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Abstract

A variety of preprocessing techniques are available to correct subject-dependant artifacts in fMRI, caused by head motion
and physiological noise. Although it has been established that the chosen preprocessing steps (or ‘‘pipeline’’) may
significantly affect fMRI results, it is not well understood how preprocessing choices interact with other parts of the fMRI
experimental design. In this study, we examine how two experimental factors interact with preprocessing: between-subject
heterogeneity, and strength of task contrast. Two levels of cognitive contrast were examined in an fMRI adaptation of the
Trail-Making Test, with data from young, healthy adults. The importance of standard preprocessing with motion correction,
physiological noise correction, motion parameter regression and temporal detrending were examined for the two task
contrasts. We also tested subspace estimation using Principal Component Analysis (PCA), and Independent Component
Analysis (ICA). Results were obtained for Penalized Discriminant Analysis, and model performance quantified with
reproducibility (R) and prediction metrics (P). Simulation methods were also used to test for potential biases from individual-
subject optimization. Our results demonstrate that (1) individual pipeline optimization is not significantly more biased than
fixed preprocessing. In addition, (2) when applying a fixed pipeline across all subjects, the task contrast significantly affects
pipeline performance; in particular, the effects of PCA and ICA models vary with contrast, and are not by themselves optimal
preprocessing steps. Also, (3) selecting the optimal pipeline for each subject improves within-subject (P,R) and between-
subject overlap, with the weaker cognitive contrast being more sensitive to pipeline optimization. These results
demonstrate that sensitivity of fMRI results is influenced not only by preprocessing choices, but also by interactions with
other experimental design factors. This paper outlines a quantitative procedure to denoise data that would otherwise be
discarded due to artifact; this is particularly relevant for weak signal contrasts in single-subject, small-sample and clinical
datasets.
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Introduction

Blood Oxygenation Level Dependent fMRI (BOLD fMRI) is an

invaluable tool for non-invasive studies of sensory, cognitive and

motor neuroscience, and more recently, a range of clinical

applications including pre-surgical planning (see review by

Fernandez et al. [1]), assessing stroke recovery (reviewed in

[2,3]), and quantifying the effects of therapeutic interventions, e.g.

[4–6]. However, fMRI is limited by a relatively poor contrast-to-

noise ratio (CNR) and strong, structured sources of artifact. The

predominant artifact sources are typically subject-specific, and

include effects of head motion, respiration and pulsatile blood

flow. To reduce artifacts, a variety of denoising algorithms have

been developed, ranging from generalized denoising (e.g. subspace

selection) to artifact-specific correction (e.g. motion correction).

In recent years, it has been shown that the chosen set of

preprocessing methods (the ‘‘pipeline’’) significantly impacts the

sensitivity and specificity of measured fMRI signals [7–17]. It is

therefore important to optimize pipeline choices, as better

denoising improves signal detection and allows researchers to

retain artifact-corrupted data that would otherwise have been

discarded from analyses. This is particularly relevant for studies

of aging and clinical groups, where signal is weaker, and head

motion and physiological noise have a greater impact on fMRI

data than for young normal controls [59,63]. However, there is

currently no consensus in the literature on the optimal methods

for denoising fMRI data. A potential complication is that

preprocessing is not performed in isolation; the full data-analysis

pipeline, from experimental design to final results, consists of five

discrete steps, displayed in Figure 1. Each of these steps influence

signal and noise in fMRI, and thus may interact with

preprocessing choices. This paper will focus on the interactions

of data preprocessing choices (Step #4) with both between-

subject variability (Step #1) and experimental contrast design

(Step #2), as there is currently limited information regarding how

these steps interact.
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Between-subject variability arises in fMRI data, in both the

BOLD signal (via neuronal responses related to behaviour and

subsequent neurovascular coupling) and artifact sources (including

head motion, respiration and heart rate). It is therefore expected

that the preprocessing set optimizing signal detection may vary

significantly between subjects. For example, motion correction

may be optimal for subjects with extensive head motion, and

suboptimal for subjects with minimal movement. A number of

studies have shown the importance of optimizing the choice of

commonly-used preprocessing steps, such as spatial smoothing,

temporal detrending and motion correction, on a subject-by-

subject basis [8,16–20]. Subspace selection methods are also

popular for individually-optimized preprocessing. For example,

Principal Component Analysis (PCA) is often used to optimize

subspace selection, by denoising and regularizing data prior to

analysis [8,16–18]. Independent Component Analysis (ICA)

techniques are also popular individually-optimized preprocessing

methods, although they are rarely recognized as such; nonetheless,

the estimated ICA noise subspace is typically determined on a

subject-specific basis. This includes both manual selection of

artifact [21–24] and quantitative selection methods, employing

spatiotemporal priors [25–28]. These studies suggest that for fMRI

analyses, the standard approach of applying a single set of pipeline

steps (a fixed pipeline) to all subjects offers sub-optimal signal

detection. However, it is not well understood how subject-specific

preprocessing is influenced by other parts of the data-analysis

pipeline.

One such source of pipeline variability is the experimental task

design. The stimulus type and presentation method determine

both measurable brain activation and potential artifacts. The

signal/noise trade-offs between block and event-related designs

have been previously explored; block designs have greater signal

detection power and are less sensitive to haemodynamic response

function (HRF) modelling choices [29], whereas event-related

designs better estimate BOLD temporal dynamics [30–32]. The

strength of the task-dependent BOLD contrast may also constitute

an important task-design issue. For typical fMRI analyses,

experimenters tend to process data with whichever methods are

sufficient to extract interpretable brain activation. For strong,

spatially localized activations, such as block design visuo-motor

tasks, BOLD response may be reliably measured with standard

preprocessing, including motion correction with basic physiolog-

ical noise correction and/or temporal detrending, and univariate

analyses (e.g. [33,34]). By comparison, weaker BOLD signals and

functionally connected brain networks are extracted using more

extensive preprocessing, including ICA [22,35,36] and combina-

tions of global signal normalization, removal of white-matter and

CSF timeseries, and motion parameter regression [22,37]. These

findings suggest the hypothesis that specialized pipeline choices are

increasingly important for detecting weaker BOLD contrasts

temporally varying brain networks. However, to our knowledge,

the interaction effects underlying this hypothesis have not been

directly examined in fMRI.

Previous studies have focused on standard preprocessing

methods and subject heterogeneity [7,8,16–20]. In particular, this

paper is an extension of Churchill et al. [17], which examined

interactions of rigid-body motion correction, motion parameter

regression, physiological noise correction and temporal detrend-

ing. These pipelines were applied to data collected from an fMRI

adaptation of a clinical behavioural task, the Trail-Making Test

[40,41,45], for a strong visuo-motor contrast. The paper com-

pared individual-subject pipeline optimization to an optimal fixed

pipeline, demonstrating that individual optimization consistently

improves signal detection, as well as the overlap of activation

patterns between subjects. The present work extends these find-

ings, as we (a) expanded the tested set of pipelines to evaluate

adaptive ICA denoising procedures compared to PCA and other

standard preprocessing choices, and (b) examine how optimal

pipelines vary as a function of task contrast. These expanded

pipelines were applied to the subject data collected from the fMRI-

adapted Trail-Making Test, using two levels of contrast for

comparison: strong visuo-motor activation, and a second contrast

with much weaker changes in distributed cognitive activation

networks. The data were analyzed using multivariate Penalized

Discriminant Analysis (PDA) on an optimized principal compo-

nent (PC) basis [39].

Consistent with prior work, we measured the performance of

pipeline choices in the data-driven NPAIRS (Nonparametric

Prediction, Activation, Influence, and Reproducibility reSampling)

framework [38,39]. For this technique, split-half resampling was

used to cross-validate results, based on metrics of spatial

reproducibility and temporal prediction accuracy. Reproducibility

(R) is used to quantify the robustness of statistical parametric maps

(SPMs) under resampling. Prediction (P) measures how accurately

estimated model parameters from a training dataset can predict

the experimental condition under which brain scans from an

independent set are acquired.

The work is divided into three sections. In the first, we used

simulation data to demonstrate that individual-subject pipeline

optimization is not a biased procedure, relative to fixed-pipeline

optimization. This establishes that individual-subject optimization

is not more sensitive to spurious activations (i.e. fitting to noise)

than the fixed preprocessing used in the majority of published

fMRI studies. For subsequent sections, we examine the interaction

of task design, subject heterogeneity and preprocessing in

experimental data. In the second section, we demonstrate a

procedure for identifying the optimal fixed pipelines for each task

Figure 1. Schematic of the steps in the BOLD fMRI experimen-
tal pipeline. An fMRI experiment consists of five major steps; choices
at each step significantly influence signal and noise in the results, and
may interact with one another. This paper focuses on interactions of
individual-subject variability (Step #1), task-contrast effects (Step #2)
and preprocessing (Step #4).
doi:10.1371/journal.pone.0031147.g001
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contrast, using a combination of (P,R) metrics and SPM patterns,

and we compare results between task contrasts. In the third

section, for both contrasts, we show improved signal detection for

individual-subject optimization relative to fixed-pipelines, with

improved within-subject (P,R) measures and overlap between

individual subject SPMs. The implications of these results are then

discussed in detail. For this paper, commonly-used terms and

abbreviations are defined in Table 1.

Methods

In this paper, we compare the pipeline set minimizing average

distance D(P,R) from perfect prediction and reproducibility

D(P = 1,R = 1) across all subjects (fixed pipelines), to choosing the

pipeline that minimizes D(P,R) specific to each subject (individu-

ally-optimized pipelines). In the sections below, we describe how

this is tested on both simulated (Simulation Methods) and

experimental data (Experimental Data and Contrast Design), for

strong and weak cognitive contrasts. This is followed by an outline

of the tested preprocessing steps (Data Preprocessing) and

multivariate analysis model (Analysis Methods). In Measuring

Pipeline Performance, we also establish the metrics used to identify

optimal pipelines. Then, because fixed preprocessing is the

standard methodology for fMRI experiments, we use simulated

data to demonstrate that our individual-subject optimization

method is not biased, relative to fixed optimization (Testing

Simulated-Data Bias of Individual Subject Optimization). In

Fixed-Pipeline Optimization of Experimental Data, we outline a

procedure for identifying the optimal fixed pipeline in experimen-

tal data. We use the fixed-pipeline results to (1) determine the

optimal combination of ICA and PCA for estimating the signal

subspace (Optimizing Subspace Selection for Experimental Data),

and (2) compare fixed preprocessing against the individually-

optimized pipeline choices described in Individual-Subject Opti-

mization of Experimental Data.

Simulation Methods and Data
The simulation analyses provide a conservative test of

optimization bias: for this paper, we generated samples from a

fixed Gaussian distribution, treating samples as repeated observa-

tions of a single ‘‘subject’’ for whom we optimize pipelines. This is

the case in which individual-sample optimization is least necessary,

providing a ‘‘null’’ dataset for optimization. Our hypothesis is that

even individual-sample optimization of this dataset does not bias

results by fitting to noise, which would produce spurious

activations. The simulation methods and parameters are briefly

outlined; for full details on the model, see [42,43]. The synthetic

data simulated a brain slice during a block-design experiment,

with 10 ‘‘activation’’ images, followed by 10 ‘‘baseline’’ images (in

total, 200 scans per sample). We used a single-slice brain model,

with simulated grey and white matter (GM and WM); Fig. 2(A)

shows baseline (left) and activation (right) images. The model

included simulated Gaussian noise and signal (during activation

scans), spatially smoothed and temporally convolved with the

canonical HRF described in [44]. Functional connectivity of a

distributed brain network was simulated with 16 activation loci (4

in WM, 12 in GM); the expected correlation of time series across

simulated activation loci was r= 0.5. We generated a set of 500

simulated runs from the multivariate Gaussian distributions, for

Contrast-to-Noise ratios (CNRs) of CNR = 1.0 and CNR = 0.3, in

order to compare nominally ‘‘strong’’ and ‘‘weak’’ cognitive

contrasts; in addition, we generated a ‘‘null’’ dataset, with no

activation loci present.

Experimental Data and Contrast Design
BOLD fMRI data were acquired on a 3.0 T MR scanner

(MAGNETOM Tim Trio, VB15A software; Siemens AG,

Erlangen, Germany) with a 12-channel head coil. A T1-contrast

anatomical scan was obtained (oblique-axial 3D MPRAGE, 2.63/

2000/1100 ms TE/TR/TI, 9u FA, 25661926160 matrix size,

16161 mm voxels), followed by BOLD fMRI data (2D GE-EPI,

30/2000 ms TE/TR, 70u FA, 64664630 matrix size,

3.12563.12565 mm voxels). Subjects received a 15 minute

orientation session in an MRI simulator, and then performed 2

task runs in the scanner, separated by approximately 10 minutes

of other neurobehavioural tests. To minimize non-stationary

learning effects, observed in subjects’ behavioural performance for

the first run, only the scan data of run 2 were analyzed for this

study.

The last two sections of Methods use experimental data derived

from a standard behavioural assessment task, the Trail-Making

Test [40,45], which was adapted for the fMRI environment. The

task consisted of 2 types of task stimuli: TaskA, in which numbers

1–14 were displayed in pseudo-random locations on a viewing

screen, and TaskB, in which numbers 1–7 and letters A-G were

displayed. Subjects drew a line connecting items in sequence (1-2-

3-4-…) or (1-A-2-B-…), connecting as many as possible over a 20 s

block duration, while maintaining accuracy. A Control stimulus was

presented after each task block, in which subjects traced a line

from the center of the screen to a circle (randomly placed at a fixed

radius from the center of the screen) and back over 2 s, repeated

10 times. Subjects performed a 4-block, 40-scan, Task+Control

epoch of TaskA-Control-TaskB-Control twice per run, with 2 runs per

subject. Tracing was performed with an MRI-compatible writing

tablet and stylus [41], with subjects monitoring their performance

on a projection screen. Data were acquired from 24 young,

healthy volunteers, aged 20–33 yrs with median age 24 yrs (14

Table 1. Commonly used in-text abbreviations and
definitions.

PDA Penalized Discriminant Analysis

PCA Principal Component Analysis

PCAfull First PCA in PDA analysis, performed on full data matrix

PCAsplit Second PCA in PDA analysis, performed on split-half matrix

(P,R) (Prediction, Reproducibility)

MC Motion Correction

MPR Motion Parameter Regression

DET Legendre polynomial DETrending

RET RETROICOR Physiological Noise Correction

ICAM Independent Component Analysis, MELODIC algorithm

ICAP Independent Component Analysis, PESTICA algorithm

strong Strong cognitive contrast (Task vs. Control)

weak Weak cognitive contrast (Task B vs. Task A)

FIX Optimal fixed preprocessing set, applied to all subjects

IND Individually-optimized preprocessing set

FIXPPL/FIXPC Fixed pipeline/fixed PC subspace

FIXPPL/INDPC Fixed pipeline/individually optimized PC subspace

INDPPL/INDPC Individually-optimized pipeline/individually optimized PC
subspace

ROC Receiver Operating Characteristic curve

TPF/FPF True Positive Fraction/False Positive Fraction

doi:10.1371/journal.pone.0031147.t001
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female). Subjects were confirmed right-handed via the Edinburgh

Handedness Inventory [46], and screened for cognitive and

neurological deficits, by self-report and Mini-Mental Status

Examination [47], with median score 30 and range 28 to 30

(out of 30). All participants gave written informed consent for their

participation and the experiment was conducted in the Rotman

Research Institute, Baycrest Hospital, with the approval of the

Baycrest Research Ethics Board.

Two levels of experimental contrast were examined. The first

contrast was the comparison of Task (TaskA+TaskB) vs. Control

condition scans, denoted the ‘‘stronger’’ contrast due to comparison

of high-level visuo-spatial search tasks against the simpler baseline

tracking task. Activations consistent with both task and Default-

Mode Network (DMN) have been previously found in a smaller

group for strong contrast [17], primarily in regions associated with

visual and motor recruitment. The second contrast compared

TaskB vs. TaskA conditions, subsequently referred to as the

‘‘weaker’’ contrast. This contrast is thought to reflect primarily

cognitive components, specifically increased recruitment of

attention, set-switching and working memory domains [40,48].

Preliminary testing confirmed that strong-contrast analyses showed

consistently higher Z-scores in regions of maximum activation,

and higher mean (P, R) values, compared to the weaker TaskB vs.

TaskA (see RESULTS: Individual-Subject Optimization of Exper-

imental Data).

Data Preprocessing
Experimental data were preprocessed with AFNI utilities [49] in

the following order. Rigid-body motion correction (MC) was

applied via 3dvolreg, registering all volumes to the 40th volume

within a run, using a weighted least-squares cost function and

Fourier interpolation. The ‘‘twopass’’ setting was applied, which

performs coarse initial registration at lower resolution, then

registration in the native voxel resolution. Images then had slice-

timing correction with Fourier interpolation (via 3dTshift), and

spatial smoothing with a 6.0 mm FWHM Gaussian kernel (with

3dmerge); these two steps were held fixed for all pipelines.

Physiological noise correction was performed using RETRO-

ICOR (RET) to regress out signal correlated with cardiac and

respiratory phases [50], measured with a finger photoplethysmo-

graph and respiratory belt, respectively. Temporal detrending was

performed using a Legendre polynomial basis set ranging from

zeroth to fifth order (DET0–5). We also regressed out head motion

artifacts based on the subject motion parameter estimates (MPEs)

obtained from MC. For motion parameter regression (MPR), we

performed PCA on the six MPE time-courses, and used the two

Figure 2. Simulation results, testing for bias in pipeline optimization. (A) simulated phantom during baseline (left) and activation (right). (B)
median False-Positive Fraction (FPF) as a function of Z-score threshold in null data, with error bars showing the range of FPF across activation loci. The
expected null distribution (Normal curve of zero mean, unit variance) is plotted as a gray line. (C–D) ROC curves plotting median TPF vs. FPF over the
16 signal loci (error bars show the range of TPF). Results are shown for 3 PDA pipelines, and a General Linear Model (GLM) reference; the line of no
signal detection TPF = FPF is also plotted (dashed line). Fixed pipelines have no preprocessing, and the fixed PC basis is the median basis minimizing
distance D from (P = 1,R = 1) across all samples (PC dim. = 1 and 3 for CNR = 1.0 and 0.3). The optimized pipeline and PC basis are chosen to minimize
D, separately for each sample.
doi:10.1371/journal.pone.0031147.g002

Optimizing Pipelines by Subject and Task in fMRI

PLoS ONE | www.plosone.org 4 February 2012 | Volume 7 | Issue 2 | e31147



largest-variance principal components as regressors [51]. For all

subjects, these two components accounted for more than 85% of

estimated temporal motion variance, which allowed us to

maximize the amount of head motion variance accounted for,

while minimizing loss of power and collinearity effects due to

unnecessary parameterization. Detrending and motion parameter

regression were performed concurrently via multiple linear

regression.

We also integrated two ICA-based denoising methods into the

preprocessing pipeline, performed after spatial smoothing, apply-

ing at most one ICA method per pipeline. This allowed us to test

whether ICA is an important denoising step in the optimized

pipeline, before performing PDA on a regularized PCA subspace

(see Analysis Methods below), and whether the choice of ICA

technique has a significant impact. We selected two methods that

are widely used, described as follows:

(1) PESTICA (ICAP): a data-driven estimator of cardiac and

respiratory effects that uses the Infomax algorithm with

enforced temporal independence [28]. PESTICA identifies 4

cardiac and 2 respiratory time-series regressors, based on

spatial weighting maps of cardiac and respiratory effect, and

manual selection of the artifact’s temporal power-spectrum

band (using code available at www.nitrc.org/plugins/mwiki/

index.php/pestica:MainPage). For each subject dataset, we

manually estimated the spectral peak range nearest to the

suggested maxima of 17 bpm and 60 bpm (respiratory and

cardiac peaks, respectively).

(2) MELODIC manual selection (ICAM): we also employed

FSL’s MELODIC package (www.fmrib.ox.ac.uk/fsl/melod-

ic2/index.html) to estimate and remove artifacts, based on

visual inspection of Independent Components (ICs). This

model performs Probabilistic PCA (a probabilistic Gaussian

model, with components obtained via Expectation-Maximi-

zation) to estimate the signal/artifact source subspace,

followed by a non-orthogonal rotation of component vectors

to maximize spatial independence via negentropy measures

[52]. We performed a conservative selection of the resultant

noise ICs, based on spatial and temporal characteristics

consistent with motion and physiological artifact. We

discarded only those components in which artifact was

predominant; see supplementary Text S1 for a summary of

the component selection criteria.

These two methods were selected, as they allowed us to

compare the impact of adding: (1) a model driven by known

physiological noise priors and with fixed dimensionality (ICAP)

and (2) an unconstrained source selection method with variable

dimensionality (ICAM) relative to (3) PDA using regularized PCA

components without any ICA.

We obtained EPI data preprocessed with all possible

combinations of the data preprocessing steps MC, RET,

MPR, ICAP/ICAM and DET0–5 included/excluded from the

pipeline. This generated 236366 = 144 preprocessed datasets

for each subject, all of which were then analyzed. For the

simulation datasets, the 3dvolreg and ICA could not be

performed (due to the 2D geometry and Gaussian signal

structure, respectively). We applied a restricted preprocessing

set including DET0–5, RET and MPR. We randomly selected

cardiac, respiratory and motion measurements from one of the

24 subjects to provide a basis for regression, which was then

fitted to the simulated datasets, to perform the latter two

preprocessing choices. This produced 2266 = 24 different

pipelines in the simulated data.

Analysis Methods
The Penalized Discriminant Analysis (PDA) was performed by

applying two PC decompositions on preprocessed data from run 2;

first on the full data matrix composed of both task epochs (PCAfull),

then individually on each task epoch (or split-half) of the run 2 data

(PCAsplit). This was followed by Linear Discriminant Analysis

(LDA) on the PCAsplit subspace, to obtain a classifier brain map, or

SPM, for each task epoch; full analysis model details are given in

[8,39]. For PCAfull, we kept the 35% of PCs accounting for most

variance, which optimized average distance D(P,R), across all

subjects and the two task contrasts. The subspace for each split-

half matrix (PCAsplit) was then selected using a step-up process,

starting with the first two PCs accounting for the most variance,

and sequentially adding the PC that accounted for the most

remaining variance; the optimal basis size was chosen as the

sequential set of PCs that minimized D(P,R) across splits. The

SPMs of the optimized PCAsplit basis were used to calculate (P,R)

metrics and rSPM(Z) (defined below). In total, (144 preprocessing

sets)6(2 task contrasts) = 288 sets of analysis results were obtained

per subject. For simulations, we obtained 24 sets of analyses per

run, for both CNRs.

Measuring Pipeline Performance
Given that there is no measure of ‘‘ground truth’’ in fMRI

experiments by which to compare different pipeline results, we

employed data-driven metrics of prediction accuracy and

reproducibility (P,R) in the NPAIRS split-half resampling

framework, and identified the pipeline choices optimizing these

measures. This method, developed in Strother et al. [38] and

extended to fMRI by LaConte et al. [8], is briefly outlined; details

of the metrics and reproducible SPM estimation are provided in

supplementary Text S2 and Figure S1. For a given subject’s

dataset, scans were split into two pseudo-independent groups (i.e.,

1st and 2nd halves/epochs of a single run) and analysis performed

separately on each split-half, producing two statistical parametric

maps (SPMs) of brain activations. The R metric was estimated

between splits by Pearson correlation of the split-half SPMs’ voxel

values. We also generated a reproducible SPM, with a Z-

transformed value at each voxel (rSPM(Z)); this is obtained from

the linear combination of the 2 split-half SPMs maximizing their

reproducible signal [38]. Prediction P was computed using analysis

results of split 1 to predict the class, or brain state, of individual

scans in split 2 and vice-versa, via Bayes’ posterior probability.

Accuracy of predictions was averaged across splits. The posterior

probability for the 2-class PDA model, which is equivalent to LDA

on an optimized PCA basis, is estimated from the multivariate

Gaussian distribution [39,61].

Both R and P may range from 0 to 1, with perfect performance

at 1; P = 0.5 corresponds to random guessing for 2-class analyses.

Both metrics measure equally important neuroscientific targets (i.e.

a model that (i) generates a robust activation map and (ii)

accurately predicts brain-state), but also capture important trade-

offs in model parameterization; maximizing P typically comes at

the expense of R and vice-versa (see [62] and details in Text S2). In

order to jointly optimize both metrics, model performance was

defined as Euclidean distance D from perfect prediction and

reproducibility (P = 1,R = 1). Better pipeline performance is given

by smaller D, with D = 0 indicating perfect model performance.

Testing Simulation-Data Bias of Individual Subject
Optimization

We began by testing for bias in individual-subject optimization,

compared to the more commonly-used fixed pipeline optimiza-

Optimizing Pipelines by Subject and Task in fMRI
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tion. Our goal is thus to compare relative bias between fixed/

individually optimized pipelines, for a simulated mixture of

multivariate network signal and noise, which has direct implica-

tions for experimental fMRI data. For each of the 16 central pixels

of the activation loci, we also randomly selected a non-active pixel

(for the same background signal level), and counted true positive/

false positive fractions over the 500 samples (TPF/FPF), for a

range of Z-score thresholds; this produced Receiver Operating

Characteristic (ROC) curves for each signal locus. We computed

median ROC curves and ranges of TPF/FPF, over all 16 signal

loci (the latter shown as error bars), for CNR = 0.3 and 1.0.

Given the lack of structured noise or motion in these data, only

the PC subspace selection during PDA analysis was expected to

provide strong control of the Gaussian noise; hence, we examined

individual-sample optimization of both the regression models

(DET, MPR and RET) and PC basis. The TPF and FPF were

compared for 3 pipelines: fixed preprocessing with fixed PC

dimensionality for PDA (FIXPPL+FIXPC); fixed preprocessing with

individually-optimized PC dimensionality (FIXPPL+INDPC); and

individually-optimized preprocessing with individually-optimized

PC dimensionality (INDPPL+INDPC). The optimal fixed PC

dimension was selected as the median of all PC dimensions that

minimized D(P,R) for each sample; the optimal fixed pipeline was

identified using the ranking procedure described below in

METHODS: Fixed-Pipeline Optimization of Experimental Data.

Individually-optimized pipelines were the preprocessing steps and

PC dimensionalities that minimized D(P,R), specific to each sample

(equivalent to METHODS: Individual-Subject Optimization of

Experimental Data).

We compared the median ROC curves of the three pipelines for

CNR = 0.3 and 1.0, and also plotted FPF as a function of Z-score

threshold for the rSPM(Z)s of the null data, as we were concerned

with individual-sample optimization measuring spurious activa-

tions in the absence of signal. We also plotted ROC curves for a

General Linear Model (GLM) analysis, with Ordinary Least

Squares estimation and a binary task-design structure, to provide a

univariate reference curve. We directly tested whether the method

of pipeline optimization affects signal detection, by computing the

area under each sample ROC curve for FPF,0.1 for all three

pipeline sets, as we are interested in signal detection for this low

FPF range. We tested for significant changes between pipelines in

the 16 partial ROC area measurements, using nonparametric

paired-sample Wilcoxon tests.

Fixed-Pipeline Optimization of Experimental Data
We directly examined preprocessing effects, by comparing

performance of the 144 fixed pipeline combinations of RET, MC,

MPR, ICA and DET0–5, for each task contrast. A fixed-pipeline

analysis procedure was established, to (a) identify optimal pipelines

based on (P,R) metrics, then (b) characterize the spatial structure of

the pipelines’ rSPM(Z)s using the DISTATIS clustering technique

[53,54]. This procedure identifies the optimal fixed pipeline, in

order to provide a fair comparison for individual-subject

optimization. We briefly describe these methods as follows;

Supplementary Text S3 and Figure S2 provide extensive details

on the fixed-pipeline optimization procedures.

(1) Optimizing (P,R) metrics: we used a non-parametric procedure

to test for a significant ordering in pipeline performance that is

common across all subjects (first applied in [17]). For each

subject, pipelines are ranked by their D-metric; provided there

is a significant pipeline ranking, we identify the set of L optimal,

highest-ranked pipelines, based on an a = 0.05 critical-differ-

ence bound. The set L was estimated for each task contrast.

(2) Characterizing SPM spatial structure: pipelines with similar

(P, R) may be driven by different spatial patterns [17].

Therefore, for the set of L fixed pipelines which have

statistically indistinguishable (P, R) distributions, we tested

for significant differences in rSPM(Z) patterns. We performed

the three-way multidimensional scaling of DISTATIS

[53,54], which provides a PC-space representation of the

similarity between pipeline rSPM(Z)s most common across all

subjects. The novel features of this technique are that (i) we

obtain a denoised estimate of the most common rSPM(Z)

similarity pattern across all subjects, and (ii) we perform

Bootstrap resampling on this similarity pattern, to produce

empirical, nonparametric 95% confidence ellipses for each

pipeline. The L pipelines were examined for clustering,

defined as overlap in DISTATIS 95% confidence ellipses,

indicating that their rSPM(Z)s are not significantly distin-

guishable.

(3) Maximizing overlap between subject SPMs: the DISTATIS

method allows us to select an optimal pipeline based on SPM

characteristics; however we are also interested in maximizing

fixed-pipeline performance metrics. Therefore, we chose the

optimal fixed pipeline from the L candidates (denoted FIX) as

the one with greatest average Jaccard overlap between subject

rSPM(Z)s (the intersection/union of significantly active voxels,

for a False-Discovery Rate threshold (FDR) = 0.05). This

pipeline is both optimal in (P,R), and maximizes the

consistency of activation loci between subjects.

The 95% confidence ellipses were plotted for the L optimal

pipelines of each task contrast. We also plotted a mean rSPM(Z)

from each DISTATIS 95% confidence cluster, using a single

representative pipeline, to demonstrate that the clustered pipeline

groups generate significantly different spatial structures. Finally,

we identified the optimal FIX pipeline for each contrast.

Optimizing Subspace Selection for Experimental Data
We also tested whether ICA may be used to effectively estimate

the fMRI signal subspace, compared to PCA. This is a separate

issue from whether ICA effectively removes artifact, and has

implications for the optimal method of signal estimation in

multivariate fMRI analyses. The use of ICA to estimate functional

brain networks has become of increasing interest in recent years;

however it is not clear whether it provides better estimation of the

fMRI signal than PCA-based predictive analysis models. We

therefore compared 4 different subspace selection methods, for the

optimal fixed preprocessing pipeline of each task contrast

(obtained using the procedure outlined in the previous section).

For this section, we compared different subspace selection

methods to a ‘‘baseline’’ reference of data without dimensionality

reduction; for each subject, we obtained this baseline by

performing the 2 PCAs prior to PDA analysis, without discarding

any components (i.e. no subspace selection), and obtained the (P,R)

values. We then measured (P,R) of analysis results for (ICA): an

optimized ICA subspace, estimated from MELODIC, with artifact

components discarded as outlined in METHODS: Data Prepro-

cessing; (PCAsplit): an optimized PCA subspace based on D(P,R)

metric; and (ICA+PCAsplit): ICA denoising, followed by PCA

optimization; for these 3 methods, we performed analyses without

the initial 35% data reduction in PCAfull (see METHODS:

Analysis Methods), so that we could directly compare PCA results

to denoising with ICA along (performed on the split-halves). We

also demonstrated (PCAfull+PCAsplit) results, so we could compare

these subspace selection models to the method used in the rest of

the paper. For (ICA), we performed ICA denoising, then
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transformed the denoised data using PCA prior to PDA, without

discarding any components; this is equivalent to a weighted linear

combination of the IC components. We then compared the (P,R)

values of the 3 different methods to the ‘‘baseline’’.

Individual-Subject Optimization of Experimental Data
The preprocessing combination that minimized D for each

subject was also determined, for each combination of task-contrast

and analysis model, providing the ‘‘individually-optimized pipeline

set’’ (IND).

For IND optimization on experimental data, we require an

added step to account for task-coupled motion (TCM), which

generates artifact that is task-correlated and reproducible, and thus

not controlled by optimizing D(P,R). We used a quantitative

procedure to reject pipelines corrupted with motion artifact, when

selecting the optimal pipeline for each subject; see Text S4 for

details. The effect of IND optimization on (P,R) was examined,

relative to the optimal fixed pipeline FIX, for both task contrasts.

We also examined trends in individually-optimal pipelines, by

examining the number of subjects requiring each preprocessing

step for optimal model D(P,R), for both task contrasts.

The spatial structure of SPMs for FIX and IND pipelines was

also compared. The IND pipelines have been previously found to

increase activation overlap between subjects, relative to fixed

pipelines [16–18]. We hypothesized that IND also consistently

increases activation overlap between subjects relative to FIX for

both task contrasts, even though we have explicitly selected FIX to

maximize activation overlap. An increase in between-subject

activation overlap indicates that we are optimizing the detection of

functional activations that are consistent across all subjects. This

provides independent validation of our optimization process since,

unlike FIX pipelines, IND subject pipelines are optimized

independent of one another.

We computed (1) whole-brain reproducibility between all

subject pairs, based on the Pearson correlation coefficient, and

(2) the overlap of activated brain regions, by thresholding

individual subject SPMs at FDR = 0.05 and measuring pairwise

Jaccard overlap between all subjects. We measured the mean

correlation/overlap of each subject with all others, for both IND

and FIX. Brain regions that show significant change between IND

and FIX were also plotted, estimated via Bootstrap resampling on

the mean difference in Z-scores, to find regions with consistent

positive/negative change. We plotted mean Z-score change

(IND2FIX) at significant regions, corrected for multiple compar-

isons at FDR = 0.05. These analyses were performed for both strong

and weak task contrasts.

Results

Testing Simulated-Data bias of individual subject
optimization

For the fixed pipelines FIXPPL+FIXPC, the optimal PC

dimensionalities of CNR = 1.0 and 0.3 were 1 and 3 PCs,

respectively. The null dataset and both CNRs exhibited significant

fixed-pipeline rankings (all p,0.01, Friedman test). For all

datasets, the DET0 pipeline with ‘‘no preprocessing’’ had the

optimal individual ranking and was also chosen as the fixed

optimum pipeline. This was expected given the absence of

structured noise in the simulations. For individually-optimized

datasets of INDPPL+INDPC, regression-based preprocessing opti-

mized (P,R) for a subset of datasets, although the regressors are not

designed to control Gaussian noise. For example, at CNR = 1.0,

218/500 samples included RET for optimization and 150/500

included MPR. In addition, samples were optimized with median

detrending order 2 and range 0–5, for both CNRs.

Fig. 2(B) plots the median and range of FPF across all 16 loci in

null data, as a function of Z-score threshold for the three pipelines

and GLM analysis. The expected null distribution is also plotted

based on a normal curve of zero mean, and unit variance (gray

line). Although FIXPC+FIXPPL had the lowest median FPF, no

consistent difference was observed between the pipelines, as all

range error bars overlap. In addition, as the Z-score threshold is

increased beyond 3.7 (inset on Fig. 2(B); p,1024, uncorrected), all

pipelines attain zero median FPF. Therefore, for homogeneous

Gaussian signal and noise, individual pipeline optimization

showed a weak but non-significant increase in FPF compared to

fixed pipelines.

Fig. 2(C–D) plot median ROC curves of the three pipelines. For

both CNRs, the range error bars overlapped for all non-GLM

pipeline ROC curves, although the medians are consistently

higher for pipelines with INDPC in CNR = 0.3. For CNR = 1.0, all

pipelines have mean partial ROC area 0.09360.004, with no

significant change for either INDPC+FIXPPL or FIXPC+FIXPPL,

relative to FIXPC+FIXPPL (p = 0.519 and p = 0.850 respectively;

paired Wilcoxon test). However, for CNR = 0.3, we measured

mean partial ROC areas of 0.03460.003 (FIXPC+FIXPPL),

0.04260.005 (INDPC+FIXPPL) and 0.04360.004 (INDPC+INDPPL).

Both INDPC+FIXPPL and INDPC+INDPPL show significantly in-

creased partial ROC area relative to FIXPC+FIXPPL (p,0.01 for

both), while INDPC+FIXPPL and INDPC+INDPPL are not signifi-

cantly different (p = 0.791). Individual-sample optimization there-

fore produced either comparable (CNR = 1.0) or improved

(CNR = 0.3) signal detection in simulation data, relative to fixed

preprocessing.

Fixed-Pipeline Optimization of Experimental Data
A significant, consistent pipeline D(P, R) ranking was observed

for both task contrasts (p,0.01, Friedman test), allowing us to

identify a subset of optimal pipelines for each contrast (see Text

S3). For strong contrast, we identified 15 of the 144 pipelines as

optimal (Nemenyi test, a= 0.05), listed in Table 2; note that spatial

smoothing and slice-timing correction are the only fixed

preprocessing steps for all pipelines. Of these fixed pipelines, 14/

15 included ICAM and 9/15 included MC, being the most

consistently important fixed pipeline steps. No optimal fixed

pipeline included ICAP or MPR, indicating that they are

suboptimal procedures for this contrast, but ICAM followed by

PCA dimensionality reduction is almost uniformly optimal for a

fixed pipeline.

Figure 3(A) shows the DISTATIS clustering analysis for fixed-

pipeline rSPM(Z)s of the strong contrast, where the two plotted

dimensions account for 60% of total rSPM(Z) variance. We

observe 3 significantly different clusters with non-overlapped 95%

confidence ellipses; clusters are labelled with preprocessing step(s)

that are consistent for all overlapping pipelines. Fig. 3(B) shows

mean rSPM(Z)s from a representative of each cluster, demon-

strating that the pipeline groups tend to extract different brain

patterns. At a fixed threshold, {ICAM,DET2; middle row} exhibits

weaker mean task-negative Z-scores, whereas {ICAM,MC,DET2;

bottom row} shows distinct frontal task-positive activations (slice

69), and {MC,DET2; top row} shows greater signal in the ventral

anterior cingulate cortex (vACC) (slice 30). The three optimal

fixed pipelines have a significant ranking for between-subject

activation overlap (at FDR = 0.05), of {ICAM,MC,DET2}.{I-

CAM,DET2}.{MC,DET2} (p,0.01, Friedman test); we thus

selected {ICAM,MC,DET2} as the optimal fixed pipeline FIX for

strong contrast.
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We identified 11/144 as optimal fixed pipelines for weak contrast

based on D(P,R) ranking and permutation testing (a= 0.05), listed in

Table 3. The preprocessing optima were more varied, with ICAP

now required for 5/11 pipelines, RET required for 6/11 pipelines,

and ICAM being part of 4/11 pipelines; the latter is thus less

consistently optimal for the weaker contrast. In addition, MC was

markedly less important, only being part of 2/11 optimal fixed

pipelines. In addition, optimal DET order was more consistent, as

DET0 or 4 was required to optimize 10/11 pipelines.

Figure 4(A) shows the DISTATIS clustering analysis for fixed-

pipeline rSPM(Z)s of the weak contrast; the plotted dimensions

account for 51% of total rSPM(Z) variance. Compared to strong

contrast’s 3 pipeline clusters, we observed an increase to 5 distinct

clusters (see Table 3); the clusters are again labelled with

preprocessing step(s) that are consistent for all pipelines within

the group. Fig. 4(B) compares mean SPMs from representative

pipelines of the 3 largest clusters, as the other 2 are intermediate

between these groups. These maps reinforce the importance of

spatial testing, as the {RET,DET4} group appears to be corrupted

with task-coupled motion, based on substantial apparent activation

rimming the brain. The 3 fixed pipelines also exhibited significant

ranking for between-subject activation overlap (at FDR = 0.05), of

{ICAM,DET4}.{ICAP, DET0}.{RET,DET4} (p,0.06, Fried-

man test); the {ICAM,DET4} pipeline was selected as the optimal

fixed pipeline FIX for weaker contrast.

Optimizing Subspace Selection for Experimental Data
Tables 4 and 5 show the results of using different combinations

of ICA and PCA to optimize data dimensionality for analysis; we

measured changes relative to data without any dimensionality

reduction. The PCA and ICA-PCA pipelines always significantly

improved D(P,R), while ICA alone as estimated in MELODIC was

not always significantly beneficial. Performing ICA optimization

only significantly improved the P metric, for weak contrast. By

comparison, PCA and ICA-PCA methods improved all metrics for

weak contrast, and R and D for strong contrast (at the expense of

decreased P). Therefore, MELODIC ICA is a sub-optimal

estimator of the signal subspace for PDA analysis of both task

contrasts, requiring further PCA dimensionality reduction. In

addition, the 2-step PCA procedure (PCAfull+PCAsplit), used for

analyses in the rest of this paper, generally demonstrates improved

median R, P and D relative to the other methods, indicating that it

is the better subspace selection method.

Individual-Subject Optimization of Experimental Data
The (P,R) effect of IND preprocessing, which selects a

heterogeneous set of pipelines distinct from FIX, is shown in

Figure 5. Individual-subject (P,R) values are plotted for FIX (red

circles) and IND (blue squares). For both contrasts, only 2 subjects

were optimized with FIX preprocessing (e.g. showing no change;

gray circles), all others had pipelines that reduced D(P,R). As may

be expected, strong contrast results (Fig. 5(A)) had higher mean and

Table 2. Optimal fixed pipelines for Strong-Contrast data.

Cluster Group ICA MC MPR RET DET

1 X 2

2 M 0

2 M 1

2 M 2

2 M 4

2 M 5

3 M X 0

3 M X 1

3 M X 2

3 M X 3

3 M X 4

3 M X X 0

3 M X X 1

3 M X X 2

3 M X X 4

The optimal fixed pipeline combinations for strong contrast (Task vs. Control),
identified via Nemenyi test (p = 0.05). Preprocessing includes ICA (M = MELODIC;
P = PESTICA), motion correction (MC), motion parameter regression (MPR),
physiological noise correction via RETROICOR (RET) and polynomial detrending
for orders 0–5 (DET). Pipelines with the same Cluster Group number have no
significant difference in SPMs, based on overlapped 95% confidence ellipses in
DISTATIS space, shown in Fig. 3.
doi:10.1371/journal.pone.0031147.t002

Figure 3. Testing fixed-pipeline spatial structure for strong task contrast (Task vs. Control). (A) DISTATIS-space plot, showing the
similarity in spatial structure of optimal fixed pipeline SPMs; pipelines with overlapped 95% confidence ellipses have non-significantly different SPMs
in this space. Cluster numbering is consistent with Table 2, and labelled with preprocessing steps that are consistent across all pipelines in the cluster,
abbreviated: ICA with the MELODIC algorithm (ICAM), motion correction (MC). See Table 2 for the corresponding list of pipelines. (B) mean activation
maps, from a representative pipeline of each cluster: {MC,DET2}, {ICAM,DET2} and {ICAM, MC,DET2} (top to bottom).
doi:10.1371/journal.pone.0031147.g003
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lower variability in (P,R) than weak contrast (Fig. 5(B)). The strong

and weak contrasts had respective mean R of 0.823 (range 0.657 to

0.994) and 0.593 (range 0.010 to 0.883), and respective mean P of

0.912 (range 0.792 to 0.997) and 0.711 (range 0.486 to 0.999),

measured by averaging across both FIX and IND pipelines.

Individual optimization of strong task contrast generally

improved R, with mean change 0.056460.0480 (21/24 subjects

improved; p,0.01, paired Wilcoxon test), as well as P, with mean

change 0.013260.0370 (18/24 subjects improved; p = 0.01). The

weak-contrast results generally showed greater range of improve-

ment in both metrics, with mean change in R of 0.24260.180

(20/24 subjects improved; p,0.01, paired Wilcoxon test), and

mean change in P of 0.13860.125 (19/24 subjects improved;

p = 0.01). For the weaker contrast results are thus more sensitive to

IND optimization, for both prediction and reproducibility

metrics.

Figure 6 summarizes the number of subjects optimized with

each preprocessing step for IND. As with fixed preprocessing, we

observed trends specific to the two task contrasts. For the strong

contrast (blue bars), 23/24 subjects optimized with ICAM, 17/24

optimized with MC and RET, and 10/24 optimized with DET2,

indicating that these tended to be the most important pipeline

steps. However, there remains significant heterogeneity in the

optimal detrending order, and a subset of subjects required MPR

and DET0–4, although only one subject was optimized with ICAP.

For weak contrast (red bars), we observed two major changes in

pipeline trends. First, we see changes in ICA, with ICAM

becoming less important (only 11/24 subjects optimized) and

ICAP now optimizing 5/24 subjects. Second, there was a shift in

detrending order, with the higher-order DET4 becoming the most

consistent optimum (10/24 subjects). Trends in RET, MPR and

MC did not show marked differences between task contrasts.

Figure 7(A) plots the mean SPM for both FIX and IND

pipelines, for strong contrast results. This included positive

activations in the cerebellum (slice 24), visual cortex (slices 36–

45), cuneus and superior occipital lobes (slice 57), precuneus and

superior parietal lobes (slice 66), supplementary motor area (SMA)

and precentral gyri (slices 57,66). Negative activations included

ventral anterior cingulate cortex (vACC) and right inferior

temporal lobe (ITL) (slice 36), superior medial-frontal gyrus,

middle temporal lobes (MTL) and posterior cingulate cortex

(PCC) (slice 45–46), angular gyri (slice 57) and right inferior

parietal lobe (slice 66). The mean difference plot (Fig. 7(A),

bottom) shows that although both pipelines tended to identify

similar regions of activation, IND shows significant mean Z-score

increases in posterior task-positive activations, along with SMA

and right-side ITL and MTL. Fig.s 7(B–C) show that IND

optimization decreased correlation between subject SPMs for 18/

24 subjects (red lines), but increased mean activation overlap

(FDR = 0.05), for all subjects (blue lines), significant at p,0.01

(paired Wilcoxon).

Figure 8(A) compares mean SPMs for FIX and IND for the weak

task contrast. Regions of largest positive signal include predom-

inantly left-side activations of inferior orbitofrontal (slice 33),

Table 3. Optimal fixed pipelines for Weak-Contrast data.

Cluster Group ICA MC MPR RET DET

1 P X 4

1 X 4

2 X 2

3 P X 0

3 P 0

3 P X 0

3 P X X 0

4 M 0

5 M 4

5 M X 4

5 M X 4

The optimal fixed pipeline combinations for weak contrast (TaskB vs. TaskA),
identified via Nemenyi test (p = 0.05). Preprocessing includes ICA (M MELODIC;
P = PESTICA), motion correction (MC), motion parameter regression (MPR),
physiological noise correction via RETROICOR (RET) and polynomial detrending
for orders 0–5 (DET). Pipelines with the same Cluster Group number have no
significant difference in SPMs, based on overlapped 95% confidence ellipses in
DISTATIS space, shown in Fig. 4.
doi:10.1371/journal.pone.0031147.t003

Figure 4. Testing fixed-pipeline spatial structure for weak task contrast (TaskB vs. TaskA). (A) DISTATIS-space plot, showing the similarity
in spatial structure of optimal fixed pipelines SPMs; pipelines with overlapped 95% confidence ellipses have non-significantly different SPMs in this
space. Cluster numbering is consistent with Table 3, and labelled with preprocessing steps that are consistent across all pipelines in the cluster,
abbreviated: ICA by MELODIC algorithm (ICAM) and PESTICA (ICAP), Physiological Noise Correction with RETROICOR (RET) and polynomial temporal
detrending (DET(order)). See Table 3 for corresponding list of pipelines. (B) mean activation maps, from a representative pipeline of each major
cluster: {RET, DET4}, {ICAP,DET0}, {ICAM,DET4} (top to bottom).
doi:10.1371/journal.pone.0031147.g004
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inferior frontal (slice 45,51), caudate (slice 45), anterior cingulate

(slice 51), precentral gyrus (slice 60) and SMA (slices 60,72). Task-

negative activations appear in vACC (slice 33), PCC and MTL

(slices 45,51) and postcentral gyri (slices 60,72). Regions of

significant IND-FIX change (Fig. 8(A) bottom) were more sparse,

likely due to elevated intersubect heterogeneity in absolute Z-

scores (comparing intersubject correlations of Fig. 7(B) and

Fig. 8(B)). However, significant task-positive increases occurred

in inferior orbitofrontal (slice 33), left inferior frontal gyrus (slices

45,51), anterior cingulate (slice 51), SMA (slice 72) and precentral

gyrus (slice 60). Significant task-negative changes were sparser,

appearing in vACC (slice 33), right MTL (slice 45) and right

postcentral gyrus (slice 60). Fig. 8(B–C) again shows that IND

optimization consistently decreased inter-subject correlations (18/

24 subjects), but 23/24 subjects showed increased mean activation

overlap (FDR = 0.05), significant at p,0.01 (paired Wilcoxon).

The inter-subject correlations and overlaps were consistently lower

for weak contrast than strong (Fig. 8(B–C) vs. Fig. 7(B–C)),

irrespective of pipeline optimization.

Discussion

This paper presents the first comprehensive study of the

interaction between multiple steps of the fMRI experimental

pipeline, including task contrast, preprocessing pipeline, and

heterogeneity of subject effects. The presented results show that

while individual subject optimization of preprocessing significantly

affects (P,R) of fMRI analyses, there are also consistent interactions

between other components of the experimental pipeline. In

particular, subject-specific pipeline optimization has a greater

effect on (P,R) for weaker cognitive contrasts, which may require

distinct preprocessing sets, relative to stronger contrast. It is thus

important to consider the data-analysis pipeline as a whole, when

choosing preprocessing steps and models for optimal fMRI

analyses.

Testing bias of individual subject optimization
In the initial simulation analyses, we demonstrated that

individual subject optimization does not significantly increase

model bias, relative to fixed preprocessing. This provides the first

validation of individual subject pipeline optimization using a

measure of ‘‘ground truth’’, although such optimization has

already been applied in a number of experimental contexts (e.g.

[8,18,19]). The optimization procedure is not significantly biased,

because we are jointly maximizing prediction and reproducibility

metrics, instead of the more common target of voxel signal

strength – the latter carries the risk of circular analysis (see

Kriegeskorte et al., [55]), in which the experimenter tunes the

pipeline to maximize Z-scores (for example), fitting the model to

experimental noise in the process. The presented results

demonstrate that the common approach of fixed preprocessing

in the fMRI literature is not intrinsically more robust to bias than

individual subject optimization, even in the most limiting case of

independent, identically-distributed signal and noise. In fact, PC

subspace optimization significantly improves within-sample signal

detection in weaker CNR = 0.3 data, even for a Gaussian,

identically-distributed set of data samples.

Fixed-Pipeline Optimization of Experimental Data
The fixed-pipeline procedure provided information on the

effects of preprocessing choice across subjects in a given task

design, and constitutes a statistically rigorous method of deter-

mining which preprocessing choices are most important. For

Table 4. Comparing performance of different subspace estimation methods, for Strong-Contrast data.

DR signif. DP signif. DD signif.

ICA 20.04 [20.27, 0.11] ,0.01 0.00 [20.17, 0.15] 0.38 0.04 [20.11, 0.27] 0.01

PCAsplit 0.31 [ 0.04, 0.43] ,0.01* 20.06 [20.30, 0.06] ,0.01 20.29 [20.40, 20.04] ,0.01*

ICA+PCAsplit 0.34 [ 0.24, 0.47] ,0.01* 20.04 [20.17, 0.05] ,0.01 20.33 [20.47, 20.17] ,0.01*

PCAfull+PCAsplit 0.35 [ 0.19, 0.47] ,0.01* 20.05 [20.12, 0.03] ,0.01 20.34 [20.48 20.18] ,0.01*

For strong contrast (Task vs. Control), model performance is shown for different subspace estimation methods, relative to full-dimensionality data (i.e. retaining all PCs).
The median, [minimum, maximum] changes are shown for prediction (DP), reproducibility (DR) and distance DD from (P = 1,R = 1), over all single-subject results.
Significance is given by Wilcoxon tests, with * indicating significant improvement. We show results for combinations of ICA = MELODIC subspace estimation,
PCAsplit = optimized PC subspace on each data split-half, and PCAfull = retaining 35% of PCs from the full data matrix. Note that (PCAfull+PCAsplit) is the subspace
selection method used for the rest of the manuscript. Results are shown for optimal fixed preprocessing: motion correction and 2nd-order detrending.
doi:10.1371/journal.pone.0031147.t004

Table 5. Comparing performance of different subspace estimation methods, for Weak-Contrast data.

DR signif. DP signif. DD signif.

ICA 20.02 [20.24, 0.47] 0.83 0.19 [20.36, 0.53] 0.02* 20.07 [20.67, 0.29] 0.07

PCAsplit 0.15 [ 0.00, 0.54] ,0.01* 0.24 [20.19, 0.46] ,0.01* 20.20 [20.58, 20.05] ,0.01*

ICA+ PCAsplit 0.19 [ 0.01, 0.54] ,0.01* 0.22 [20.19, 0.62] ,0.01* 20.25 [20.72, 0.04] ,0.01*

PCAfull + PCAsplit 0.25 [20.14, 0.74] ,0.01* 0.28 [20.19, 0.64] ,0.01* 20.39 [20.79, 0.20] ,0.01*

For weak contrast (TaskB vs. TaskA), model performance is shown for different subspace estimation methods, relative to full-dimensionality data (i.e. retaining all PCs).
The median, [minimum, maximum] changes are shown for prediction (DP), reproducibility (DR) and distance DD from (P = 1,R = 1), over all single-subject results.
Significance is given by Wilcoxon tests, with * indicating significant improvement. We show results for combinations of ICA = MELODIC subspace estimation,
PCAsplit = optimized PC subspace on each data split-half, and PCAfull = retaining 35% of PCs from the full data matrix. Note that (PCAfull+PCAsplit) is the subspace
selection method used for the rest of the manuscript. Results are shown for optimal fixed preprocessing: motion correction and 4th-order detrending.
doi:10.1371/journal.pone.0031147.t005
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example, in strong contrast, ICAM and MC are important to

optimize (P, R), whereas for the weaker contrast, a more

heterogeneous set of pipelines was observed (compare Tables 2

and 3). By comparison, Churchill et al. [17] also reported

significant ranking of fixed pipelines in which MC is typically

included, for strong contrast without an ICA denoising step,

However, [17] also found DET2 to be most important for fixed-

pipeline optimization, which is not the case in the current results.

The inclusion of ICAM thus interacts with detrending, increasing

the heterogeneity of its effect across subjects. Our fixed-pipeline

results also demonstrated that pipelines with comparable (P, R)

exhibited significantly different activation patterns; DISTATIS

was effective at clustering pipelines based on shared spatial

structure. These results are consistent with [17], which demon-

strated that although pipeline (P,R) is correlated with SPM pattern,

not all significant differences in pipeline SPMs are captured by

(P,R) metrics.

The optimal fixed pipelines also vary significantly as a function

of task contrast. For example, MELODIC denoising is typically

optimal for the stronger contrasts, with more heterogeneous effects

in the weaker case. This indicates that MELODIC is unable to

effectively separate signal and noise for many subjects, mixing

TaskB vs. TaskA signal into the nominally structured artifact ICs.

This is an expected risk, as artifact sources, including macro-

vascular flow, respiration and motion, often correlate spatially and

temporally with BOLD response [56,57]. In addition, it has been

recently shown that the initial probabilistic PCA dimensionality

estimator used in MELODIC is suboptimal for network pattern

detection [43]. These may also be issues for the weak contrast, due

to the signal’s smaller variance and less stable distribution

(supported by generally lower (P,R) values), which the ICA model

appears unable to separate based on independence measures. This

may be contrasted with PESTICA, which becomes marginally

more important for weak contrast; this method estimates ICs using

a priori spatiotemporal constraints. It is rarely an optimal step, even

for weak contrast, possibly because PESTICA uses a fixed set of 6

regressors, which estimates a fixed-dimensional noise subspace.

This is known to be sub-optimal noise estimation, as the

dimensionality of physiological noise varies from subject to subject

[58]; the flexibility of PESTICA may be significantly improved by

individual dimensionality optimization. The two ICA methods

illustrate important tradeoffs in data-driven modelling, which may

vary from a priori unconstrained but dimensionally-flexible

(MELODIC) to physiological-based priors but fixed dimensional-

ity estimation (PESTICA).

However, one of the challenges of comparing ICA models is

that they often differ considerably in implementation, making it

difficult to isolate the causes of differing performance. In addition

to dimensionality and spatial constraints, MELODIC and

PESTICA vary in such parameters as initial subspace estimators

Figure 5. Effects of individual subject optimization on model performance. Prediction and reproducibility are plotted for the optimal fixed
pipeline (red) and individually optimized pipeline (blue) of each subject, connected by a solid line. Performance metrics are plotted for (A) strong
(Task vs. Control) and (B) weak (TaskB vs. TaskA) task contrasts. For strong and weak contrasts, optimal fixed pipelines are {ICAM,MC,DET2} and
{ICAM,DET4}, respectively. Subjects with no change in pipeline are coloured in grey.
doi:10.1371/journal.pone.0031147.g005

Figure 6. Frequency of preprocessing steps, for individually-
optimized pipelines. The plot shows number of subjects (out of 24)
optimized with each preprocessing step, under individual-subject
optimization, for (blue) strong (Task vs Control) and (red) weak (Task
B vs Task A) contrasts. Tested preprocessing steps include ICA with
PESTICA (ICAP) and MELODIC (ICAM) algorithms, motion correction
(MC), motion parameter regression (MPR), physiological noise
correction via RETROICOR (RET) and detrending with Legendre
polynomials of order 0–5 (DET0–5).
doi:10.1371/journal.pone.0031147.g006
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(Probabilistic PCA vs. PCA), dimension of component indepen-

dence (spatial vs. temporal) and algorithmic convergence criteria

[28,52]. Further analyses are required to definitively establish

which parameters are driving the contrast-dependent tradeoff

between MELODIC and PESTICA models.

Additionally, although ICA denoising is generally beneficial for

the control of artifacts, MELODIC proved to be a sub-optimal

procedure for estimating the signal subspace. This is consistent

with prior analyses of Yourganov et al. [43], who found that ICA

detection of brain networks underperforms, relative to linear

discriminant methods. This may be partly due to the PCA-based

dimensionality estimation method used in MELODIC. This

package uses optimization of Bayes’ evidence to estimate intrinsic

dimensionality, which has also been shown to produce sub-optimal

dimensionality estimates [43]; this suggests that optimizing the

ICA subspace using a data-driven step-up procedure optimized on

(P,R), as with PCA, may potentially improve this model.

Nonetheless, results indicate that optimizing the subspace using

PCA generally allows for more predictive and reproducible signal

subspace estimation; this is beneficial, given the relative compu-

tational efficiency and consistency of the estimated subspace for

PCA, over ICA algorithms.

For fixed preprocessing, RET is increasingly important for

weaker contrast, indicating a more consistently positive impact.

This partially validates the trend in fMRI literature, of performing

more extensive physiological corrections for weaker-signal analyses

(e.g. compare [33,34] to [35,37]). This is likely due to changes in

relative variance of signal and noise, to which multivariate analysis

models are particularly sensitive. As we transition from large,

spatially localized BOLD signal changes (strong contrast; Fig. 3) to

smaller, distributed changes (weak-contrast and resting state

dynamics; Fig. 4), physiological variance likely becomes increas-

ingly larger than BOLD-related variance. This requires more

extensive denoising to sufficiently reduce noise confounds for

signal detection. These results are consistent with prior findings of

[17], in which subjects with greater proportionate head motion

were optimized with more extensive RET and MPR preprocess-

ing. Interestingly, we do not observe an increase in RET (or MPR)

for individually-optimized weak contrast results; this indicates that

selecting MELODIC or PESTICA on a subject-specific basis may

Figure 7. Effects of pipeline optimization on group-level activation, strong contrast. Activation structure is shown for strong (Task vs.
Control) contrast, under fixed (FIX) and individually-optimized (IND) preprocessing. (A) mean Z-scored activation maps for FIX and IND (top), and
mean Z-score change (bottom), with significance given by bootstrap estimation (1000 iterations), thresholded at False-Discovery Rate (FDR) 0.05. (B)
between-subject SPM correlations, for both FIX and IND pipeline sets. (C) between-subject Jaccard activation overlap, for voxels significant at
FDR = 0.05. For (B–C), each point represents mean correlation/overlap of one subject with all others; blue lines show an increase in correlation/overlap
with IND, and red lines show a decrease.
doi:10.1371/journal.pone.0031147.g007

Figure 8. Effects of pipeline optimization on group-level activation, weak contrast. Activation structure is shown for weak (TaskB vs. TaskA)
contrast, under fixed (FIX) and individuallyoptimized (IND) preprocessing. (A) mean Z-scored activation maps for FIX and IND (top), and mean Z-
score change (bottom), with significance given by bootstrap estimation (1000 iterations), thresholded at False-Discovery Rate (FDR) 0.05. (B) between
-subject SPM correlations, for both FIX and IND pipeline sets; note that one point with correlation 20.014 was omitted from the displayed range for
clarity. (C) between -subject Jaccard activation overlap, for voxels significant at FDR = 0.05. For (B–C), each point represents mean correlation/overlap
of one subject with all others; blue lines show an increase in correlation/overlap with IND, and red lines show a decrease.
doi:10.1371/journal.pone.0031147.g008
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be effective for controlling contrast-dependent increases in noise

variance. However, many subjects still require MPR and RET to

optimize (P, R), further demonstrating that ICA alone is

insufficient to minimize residual motion and physiological artifact,

for many subjects.

For weaker contrast, we also found that MC is less frequently

selected as an optimal fixed-pipeline step. However, given that the

majority of individually optimized subjects require MC (17/24

subjects) after controlling for task-coupled motion artifact as

outlined in Text S4, it is likely that fixed pipelines without MC

(and any other motion correction procedure) are also reinforcing

such artifact. However, the last fixed optimization step (selecting

the pipeline that maximized group activation overlap) without

adjusting for individual task-coupled motion effects appears to also

control for this issue; in the weak contrast, we discard the

{RET,DET4} pipeline (with an extensive activation ‘‘rim’’ along

brain edges, shown in Fig. 4(B) (top), and no motion correction

method), in favour of {ICAM,DET4} (motion denoising per-

formed within MELODIC).

Individual-Subject Optimization of Experimental Data
The results of individual-subject optimization reveal further

trends in preprocessing effects. Under individual-subject optimi-

zation, regression methods become consistently more important

for weaker and more distributed brain signal (weak contrast),

having a greater impact on (P, R) metrics. In particular, Fig. 5(B)

shows results for subjects with near zero signal detection under FIX

(that is, near (P<0.5, R = 0)) improved beyond the majority of

fixed-pipeline results, under IND optimization. This demonstrates

that subjects that would otherwise be discarded due to excessive

noise/overly weak BOLD signal may simply be limited by

suboptimal preprocessing choices. These results have implications

for analyses across age groups and clinical populations. In these

cases of weak or atypical BOLD signal [59], individual

optimization may prove increasingly important for robust

measurements.

Examining trends in optimal preprocessing (Fig. 6), we note that

DET2 is most consistently optimal for strong contrast, but more

heterogeneous for weak, with DET4 being more consistently

optimal; this suggests increasing between-subject heterogeneity in

the structure and impact of low-frequency drift effects. Note that

AFNI’s heuristic model of low-frequency drift (used, in the

3dDeconvolve GLM model [49]) recommends DET2 for this dataset;

this model is thus an effective predictor of optimal fixed strong-

contrast detrending, but does not generalize to weak-contrast or

individual-subject heterogeneity.

In addition to validating individual-subject pipeline optimiza-

tion using simulation analyses, we performed group-level compar-

isons of optimized rSPM(Z)s. These results demonstrate that

individual subject optimization extracts significant, consistent loci

of greatest activation in grey matter. However, individual

optimization also generally decreases correlations between subject

rSPM(Z)s. This indicates that we are increasing the variability of

voxel Z-scores between subjects, although the regions of highest

activation increase in spatial consistency. It has been previously

demonstrated that loci of highest mean activation show greatest

inter-subject signal variability [17,60]. Furthermore, Churchill et

al. [17] have directly shown that, for a reduced pipeline set,

individual-subject optimization increases both Z-score variability

and between-subject overlap of significantly activated voxels.

Regarding analyses of Trails-Making Test rSPM(Z) patterns,

the present work identified a set of reproducible activations across

different preprocessing methods. These activations are also

consistent with prior literature on the Trails-Making Test,

including dorsolateral prefrontal activations and negative activa-

tion consistent with the Default Mode Network [17,41,48], a

known predictor of cognitive health and aging (e.g. [22]), as well as

occipital/parietal activations specific to Task vs. Control [17], and

superior-frontal activations for TaskB vs. TaskA contrast [41,48].

Further Implications
An important outcome of the work is that for strong, focal

activations, FIX preprocessing may provide near-optimal results.

This validates the practises of standard functional neuroimaging in

experiments with strong signal-to-noise and focal activation, such

as those involving primary sensory processing and motor

behaviour. However, for cases of weaker fMRI signal, involving

subtle cognitive contrasts, preprocessing choices must be more

carefully evaluated. In these cases, analysis of distributed networks

should involve careful testing of pipeline choices - which is not a

common practice. The presented results provide an initial

framework for such testing, demonstrating which preprocessing

steps have the most critical influence on experimental pipeline

conditions and subject data. Future work will involve examining

the effects of other parts of the experimental pipeline, including

acquisition parameters, subject demographics (e.g. subject age and

health), and analysis models (e.g. univariate vs. multivariate

methods). Such pipeline characterization may allow the ultimate

goal of a priori prediction of the optimal pipeline steps, in order to

optimize signal detection.

Supporting Information

Figure S1 Procedure for estimating a reproducible, Z-
scored SPM (rSPM(Z)). (A) the dataset is temporally split into 2

halves, and analysis performed on each split-half, generating 2

independent SPMs. (B) a 2D scatterplot is produced of split1/2

voxel values; for example, voxel values V1 and V2 of (A) produce a

point with coordinates (V1,V2) in the scatterplot. A PCA of the

scatterplot gives orthogonal signal and noise axes (1st and 2nd PCs,

respectively). (C) histograms of voxel signal, projected onto signal/

noise axes; we also mark the standard deviation (SD) of the noise

axis scatter. (D) The rSPM(Z) is computed by normalizing the

signal-axis values by SD(noise axis), then mapping the values back

to their respective brain locations.

(TIF)

Figure S2 Critical-difference diagram for a subset of 6
preprocessing pipelines. The horizontal axis is median

pipeline rank, computed over all subjects, based on distance from

(prediction = 1, reproducibility = 1); the highest-ranked (optimal)

pipeline is {ICAM, MC}. The Critical-Difference (CD) interval

based on a Nemenyi test is also shown (a= 0.05). Pipelines with

separation ,CD are not significantly different (connected by blue/

gray bars). Pipeline {MC} is not significantly worse than the

highest-ranked {ICAM, MC} (blue bar), and is thus also

considered optimal. A fixed polynomial detrending order of 2

was held for all pipelines. Preprocessing steps are denoted:

MC = motion correction, MPR = motion parameter regression,

ICAP/ICAM = ICA denoising with PESTICA/MELODIC.

(TIF)

Text S1 Criteria for Manual Selection of ICA compo-
nents.

(DOC)

Text S2 Model optimization with Prediction and Re-
producibility.

(DOC)
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Text S3 Details of the Fixed-Pipeline Optimization
Procedure.
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Text S4 Diagnosing Task-Coupled Motion Artifact.
(DOC)
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