanted area, and there will be hardly any BMNCs

remaining in the implanted area after 7 days, similar to the

BMNCs alone group (Fig. 2, 4A). For this reason, LA, which is

evaluated as a target for comparison with an NS particle in this

study, additionally serves as a marker of the BMNCs-implanted

area.

Next, we performed X-ray 3D-CT angiographic analysis to

determine collateral vessel formation and blood flow. Blood flow of

the left hind limb was confirmed to be completely disrupted just

after femoral artery resection (Fig. 5A-a). As our micro-CT

equipment has a spatial resolution of 48-mm, NS or LA with a

diameter of 100 mm could be readily detected, and were visualised

as light green particles on 3D-CT images. No collateral arteries

had developed 7 days after the operation in the vehicle (Fig. 5A-b)

or NS alone groups (Fig. 5A-c). Collateral arteries were somewhat

enhanced in the BMNCs alone (Fig. 5A-d) and LA+BMNCs

groups (Fig. 5A-e). Interestingly, collateral arteries were well

developed around NS in the NS+BMNCs group (Fig. 5A-f). The

vascular volume of the ischemic area was measured with 3D-CT

angiogram data (Fig. 5B). For objective evaluation of the

development of collateral arteries in the ischemic areas, we

measured the vascular volume within the lower part of the thigh,

ranging from the center of femur’s major axis to the end of femur,

based on the arterial phase angiographic data. Resembling the

development of microvessels not more than 10 mm in diameter

(Fig. 4), the collateral arteries that were detectable with 3D-CT

also showed more marked increase in the NS+BMNCs group as

compared to that in the BMNCs alone group and the LA+BMNCs

group (Fig. 5B).

Co-implantation of NSs augments local production of
proangiogenic factors induced by BMNC implantation

To investigate which proangiogenic factors are involved in

enhanced therapeutic angiogenesis in mice treated with NS and

BMNCs, candidate cytokines, including VEGF, FGF-2, IL-1b,

MCP-1 and SDF-1 were measured by ELISA in ischemic hind

limb muscles of the BALB/c mouse. Intramuscular levels of these

proangiogenic factors were unaffected by vehicle injection alone

(data not shown). Intramuscular levels of VEGF and FGF-2 in the

NS+BMNCs group were significantly higher than those in the

other groups 3 and 7 days after the operation (Fig. 6-a, -b). Levels

of IL-1b and MCP-1 in the NS+BMNCs group were slightly but

significantly higher than those in the BMNCs group but not those

in the LA+BMNCs group 3 days after the operation (Fig. 6-c, -d).

However, the levels of IL-1b and MCP-1 were not significantly

different among BMNCs alone, LA+BMNCs, and NS+BMNCs

groups 7 days after the operation (Fig. 6-c, -d). The level of SDF-1

in the NS+BMNC group was comparable to those in other groups

with ischemia at 3 days after the operation. Although SDF-1 levels

in the BMNCs alone, LA+BMNCs, and NS+BMNCs groups were

higher 7 days after the operation than those in the other groups

treated without BMNCs, there were no differences among the 3

groups treated with BMNCs (Fig. 6-e). Importantly, while VEGF

levels were normalized even in the BMNCs and LA+BMNCs

groups 7 days after ischemic operation, the NS+BMNCs group

showed prolonged elevation of VEGF level (Fig. 6-a). This effect

may explain enhanced recovery of blood flow in NS+BMNCs

group, since long-term exposure to VEGF was reported to be

necessary to produce stable microvasculature that is not resorbed

after withdrawal of VEGF stimulation [3].

To further clarify the roles of proangiogenic factors, we

investigated the localization of VEGF and FGF-2 expression in

the ischemic muscle. VEGF expression was mostly co-localized

with implanted GFP-positive BMNCs around NS, with some

diffusing out of the clusters of BMNCs and NS (Fig. 7A). In

contrast, although FGF-2-expressing cells were detected around

and within the clusters, many did not express GFP (Fig. 7B), which

could be explained by the previous finding that transplanted

progenitor cells stimulate resident cells to produce additional

secreted factors [8].

Co-implantation of NSs prevents apoptosis of
transplanted BMNCs

We investigated the possibility that co-implantation of NS

prevents apoptotic cell death of BMNCs, and thus contributes to

prolonged cell localization. Large numbers of transplanted

BMNCs were positive for TUNEL 10 days after the operation

when injected alone, suggesting apoptotic cell death (Fig. 8A-

upper half, B). Some TUNEL-positive BMNCs did not necessarily

express abundant GFP possibly due to the process of cell death. In

marked contrast, TUNEL-positive BMNCs were hardly detected

when cells were transplanted with NS (Fig. 8A-lower half, B).

Biodegradability and non-biotoxic property of NS
Finally, we evaluated biodegradability and non-biotoxic prop-

erty of NS. The course of degradation of NS over 1 year period

was followed by 3D-CT. NS was implanted in the thigh muscle of

normal mice. The main degradation mechanisms of PLLA in vivo

are random hydrolytic chain scission, enzymatic degradation and

acceleration of the breakdown by free radicals released from

activated phagocytic cells such as macrophages [32–34]. Reduc-

tion in its molecular weight reduces the strength of NS, resulting in

cracking and decomposition [32]. NS volume detected by 3D-CT

decreased gradually over 1 year period, although 35.168.0% of

NS volume was still detected 12 months after implantation (Fig.

S1). Next, histological examination was performed to confirm the

biodegradability and non-biotoxic property of NS. At 7 days, 3

months, and 12 months after implantation, a small number of

CD45 positive leukocytes were recruited around NS, and most of

these cells were Mac3 positive macrophages (Fig. S2). The

macrophage count around NS was lesser at 7 days than at 3

and 12 months after implantation. At 12 months after implanta-
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tion, invasion by macrophages inside the decomposed particles

was noted (Fig. S2). These data suggested that the recruitment of

macrophages around NS was due to the mild foreign-body

reaction to eliminate foreign matter [35]. In addition, although

slight increase in the number of fibroblast and the amount of type I

and type III collagens around the particles were noted 12 months

after implantation, no intense chronic inflammation, which could

promote the strongly enhanced fibrogenesis by fibroblast [35,36],

was observed (Fig. S3).

Discussion

In this study, we presented usefulness of a novel and feasible

injectable cell scaffold to enhance cell-based therapeutic angio-

genesis. Co-implantation of NS markedly prolonged the localiza-

tion of implanted BMNCs in ischemic tissues (Fig. 2). Angiogenesis

and collateral formation of arteriogenesis were significantly

induced around the BMNC and NS clusters (Fig. 4, 5), resulting

in significant limb salvage (Fig. 3). These results further emphasize

that the prolonged localization of implanted cells is important for

induction of effective neovascularization in ischemic tissues.

Moreover, our nano-scaffold could be applied to various cell

types, including autologous BMNCs, stem cells, EPCs, PBMNCs,

and adipose-derived regenerative cells, for therapeutic angiogen-

esis [1–4,6,37], because HAp shows excellent adhesive properties

to various types of cells [15].

Peptide hydrogel and collagen-based matrix have both been

reported as injectable cell scaffolds in animal models [13,38,39].

These matrix scaffolds also provide an angiogenic environment for

successfully promoting long-term cell survival and capillary

formation. However, the cumbersome procedures and techniques

to prepare matrix scaffold containing cells may be an obstacle to

the treatment of large numbers of cells in clinical use. In addition,

a large volume of matrix may be required to implant the same

number of cells compared with simple cell implantation due to the

limited cell retention capacity of the matrix scaffold (,56106

cells/ml) [13,38,39]. This could limit the implantation of a

sufficient number of cells for therapy, since the injection space in

the myocardium and limb muscles is restricted. In contrast, the

procedure for mixing our NS particles into cell solutions is much

simpler, and the NS mixture barely affects the volume of the

originally prepared cell solutions for implantation.

Figure 4. Angiogenesis in hind limb ischemic model. (A) Tissue sections from hind limb ischemic mice (C57BL/6NCrSlc) 7 days after
transplantation of NS, BMNCs, LA+BMNCs or NS+BMNCs were immunofluorescently stained using anti-mouse CD31 antibody (red) and
counterstained with DAPI (blue). BMNCs (green) were derived from EGFP-transgenic mice. The areas circled with dashed lines indicate the presence of
NS or LA. Scale bars, 100 mm. (B) Quantitative evaluation of capillary density was performed by immunohistochemical staining using anti-mouse CD31
antibody in ischemic hind limbs of mice (BALB/cAJcl) 7 days after transplantation of NS, LA or NS+BMNCs. Typical staining of CD31-positive capillaries
in high-power field in LA+BMNCs and NS+BMNCs groups are shown in (a) and (b), respectively. Arrowheads indicate representative CD31-positive
capillaries. CD31-positive capillary numbers were counted in 4 low-power fields of the injection site, which had microspheres (LA or NS) as landmarks
in each mouse (n = 3 in each group) (c). Data are shown as means (SD). *P,0.05 for the NS+BMNCs group compared to the NS and LA+BMNCs
groups. Abbreviations: NS, nano-scaffolds; LA, unmodified PLLA microspheres; BMNCs, bone marrow mononuclear cells.
doi:10.1371/journal.pone.0035199.g004
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In the present study, NS markedly enhanced therapeutic

angiogenesis and arteriogenesis, which showed good correlations

with increased VEGF and FGF-2 levels in ischemic muscle. VEGF

is a potent stimulator of endothelial cell mitogenesis and cell

migration [3,7]. FGF-2 is also crucial for arteriogenesis with

efficient blood flow through the stabilisation of newly formed

endothelial tubules by recruiting pericytes and smooth muscle cells

[3,7]. Our observations further suggest that the clusters containing

NS, implanted cells, and recruited host cells may form a

microenvironment containing secreted cytokines and growth

factors, such as VEGF and FGF-2 (Fig. 7), which could also

contribute to reduce apoptotic cell death [7,11]. Transfection of

donor cells with antiapoptotic transgenes, e.g., VEGF, FGF-2, Akt

and Bcl-2, has been reported to enhance cell survival, resulting in

augmentation of the proangiogenic cytokine production [6,7].

Meanwhile, we for the first time demonstrated that NS-mediated

prolonged localization of unmodified donor cells as a cluster in

ischemic tissue could change the local environment, through

accelerated expression of proangiogenic factors, improve cell

survival and behaviour, and augment neovascularisation, without

gene manipulation or artificial extracellular matrix.

The increase in tissue VEGF and FGF-2 levels shown in Fig. 6

does not appear to be as large as compared to the marked

alleviation of apoptosis of transplanted BMNCs by NS (Fig. 8).

Because tissue cytokine levels were measured using the tissue

extracts from whole thigh muscle, the levels of these cytokines

shown in Fig. 6 are the average of the entire ischemic muscle.

Meanwhile, these cytokines were distributed in high concentra-

tions in the area where the implanted cells and NS formed clusters

(Fig. 7). Therefore, a significantly high cytokine level measured as

the average for the entire muscle indicated that the effect of NS in

amplifying the cytokine level in the implanted area was much

larger than that shown in Fig. 6. Exposure to such high levels of

cytokines in this area appears to markedly alleviate apoptosis

(Fig. 8), and such a cytokine concentration gradient appears to be

useful to induce efficient neovascularization in the implanted area

[3].

Similar to VEGF and FGF-2, IL-1b, MCP-1, and SDF-1 are

known as proangiogenic factors induced by ischemia [3,4,40–42].

In fact, increase in the expression of all proangiogenic factors was

induced by ischemia alone 3 days after ischemic induction in the

present study (Fig. 6, vehicle group). Although we observed

Figure 5. Collateral vessel formations in hind limb ischemic model. (A) 3D-CT angiography of mice (BALB/cAJcl) was performed immediately
after the operation (a) and 7 days after implantation of vehicle alone (b), NS alone (c), BMNCs alone (d), LA+BMNCs (e) or NS+BMNCs (f).
Representative 3D-CT angiograms are presented. PLLA microspheres containing magnetite (PLA-Particles-M) were used as core NS and LA to be
detected by X-ray 3D-CT. Detected NS and LA by 3D-CT were visualised as green particles. (B) Quantitative volume analysis of collateral vessels in the
ischemic area used the arterial phase 3D-CT angiogram data (n = 3 in each group). Data are shown as means (SD). *P,0.05 for the NS+BMNCs group
compared to the vehicle, NS alone, BMNCs alone, and LA+BMNCs groups. Abbreviations: NS, nano-scaffolds; LA, unmodified PLLA microspheres;
BMNCs, bone marrow mononuclear cells.
doi:10.1371/journal.pone.0035199.g005
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Figure 6. Expression of proangiogenic factors in ischemic hind limb muscles treated with transplantation. Intramuscular levels of
proangiogenic factors in whole thigh muscles were quantified in hind limb ischemic model (BALB/cAJcl mice) 3 and 7 days after ischemic induction.
Vehicle alone, NS alone, BMNCs alone, LA+BMNCs or NS+BMNCs were injected into ischemic thigh muscles simultaneously with ischemic induction.
Intramuscular levels of proangiogenic factors were corrected for total protein and expressed in arbitrary units (n = 6 in each group). Data are shown as
means (SD). *, P,0.05 for the NS+BMNCs group compared to the non-ischemic muscle (sham), vehicle, NS, BMNCs and LA+BMNCs groups. **, P,0.05
for the NS+BMNCs group compared to the non-ischemic muscle (sham), vehicle, NS and BMNCs groups. ***, P,0.05 for the NS+BMNCs group
compared to the non-ischemic muscle (sham), vehicle and NS groups. Abbreviations: NS, nano-scaffolds; LA, unmodified PLLA microspheres; BMNCs,
bone marrow mononuclear cells.
doi:10.1371/journal.pone.0035199.g006

Figure 7. Colocalization of transplanted BMNCs and VEGF (A) or FGF-2 (B). Tissue sections from hind limb ischemic mice (C57BL/6NCrSlc) 7
days after transplantation of NS+BMNCs were immunofluorescently stained using anti-mouse VEGF antibody (A) or anti-mouse FGF-2 antibody (B)
and DAPI. BMNCs were derived from EGFP-transgenic mice. Scale bars, 100 mm. Abbreviations: NS, nano-scaffolds; LA, unmodified PLLA microspheres;
BMNCs, bone marrow mononuclear cells.
doi:10.1371/journal.pone.0035199.g007
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additional increase in these 3 cytokines after cell implantation, the

change observed was not significant enough to explain why

marked improvements in blood flow and limb salvage were

observed only in the NS+BMNCs group. Three days after

transplantation/ischemic induction, IL-1b and MCP-1 levels

tended to be high in the NS+BMNCs group, though there was

no significant difference in the levels between the NS+BMNCs

group and the LA+BMNCs group. SDF-1 expression was not

affected by cell implantation after 3 days. Seven days after

transplantation/ischemic induction, tissue IL-1b, MCP-1, and

SDF-1 levels were significantly higher in the cell-implanted groups

(BMNCs group, LA+BMNCs group, and NS+BMNCs group)

than in the vehicle group and the NS alone group (Fig. 6). This is

probably because large amounts of VEGF and FGF-2 are mainly

secreted from implanted cells [3,7,8,43], while IL-1b, MCP-1, and

SDF-1 are additionally secreted from muscle cells, endothelial

cells, and stromal cells activated by the implanted cells [41,43–46].

In the present study, neovascularization was not stimulated by the

elevation of these cytokines 7 days after implantation in the

BMNCs alone group and the LA+BMNCs group. The exact

reason for this finding is unknown. One possible explanation is the

interaction with other proangiogenic factors. For neovasculariza-

tion, coordinated actions of multiple proangiogenic factors appear

to be important [3,47]. It appears that in the BMNCs alone group

and the LA+BMNCs group, these cytokines failed to function

satisfactorily because VFGF levels decreased to that of the non-

ischemic group (sham) 7 days after ischemic induction (Fig. 6-a).

VEGF has been reported to play an important role for SDF-1

activity [47], which might also be true for IL-1b and MCP-1.

There are still several limitations to the use of NS for cell-based

therapeutic angiogenesis in clinical and practical use. First, it is

necessary to control the absorption time of NS in the ischemic

tissues to ensure both therapeutic efficacy and safety. When

normal mice were followed by 3D-CT for 1 year after NS

implantation, NS decreased gradually over time, but 35.1% of the

particle volume remained after 1 year (Fig. S1). Although too rapid

absorption can reduce the cell-retaining potential, it appears that

modulation of NS is necessary to accelerate its absorption

appropriately to avoid residual foreign particle accumulation in

the living body. To achieve appropriate absorption, other

Figure 8. NS prevents apoptotic cell death of implanted cells. (A) BMNCs (green) were derived from EGFP-transgenic mice. Tissue sections
from hind limb ischemic mice (C57BL/6NCrSlc) 10 days after transplantation were counterstained with DAPI (blue). Apoptotic nuclei were stained
with tetramethylrhodamine (TMR) (red) by the TUNEL method. Arrowheads indicate cells double-positive for GFP and TUNEL. Scale bars, 100 mm. The
upper panels of each group show low magnification (Low) and the lower panels show high magnification (High). (B) The percentage of TUNEL-
positive cells out of GFP-positive ones was assessed in 4 low-power fields in each mouse (n = 3 in each group). Data are shown as means (SD).
*P,0.05 for the NS+BMNCs group compared to the BMNCs group. Abbreviations: NS, nano-scaffolds; BMNCs, bone marrow mononuclear cells; DAPI,
49,6-diamidino-2-phenylindole; TUNEL, terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick-end labelling.
doi:10.1371/journal.pone.0035199.g008
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biodegradable polymers (e.g., polyglycolic acid (PGA), polycapro-

lactone (PCA) or copolymers, such as poly(lactic-co-glycolic acid)

(PLGA)) could be alternate substitutes [48,49].

Second, tissue toxicity of biodegradable polymers needs to be

taken into account. Although the formation of collaterals did not

differ between the BMNCs group and the LA+BMNCs group

(Fig. 5B), limb survival significantly improved in the BMNCs alone

group but not in the LA+BMNCs group (Fig. 3). Hence, tissue

toxicity by LA cannot be ruled out. PLLA has already been

applied clinically as a safe biodegradable material [21,50].

However, several reports suggest that the substances formed by

degradation of PLLA may have adverse effects on tissue [32,51].

The lack of improvement of limb survival in the LA+BMNCs

group may be attributable to such adverse effects. In contrast, NS

appears to have no tissue toxicity. When NSs were implanted in

the thigh muscle of normal mice, a small number of macrophages

were observed around NSs, and there was no severe inflammatory

reaction in the implanted area (Fig. S2). Further, at 12 months

after implantation, enhanced fibrillization around the NS particles

was not observed (Fig. S3). Thus, NS, but not LA, appears to have

no tissue toxicity, in agreement with previous our reports

[18,20,52]. One possible reason for this result is that the HAp

nanoparticles covering the NS surface probably serve as a buffer

agent, preventing pH reduction arising from PLLA degradation

[18,20,53]. The formation of lactic acid and its oligomer from

PLLA degradation reduces pH, and this change is reported to

cause inflammatory reactions [32,51]. The product from dissolu-

tion of HAp nanocrystals (basic calcium phosphate) has been

suggested to serve as a buffer for such reactions [53]. Thus, it

appears that coating of NS with HAp nanoparticles resulted not

only in cell adhesiveness but also increased safety. However, to

ensure further safety, selection of appropriate biodegradable

polymers is essential.

Third, it is also necessary to estimate the appropriate

procedures for treatment, i.e., the appropriate ratio of cells to

NS and the preincubation time of cells and NS prior to

implantation. Regarding preincubation time, our preliminary

data suggested that efficacy of cell-based therapeutic angiogenesis

was not diminished even when the step of preincubation of cells

with NS was omitted. This result makes this procedure much

simpler for clinical use. Meanwhile, there might be scope for

improving the conditions for preincubation of cells and NS. For

example, additional therapeutic efficacy may be achieved if

hypoxic preconditioning [54] is used in combination with the

current preincubation conditions. It is reported that preincubation

of progenitor cells under hypoxic condition induces the expression

of SDF-1 receptor, CXCR4, increasing the benefit of progenitor

cell therapy [54]. SDF-1 plays a critical role in recruitment, tissue

retention, and cell survival of hematopoietic cells and bone

marrow-derived progenitor cells, which promote angiogenesis and

tissue regeneration [42]. CXCR4 is normally expressed in

hematopoietic cells and progenitor cells, and is upregulated by

hypoxia [42,55,56]. As shown in Fig. 6, high levels of SDF-1

expression are observed in ischemic tissue [42]. Hence, increasing

the expression of CXCR4 in implanted cells under hypoxic

condition through preincubation of NS and cells may further

improve tissue retention and cell survival after cell implantation

mediated by the SDF-1/CXCR4 axis.

Fourth, care may be needed to prevent embolism due to

particles at the time of implantation. However, this event can be

easily avoided because excessive injection is unlikely to occur

unless direct injection into blood vessels occurs carelessly during

intramuscular injection. Even with slight injection into blood

vessels, the influence of minor microembolism arising from

100 mm diameter particles will be negligibly small.

In conclusion, we have developed a novel type of injectable cell

scaffold and, for the first time, demonstrated that it is a simple and

easy device for use as an enhancer of cell-based therapeutic

angiogenesis. This nano-scaffold provides promising local envi-

ronment for implanted cells for the effects on angiogenesis and

arteriogenesis through cell clustering, augmented expression of

proangiogenic factors, and supporting cell survival without gene

manipulation or artificial extracellular matrix.

Supporting Information

Figure S1 The course of degradation of NS followed by
3D-CT. (A) NS (30,000 particles) was implanted in the thigh

muscle on one side of each normal mouse (C57BL/6NCrSlc). The

course of degradation of NS over 1 year period was followed by

3D-CT of live mice immediately and 6 months and 12 months

after implantation. Representative 3D-CT images obtained from

the same mouse at each point of time are shown. PLLA

microspheres containing magnetite (PLA-Particles-M) are used as

the core of NS to be detected by X-ray 3D-CT. The NS detected

by 3D-CT were visualised as green particles. (B) Quantitative

volume analysis of NSs was performed using 3D-CT data obtained

from 3 mice immediately and 6 months and 12 months after

implantation. Residual NS volume was expressed as a percentage

of the NS volume immediately after implantation in each mouse.

Data are shown as means (SD). Abbreviations: NS, nano-scaffolds;

3D-CT, three-dimensional computed tomography.

(TIF)

Figure S2 Inflammatory reactions around NS. NS (3,000

particles) was implanted in the thigh muscle on one side of each

normal mouse (C57BL/6NCrSlc). Tissues around NS were

examined 7 days, 3 months and 12 months after implantation

for inflammatory reactions. Tissue sections were counterstained

with DAPI (blue), and immunofluorescence was detected by

staining with anti-CD45 antibody (red) and anti-Mac3 antibody

(green). Scale bars: 100 mm. Abbreviations: NS, nano-scaffolds.

(TIF)

Figure S3 Collagen accumulation around NS 12 months
after implantation. NS (3,000 particles) was implanted in the

thigh muscle on one side of each normal mouse (C57BL/

6NCrSlc). Tissues around NS were examined 12 months after

implantation for enhanced fibrillization. Tissue sections were

counterstained with DAPI (blue), and immunofluorescence was

observed with anti-fibroblast antibody (red) and anti-collagen I

antibody (green), or anti- collagen III antibody (green). The upper

panels of each group show normal muscle tissue (normal) and the

lower panels show the area around NS (NS). Arrowheads indicate

slightly accumulated type I collagen, and arrows indicate slightly

accumulated type III collagen. Scale bars: 100 mm. Abbreviations:

NS, nano-scaffolds.

(TIF)

Methods S1 Supplemental methods.

(DOCX)
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