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Abstract

It was suggested that endocannabinoids are metabolized by cyclooxygenase (COX)-2 in the spinal cord of rats with kaolin/l-
carrageenan-induced knee inflammation, and that this mechanism contributes to the analgesic effects of COX-2 inhibitors in
this experimental model. We report the development of a specific method for the identification of endocannabinoid COX-2
metabolites, its application to measure the levels of these compounds in tissues, and the finding of prostamide F2a (PMF2a)
in mice with knee inflammation. Whereas the levels of spinal endocannabinoids were not significantly altered by kaolin/l-
carrageenan-induced knee inflammation, those of the COX-2 metabolite of AEA, PMF2a, were strongly elevated. The
formation of PMF2a was reduced by indomethacin (a non-selective COX inhibitor), NS-398 (a selective COX-2 inhibitor) and
SC-560 (a selective COX-1 inhibitor). In healthy mice, spinal application of PMF2a increased the firing of nociceptive (NS)
neurons, and correspondingly reduced the threshold of paw withdrawal latency (PWL). These effects were attenuated by
the PMF2a receptor antagonist AGN211336, but not by the FP receptor antagonist AL8810. Also prostaglandin F2a increased
NS neuron firing and reduced the threshold of PWL in healthy mice, and these effects were antagonized by AL8810, and not
by AGN211336. In mice with kaolin/l-carrageenan-induced knee inflammation, AGN211336, but not AL8810, reduced the
inflammation-induced NS neuron firing and reduction of PWL. These findings suggest that inflammation-induced, and
prostanoid-mediated, enhancement of dorsal horn NS neuron firing stimulates the production of spinal PMF2a, which in
turn contributes to further NS neuron firing and pain transmission by activating specific receptors.
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Introduction

Activation of cannabinoid receptors of type-1 (CB1) and/or -2

(CB2) by synthetic agonists as well as by the two most studied

endocannabinoids, anandamide (AEA) and 2-arachidonoylgly-

cerol (2-AG), has been proposed as a novel anti-hyperalgesic

strategy based on studies carried out in several experimental

models of inflammatory and neuropathic pain [1,2]. In particular,

selective inhibitors of endocannabinoid inactivation by the

hydrolytic enzymes monoacylglycerol lipase (MAGL, specific for

2-AG) or, particularly, fatty acid amide hydrolase (FAAH, which

can inactivate both AEA and 2-AG), were suggested to represent a

safe and efficacious way of inhibiting pain without the central side

effects that usually limit the use of the natural agonist of

cannabinoid receptor, delta9-tetrahydrocannabinol [3,4]. Howev-

er, a recent clinical study, presented at the 2010 Conference of the

International Association for the Study of Pain, showed that a

selective and potent FAAH inhibitor, PF-04457845 [5], was not

efficacious at reducing pain in patients with osteoarthritis of the

knee [6]. This unexpected result may have several explanations,

ranging from simple differences between man and rodents to the

observation that inhibition of FAAH also prolongs the action of

bioactive fatty amides other than AEA, which do not necessarily

inhibit pain. However, a recent animal study, carried out in a

model of knee inflammation, suggested that endocannabinoids,

during this pathological condition, may also be inactivated by

enzymes other than FAAH, and in particular by cyclooxygenase-2

(COX-2) [7]. In this previous study, the authors suggested that the

anti-hyperalgesic effect of selective COX-2 inhibitors in rats with

knee inflammation induced by various inflammatory stimuli, and

the inhibition of the underlying hyperexcitability of dorsal horn

nociceptive (NS) neurons by these compounds, was due, at least in

part, to inhibition of 2-AG oxidation by COX-2, subsequent

elevation of spinal 2-AG levels and indirect activation of spinal

CB1 receptors [7]. Clearly, if during knee inflammation,

endocannabinoids are substrates also for COX-2, inhibition of
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FAAH alone would not be sufficient to counteract their

inactivation, and might even favor the COX-2-catalysed forma-

tion of endocannabinoid-derived oxidation products, which might

exert pro-inflammatory and pro-algesic effects per se, as suggested

previously [8], via specific and yet to be fully identified non-

cannabinoid, non-prostanoid receptors [9]. In support of this

possibility, a prostaglandin F synthase isoform with activity on the

‘‘AEA-endoperoxyde’’ derived from COX-2 was recently cloned

and identified in myelin sheaths of the mouse brain and spinal

cord [10]. However, no molecular evidence for the occurrence of

prostaglandin-like derivatives of AEA has been reported to date in

vivo in animals, under either physiological or pathological

conditions. The only available data on the formation of AEA

COX-2 derivatives in vivo is from studies in which FAAH2/2

mice were treated with exogenous AEA [11], and even evidence in

vitro was obtained only in cells treated with either exogenous AEA

[12] or, more recently, a non-physiological stimulus such as

ionomycin to increase the intracellular levels of AEA [13].

In view of these considerations, and of the increasingly accepted

role of COX-2 in the inactivation of endocannabinoids in both

spinal [14] and supra-spinal [15,16] structures (role that first

emerged when it became clear that both AEA and 2-AG are good

substrates for this enzyme in vitro [17,18]), we have investigated

here whether COX-2 metabolites of AEA and 2-AG, known as

prostaglandin-ethanolamides (or prostamides [PMs]) and prosta-

glandin-glycerol esters (PG-GEs) are formed in the spinal cord of

mice with knee inflammation, and if they play any role in NS

neuron hyperexcitability and hyperalgesia. With this purpose, we

developed a novel analytical technique, using liquid chromatog-

raphy-ion trap-time of flight-tandem mass spectrometry (LC-IT-

ToF MS-MS), for the unequivocal identification and quantifica-

tion of the major PMs and PG-GEs, and tested the effects of one of

these compounds, as well as of selective antagonists for its

proposed receptor, on pain perception and NS neuron hyperex-

citability, in healthy and/or knee-inflamed mice. We report data

suggesting that PMF2a is produced in the spinal cord of mice with

knee inflammation and contributes to inflammatory hyperalgesia.

Results

An LC-IT-ToF MS-MS method for the quantification of
endocannabinoid COX-2 derivatives

In order to validate our method, we spiked a rat brain

homogenate with synthetic standards of PME2, PMF2a, PGE2-GE

and PGF2a-GE (100 pmol each). After lipid extraction and pre-

purification (see Methods), the extract was analysed by the LC-IT-

TOF method described here, and the four compounds exhibited

retention times of 13.5, 18.5, 22.5 and 29 min, respectively (Fig. 1).

Prostamides and prostaglandin-GE quantification was performed

by isotope dilution by using m/z values of 422.2815 and 418.2564

corresponding to the sodium adduct of the molecular ion [M+23]+

for deuterated and undeuterated PME2, respectively; or m/z

values of 424.2972 and 420.2726 corresponding to the sodium

adduct of the molecular ion [M+23]+ for deuterated and

undeuterated PMF2a; or m/z values of 453.2761 and 449.2515

corresponding to the sodium adduct of the molecular ion [M+23]+

for deuterated and undeuterated PGE2-GE; and m/z values of

455.2917 and 451.2923 for PMF2a-GE (Fig. 1). The full recovery

of PME2, PMF2a, PGE2-GE and PGF2a-GE from tissue due to the

analytical procedure reported above was 42.561.9, 61.6615.9,

49.1615.7 and 52.3617.8%, respectively.

As assessed by using pure standards, the LC-ESI-IT-ToF

method described here for the first time is specific and sensitive

with a limit of detection (defined as the concentration at which the

signal/noise ratio is greater than 3:1) of 25 fmol in the MS mode

and 500 fmol in the MS-MS mode for all the compounds

analysed. Moreover, the ratio between the [M+23]+ peak areas of

pure undeuterated (0.05–20 pmol) vs. pure deuterated (1 pmol)

PME2, PMF2a, PGE2-GE and PGF2a-GE varied linearly with the

amount of the respective undeuterated standards. The quantifica-

tion limit of compounds was 50 fmol and the reproducibility of the

method ranged between 95% and 99%.

Induction of knee inflammation is accompanied by
elevation of PMF2a levels in the spinal cord

The levels of PMF2a increased significantly (P,0.05; Fig. 2A)

after the induction of inflammation caused by the administration

of the solution of kaolin-l-carrageenan. The other COX-2

derivatives of AEA and 2-AG were below detection limit.

Considering that ,50 mg of wet tissue were extracted and

analysed, and bearing in mind the yield of the extraction and

purification procedures (see above), we can estimate that in the

spinal cord of inflamed knee mice the amount of PME2, PGE2-GE

and PGF2a-GE is less than ,1.2, 1.0 and 1.0 pmol/g wet tissue

weight, respectively. Finally, the spinal levels of AEA and 2-AG

were not significantly altered by any of the treatments (Table 1).

Inhibition of COX-1 and COX-2 counteracts knee
inflammation-induced elevation of PMF2a levels

As shown in Figure 2B, the inhibition of COX-1 or COX-2 or

both significantly decreased (P,0.01) PMF2a levels in the spinal

cord. In particular, the non-selective COX inhibitor, indometh-

acin, and the selective COX-1 inhibitor, SC-560, produced the

same effect as NS-398 (a selective COX-2 inhibitor).

Effect of PMF2a alone or in combination with AL8810 or
AGN211336 on the spontaneous activity of NS neurons
in healthy rats

The results are based on recordings from spinal cord NS

neurons (one cell recorded from each animal per treatment) at a

depth of 700–1000 mm from the surface of the spinal cord. This

cell population was characterized by a mean rate of spontaneous

firing of 0.0460.02 spikes/sec, and only cells which showed this

mean firing were chosen to measure post-drug changes in their

spontaneous activity. Topical spinal cord application of vehicle

(0.05% DMSO in artificial cerebrospinal fluid [ACSF]) did not

change the spontaneous activity of NS neurons (0.03360.003

spikes/sec) (Fig. 3A and 3B). Microinjections of PMF2a (8 and

16 nmol) significantly increased NS cell activity in a dose-

dependent manner (0.1260.02 and 2.6560.35 spikes/sec, respec-

tively; P,0.05) (Fig. 3A). The lower dose (4 nmol) of PMF2a did

not change NS spontaneous activity. Pre-treatment with AL8810

(0.06 nmol) did not prevent the effect of PMF2a (16 nmol) on NS

cell spontaneous activity (Fig. 3B), which was instead completely

abolished by 10 min pre-treatment with AGN211336 (6 nmol).

AGN211336 (6 nmol) was inactive per se (Fig. 3B).

Effect of AGN211336 on the spontaneous activity of NS
neurons in inflamed knee rats

The firing of NS neurons was also examined in sham and

inflamed knee rats. The induction of inflammation in the mouse

knee caused a significant increase in NS spontaneous activity

compared to sham/veh group (0.1660.015 spikes/sec; P,0.05).

This effect was observed 45 min after knee joint injection of kaolin

and l-carrageenan and remained at this level for the duration of

recording period (120 min) (Fig. 3C). Topical spinal cord

application of vehicle (0.05% DMSO in ACSF) did not change
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the increased spontaneous activity of NS neurons induced by

inflammation (0.08460.006 spikes/sec) (Fig. 3C), whereas pre-

treatment with AGN211336 (6 nmol) completely antagonized the

effect of inflammation on NS cell spontaneous activity

(0.07860.005 spikes/sec) (Fig. 3C).

Effect of PMF2a alone or in combination with AL8810 or
AGN211336 on the evoked activity of NS neurons in
healthy rats

The evoked activity of NS neurons was also examined following

paw mechanical stimulation by von Frey filament with bending

force of 97.8 mN for 2 s. Topical spinal cord application of vehicle

(0.05% DMSO in ACSF) did not change the evoked activity of NS

neurons (1060.1 spikes/sec) (Fig. 4A and 4B). Microinjections of

PMF2a (8 and 16 nmol) significantly increased the NS cell evoked

activity in a dose dependent manner (2260.47 and 25.361.13

spikes/sec, respectively; P,0.05), (Fig. 4A). The lower dose

(4 nmol) of PMF2a did not change NS evoked activity. Pre-

treatment with AL8810 (0.06 nmol) did not prevent the effect of

PMF2a (16 nmol) on NS cell evoked activity (Fig. 4B), which was

instead completely abolished by 10 min pre-treatment with

AGN211336 (6 nmol). AGN211336 (6 nmol) was inactive per se

(Fig. 4B).

Effect of AGN 211336 on the evoked activity of NS
neurons in inflamed knee rats

The evoked activity of NS neurons was also examined in sham

and inflamed knee rats. The induction of inflammation in the

mouse knee caused a significant increase in NS evoked activity

compared to the sham/veh group (16.962.5 spikes/sec); P,0.05).

This effect was observed 45 min after injection and remained at

this level for the duration of the recording period (120 min)

(Fig. 4C). Topical spinal cord application of vehicle (0.05%

DMSO in ACSF) did not change the increased spontaneous

Figure 1. Representative extracted ion chromatogram of a pre-purified lipid extract from a rat brain homogenate spiked with
synthetic standards of prostamides and prostaglandin-glycerol esters (100 pmol each). LC parameters were optimized to ensure good
separation among the analytes (PME2, PMF2a, PGE2-GE and PGF2a–GE). Shown in the bottom panel are an example of positive-ion electrospray mass
spectrum of a major component of this spiked homogenate, the PMF2a precursor ion (m/z 420.2671), as a sodium adduct, and the corresponding
product ions for the CID of the fragment with m/z 420.2671 in the MS-MS spectra (m/z 402.2555), which in turn corresponds to the C22H37NO4

sodiated fragment, after loss of water. Pre-purified rat brain lipid extracts do not contain measurable amount of endogenous prostamides (not
shown). Instead, pre-purified mouse spinal cord extracts (not shown) only contain PMF2a in measurable although much smaller amounts than those
shown here (see Fig. 2).
doi:10.1371/journal.pone.0031111.g001
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activity of NS neurons induced by inflammation (2962.37 spikes/

sec (Fig. 4C), whereas pre-treatment with AGN 211336 (6 nmol)

completely antagonized the effect of inflammation on NS cell

evoked activity (16.2962.16 spikes/sec) (Fig. 4C).

Effect of PMF2a alone or in combination with AL8810 or
AGN211336 on PWL in healthy rats

Topical spinal cord application of vehicle (0.05% DMSO in

ACSF) did not change the PWL (4.260.3 sec) (Fig. 5A and 5B).

Microinjections of PMF2a (8 and 16 nmol) significantly reduced

the PWL in a dose-dependent manner (2.560.5 and

1.3560.37 sec, respectively; P,0.05) (Fig. 5A). The lower dose

(4 nmol) of PMF2a did not change PWL. Pre-treatment with

AL8810 (0.06 nmol) did not prevent the effect of PMF2a (16 nmol)

(Fig. 5B), which was instead completely abolished by 10 min pre-

treatment with AGN 211336 (6 nmol). AGN 211336 (6 nmol) was

inactive per se (Fig. 5B).

Effect of AGN 211336 on PWL in inflamed knee rats
The PWL was also examined in sham and inflamed knee rats.

The induction of inflammation in the mouse knee caused a

significant reduction in PWL compared to sham/veh group

(460.8 sec; P,0.05). This effect was observed 45 min after

injection and remained at this level for the duration of all the

period of observation (120 min) (Fig. 5C). Topical spinal cord

application of vehicle (0.05% DMSO in ACSF) did not change the

reduced PWL caused by inflammation (1.5260.2 sec) (Fig. 5C),

whereas pre-treatment with AGN 211336 (6 nmol) completely

Figure 2. Levels of PMF2a in the spinal cord after the induction of inflammation with kaolin/l-carrageenan (K/C) (A) and after the
administration of COX inhibitors (B). Data are means 6 SEM of separate determinations in N = 5 rats. # P,0.05 Control vs. K/C+vh; ** P,0.01 K/
C+vh vs. K/C+indomethacin-K/C+SC560-K/C+NS398.
doi:10.1371/journal.pone.0031111.g002
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antagonized the effects of inflammation on mouse PWL

(3.960.9 sec) (Fig. 5C).

Representative ratemeters showing the spontaneous firing

and the responses to a noxious stimulation of a single NS

neuron following spinal application of PMF2a (16 nmol) alone

or following administration of AGN 211336 (6 nmol) in healthy

rats, or the spontaneous firing and the responses to a noxious

stimulation of a single NS neuron following spinal application of

AGN 211336 (6 nmol) in inflamed knee rats, are shown in

Fig. 6.

Effect of PGF2a alone or in combination with AL8810
or AGN211336 on the spontaneous activity of NS
neurons

Topical spinal cord application of vehicle (0.05% DMSO in

ACSF) did not change the spontaneous activity of NS neurons

(0.03560.0032 spikes/sec) (Fig. 7A and 7B). Microinjections of

PGF2a (2 nmol) significantly increased the NS cell activity

(1.5260.15 spikes/sec; P,0.05), from 10 min from injection

until the end of NS spontaneous activity recording (90 min)

(Fig. 7A and 8C). The other doses of PGF2a (0.5 and 1 nmol)

did not change NS spontaneous activity. Pre-treatment with

AGN211336 (6 nmol) did not prevent the effect of PGF2a

(2 nmol) on NS cell spontaneous activity (Fig. 7B), which was

instead completely abolished by 10 min pre-treatment with a

per se inactive dose of AL8810 (0.06 nmol) (Fig. 7B and 8D).

Table 1. Concentrations of anandamide (AEA) and 2-
arachidonoylglycerol in the spinal cord of healthy and
inflamed knee mice, and after treatment with COX inhibitors.

AEA
(pmol/g of tissue)

2-AG
(pmol/mg of tissue)

Control 55.0464.03 23.6661.72

K/C+vehicle 43.5566.17 26.4361.35

K/C+indomethacin 51.0363.94 28.8561.54

K/C+SC-560 51.6763.11 27.8164.27

K/C+NS398 48.7668.52 26.5063.34

Data are means 6 SEMs of separate determinations in N = 5 mice. No
statistically significant difference between groups was found (as assessed by
ANOVA followed by Bonferroni’s post-hoc test). K/C, kaolin/l-carrageenan.
doi:10.1371/journal.pone.0031111.t001

Figure 3. Effects of spinal application (microinjections) of vehicle (0.05% DMSO in ACSF), PMF2a (4, 8 and 16 nmol) alone (A), or in
combination with AGN 211336 (6 nmol) or AL 8810 (0.06 nmol) (B), on the spontaneous firing of NS neurons in normal knee mice.
Effects of spinal application of vehicle (0.05% DMSO in ACSF) and AGN 211336 (6 nmol) on the spontaneous firing of NS neurons in normal knee (B),
in sham and in inflamed knee mice (C). Vehicle or drugs were administered at time 0 whereas AGN 211336 (6 nmol) or AL 8810 (0.06 nmol) were
administered 10 min before. Black arrow indicates vehicle or agonist spinal application while white arrow indicates antagonist spinal injection. Each
point represents the mean 6 S.E.M of 6–7 neurons of different treated group of mice. * indicates statistically significant difference versus vehicle (A
and B) or versus sham/veh (C), and u versus PMF2a (16 nmol) (B) or versus kaolin/l-carrageenan (C). P values,0.05 were considered statistically
significant (one-way ANOVA).
doi:10.1371/journal.pone.0031111.g003
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Effect of PGF2a alone or in combination with AL8810 or
AGN211336 on evoked activity of NS neurons

Topical spinal cord application of vehicle (0.05% DMSO in

ACSF) did not change the evoked activity of NS neurons

(12.6462.6 spikes/sec) (Fig. 7C and 7D). Microinjections of

PGF2a (2 nmol) significantly increased NS evoked activity

(22.3262.2 spikes/sec; P,0.05), from 15 min from injection until

the end of NS evoked activity recording (90 min) (Fig. 7C). The

other doses of PGF2a (0.5 and 1 nmol) did not change NS evoked

activity. Pre-treatment with AGN211336 (6 nmol) did not prevent

the effect of PGF2a (2 nmol) on NS evoked activity (Fig. 7D),

which was instead completely abolished by 10 min pre-treatment

with a per se inactive dose of AL 8810 (0.06 nmol) (Fig. 7D).

Effect of PGF2a alone or in combination with AL8810 or
AGN211336 on the paw withdrawal latency (PWL)

Topical spinal cord application of vehicle (0.05% DMSO in

ACSF) did not change the mouse paw PWL (4.561.8 sec) (Fig. 8A

and 8B). Microinjections of PGF2a (2 nmol) significantly reduced

mouse PWL (1.862.2 spikes/sec; P,0.05), from 15 min from

injection until the end of PWL evaluation (85 min) (Fig. 8A). The

other doses of PGF2a (0.5 and 1 nmol) did not change mice PWL.

Pre-treatment with AGN211336 (6 nmol) did not prevent the

effect of PGF2a (2 nmol) on PWL (Fig. 8B), which was instead

completely abolished by 10 min pre-treatment with AL8810

(0.06 nmol). AL8810 (0.06 nmol) was inactive per se (Fig. 8B).

Discussion

The present study was aimed at evaluating the hypothesis that

knee inflammation causes production of COX-2 metabolites of

endocannabinoids in the spinal cord. This hypothesis was based

on: a) previous findings indicating that COX-2 inhibitors can

produce anti-hyperalgesic effects and reduce dorsal horn neuron

firing in rodents with inflammatory pain in a manner attenuated

by cannabinoid receptor antagonists; and b) the concept that, if

spinal endocannabinoids reduce pain during inflammation and are

degraded not only by FAAH and MAGL, but also by COX-2,

inhibition of this enzyme should reduce endocannabinoid

degradation and contribute to indirect activation of cannabinoid

receptors [7,14], whereas inhibition of FAAH or MAGL alone

might not be sufficient to reduce inflammatory pain [6]. We report

here for the first time that induction of knee inflammation in mice

is accompanied by a strong elevation in the spinal cord of the

COX-2 and prostaglandin F-synthase derivative of AEA, PMF2a,

whereas other potential COX-2 endocannabinoid derivatives,

such as PME2, PGF2a-GE and PGE2-GE were not detectable. At

Figure 4. Effects of spinal application (microinjections) of vehicle (0.05% DMSO in ACSF), PMF2a (4, 8 and 16 nmol) alone (A) or in
combination with AGN 211336 (6 nmol) or AL 8810 (0.06 nmol) (B) on evoked activity of NS neurons in normal knee mice. Effects of
spinal application of vehicle (0.05% DMSO in ACSF) and AGN 211336 (6 nmol) on evoked activity of NS neurons in normal knee (B), in sham and in
inflamed knee mice (C). Vehicle or drugs were administered at time 0, as indicated by the black arrow, whereas AGN 211336 (6 nmol) or AL 8810
(0.06 nmol) were administered 10 min before (not shown). Each point represents the mean 6 S.E.M of 6–7 neurons of different groups of mice.
* indicates statistically significant difference versus vehicle (A and B) or versus sham/veh (C), and u versus PMF2a (16 nmol) (B) or versus kaolin/l-
carrageenan (C). P values,0.05 were considered statistically significant (one-way ANOVA).
doi:10.1371/journal.pone.0031111.g004
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the same time, we observed that the spinal levels of AEA or 2-AG

were not significantly elevated during knee inflammation, a finding

that differs from that previously reported in a rat model of

neuropathic pain [19]. In fact, the mean value corresponding to

AEA levels decreased, albeit not significantly, by an amount

exactly equivalent to the increase of PMF2a (,10 pmol/g),

possibly in agreement with the hypothesis that the latter metabolite

is produced from AEA. Finally, we showed that intrathecal PMF2a

exerts pro-algesic effects in the PWL test and enhances the firing of

NS neurons in healthy mice in a way antagonised by a selective

prostamide receptor antagonist but not by an FP receptor

antagonist, and that the former antagonist attenuates hyperalgesia

and NS neuron hyperxcitability in mice with knee inflammation.

Taken together, these data indicate that in the model of

inflammatory pain used here, possibly due to over-expression of

COX-2 [20], AEA is converted to PMF2a, thus shifting the spinal

cord from a CB1-mediated anti-hyperalgesic tone to a prostamide

receptor-mediated pro-hyperalgesic tone, and contributing to NS

neuron hyperexcitability and pain transmission. These findings are

particularly timely in view of the very recent report that sensory

neurons produce endocannabinoid COX-2 derivatives in vitro in a

manner sensitive to (R)-flurbiprofen, which instead is a weak

inhibitor of COX-2-mediated oxygenation of arachidonic acid

and yet is endowed with anti-inflammatory and analgesic effects

[13].

Interestingly, the production of PMF2a was antagonised not

only by a non-selective COX inhibitor and a selective COX-2

inhibitor, as expected, but also by a selective COX-1 inhibitor.

This finding is in contrast with the well established notion that

AEA and 2-AG are substrates of COX-2, but not COX-1 [17,18].

In the previous report [7] that served as a starting point for the

present study, the authors reported that the same non-selective

COX, as well as selective COX-1 and COX-2, inhibitors used

here, at intrathecal doses similar to those used here, were able to

reduce pre-emptively the generation of inflammation-evoked NS

neuron hyperexcitability and the formation of prostaglandin E2 in

rats with knee inflammation. However, the effect of the COX-1

inhibitor was short-lasting and less efficacious than that of the

COX-2 inhibitor, and only the latter still inhibited NS neuron

hyperexcitability 7 h after the establishment of inflammation.

Therefore, our findings, taken together with those of Telleria-Diaz

and co-workers [7], seem to suggest that, in rodents with knee

Figure 5. Effects of spinal application (microinjections) of vehicle (0.05% DMSO in ACSF), PMF2a (4, 8 and 16 nmol) alone (A) or in
combination with AGN 211336 (6 nmol) or AL 8810 (0.06 nmol) (B) on paw withdrawal thresholds (PWT) in normal knee mice.
Effects of spinal application of vehicle (0.05% DMSO in ACSF) and AGN 211336 (6 nmol) on paw withdrawal latency (PWL) in normal knee (B), in sham
and in inflamed knee mice (C). Vehicle or drugs were administered at time 0, as indicated by the black arrow, whereas AGN 211336 (6 nmol) or AL
8810 (0.06 nmol) were administered 10 min before (not shown). Each point represents the mean 6 S.E.M of 6–7 neurons of different treated group of
mice. * indicates statistically significant difference versus vehicle (A and B) or versus sham/veh (C), and u versus PMF2a (16 nmol) (B) or versus kaolin/l-
carrageenan (C). P values,0.05 were considered statistically significant (one-way ANOVA).
doi:10.1371/journal.pone.0031111.g005
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inflammation: 1) both spinal COX-1 and COX-2, through the

formation of prostanoids, participate in the early events caused by

inflammation and leading to NS neuron hyperexcitability and

nociception; 2) the formation of spinal PMF2a form AEA,

catalysed selectively by COX-2, is, however, secondary to

inflammation-induced pain and spinal hyperexcitability, and the

reduction of PMF2a levels by the COX-1 inhibitor reflects the

effects of this substance on the above early events, rather than the

direct inhibition of PMF2a biosynthesis from AEA; 3) spinal

PMF2a contributes to maintain pain and NS neuron hyperexcit-

ability, thus establishing a vicious circle, than can be interrupted

by COX inhibition, and more effectively by COX-2 blockade.

This hypothesis provides a further explanation as to why COX-2,

but not COX-1, inhibitors are more effective at reducing NS

neuron firing and capable of exerting this property also after the

establishment of inflammation [7].

In their study on rats with knee inflammation, Telleria-Diaz and

co-workers did not measure spinal AEA levels, but provided

indirect evidence that COX-2 was responsible for the oxidation of

2-AG, since a selective COX-2 inhibitor, but not a non-selective

COX inhibitor nor a selective COX-1 inhibitor, prevented the

decrease of spinal 2-AG levels during inflammation. Accordingly,

a CB1 receptor antagonist attenuated the effect of the COX-2

inhibitor on NS neuron hyperexcitability. However, the authors

did not investigate the formation of spinal COX-2 derivatives of 2-

AG (i.e. PG-GEs). In the present study in mice we did not detect

any such derivative (even though we only investigated the presence

of two major PG-GE species), nor could we see any decrease of

spinal 2-AG levels following knee inflammation. This discrepancy

between the two studies might be due species differences.

However, it is also possible that we could not detect PG-GEs

due to the sensitivity limits of our method, or that the formation of

spinal PMF2a in rats was simply left undetected in the previous

study. At any rate, we did present here data strongly suggesting

that COX-2-catalysed oxidation of endocannabinoids, and AEA

in particular, is not only a way to inactivate endogenous mediators

acting at anti-hyperalgesic cannabinoid receptors in the spinal

cord, as suggested by previous authors [7,14], but also a potential

way to generate novel endogenous mediators acting at specific pro-

algesic molecular targets different from prostanoid receptors.

Figure 6. Representative ratemeters showing the spontaneous activity and the responses to a noxious stimulation (von Frey
filaments 97.8 mN/2 sec) of a single NS neuron both before and after spinal application of PMF2a (16 nmol) alone, which increased
the spontaneous activity and the evoked activity of NS neurons (A), or in combination with AGN 211336 (6 nmol) which did not
alter either NS spontaneous activity or the noxious stimulation-evoked activity in normal knee mice (B). PMF2a (16 nmol) was also
administered both before and after knee joint injection of kaolin/l-carrageenan, which alone increased the spontaneous activity and the noxious
stimulation evoked activity of NS neurons (C), or in combination with AGN 211336 (6 nmol), which prevented the effect induced by inflammation on
NS spontaneous activity or the noxious stimulation-evoked activity in inflamed knee mice (D). Scale grey bar indicates 5 min intervals for ratemeter
records and small black arrows indicate the noxious stimulation on mouse hind paw.
doi:10.1371/journal.pone.0031111.g006
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In conclusion, we have reported here for the first time a

sensitive and highly accurate method to measure COX-2

derivatives of endocannabinoids, and its application for the

identification of one such compound, PMF2a, in the spinal cord

of mice with knee inflammation. In fact, previous identification

and quantification of prostamides by LC-MS-MS methods

[11,13] was not performed using a high resolution MS technique,

such as the one employed here, which allows to establish with

confidence the molecular formula of analytes, and was only

carried out in vitro [12,13], or in vivo in transgenic mice

administered with exogenous AEA [11]. We have also described

data suggesting for PMF2a a role as a ‘‘late’’ mediator

contributing to sustain spinal cord hyperexcitability and pain

perception via activation of prostamide, by not FP, receptors.

Thus, the present study provides novel and crucial data on a so

far poorly investigated family of lipid mediators. Future studies

will have to address the question of whether PMF2a, or other

similar compounds, are produced in other models of inflamma-

tion, thus opening the way to the potential use of selective

prostamide receptor antagonists as novel anti-hyperalgesic agents.

Materials and Methods

Ethics statement
The experimental procedures were approved by the Animal

Ethics Committee of the Second University of Naples (decree nr.

98/2009-B). Animal care was in compliance with the IASP and

European Community (E.C. L358/1 18/12/86) and with Italian

(D.L. 116/92) guidelines on the use and protection of animals in

experimental research. All efforts were made to minimise animal

suffering and the number of animals used.

Extraction of COX-2-derivatives of development of an LC-
MS method for their quantification

Extraction, purification and quantification of AEA, 2-AG and

PMF2a, PME2, PGF2a-GE and PGE2-GE from tissues require

several biochemical steps. First, tissues were dounce-homogenized

and extracted with acetone containing internal deuterated stan-

dards for AEA, 2-AG, PMF2a, PME2, PGF2a-GE and PGE2-GE

quantification by isotope dilution ([2H]8AEA, [2H]52AG, [2H]4

PMF2a, [2H]4 PME2, [2H]4 PGF2a -GE and [2H]4 PGE2-GE). The

Figure 7. Effects of spinal application (microinjections) of vehicle (0.05% DMSO in ACSF), PGF2a (0.5, 1 and 2 nmol) alone (A and C)
or in combination with AGN 211336 (6 nmol) or AL 8810 (0.06 nmol) (B), and effects of AL 8810 (0.06 nmol) alone (B and D) on the
spontaneous firing of NS neurons and on the evoked activity of NS neurons. Vehicle or drugs were administered at time 0, as indicated by
the black arrow, whereas AGN 211336 (6 nmol) or AL 8810 (0.06 nmol) were administered 10 min before (not shown). Each point represents the
mean 6 S.E.M of 6–7 neurons of different treated group of mice. * indicates statistically significant difference versus vehicle, and u versus PGF2a

(2 nmol). P values,0.05 were considered statistically significant (one-way ANOVA).
doi:10.1371/journal.pone.0031111.g007
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lipid-containing organic phase was dried down, weighed and pre-

purified by open bed chromatography on silica gel. Fractions were

obtained by eluting the column with 99:1, 90:10, 70:30 and 50:50

(v/v) chloroform/methanol. The 90:10 fraction was used for AEA

and 2-AG quantification by liquid chromatography-atmospheric

pressure chemical ionization-mass spectrometry (LC-APCI-MS), as

previously described and using selected ion monitoring at M+1

values for the four compounds and their deuterated homologues, as

described in [21]. The 70:30 fraction was used for COX-2

derivatives quantification by LC-MS-IT-TOF analysis (Shimadzu

Corporation, Kyoto, Japan) equipped with an ESI interface, using

multiple reaction monitoring. The chromatograms of the high-

resolution M+Na+ values were extracted and used for calibration

and quantification. AEA and 2-AG were measured as previously

described [21]. COX-2 derivatives were measured by LC-MS-MS,

using an LC20AB coupled to a hybrid detector IT-TOF (Shimadzu

Corporation, Kyoto, Japan) equipped with an ESI interface. LC

analysis was performed in the isocratic mode using a DiscoveryH
C18 column (15 cm62.1 mm, 5 mm) and methanol/water/acetic

acid (53:47:0.05 by vol.) as mobile phase with a flow rate of

0.15 ml/min. Identification of PME2, PMF2a, PGE2-GE and

PGF2a-GE was carried out using ESI ionization in the positive

mode with nebulizing gas flow of 1.5 ml/min and curved

desolvation line temperature of 250uC.

For the representative experiment shown in Fig. 1, a rat brain

homogenate was spiked with undeuterated PME2, PMF2a, PGE2-

GE and PGF2a -GE (100 pmol each) and processed as above.

Drugs
PMF2a, PGF2a, PGF2a–GE, PGE2-GE, [2H]4 PMF2a, [2H]4

PME2, [2H]4 PGF2a-GE and [2H]4 PGE2-GE were provided by

Allergan, CA, USA and and AGN211336 [9] by Selcia, UK. SC-

560, NS-398, [2H]8AEA and [2H]52AG were purchased from

Cayman Chemicals (MI, USA); AL8810 [22], indomethacin, kaolin

and l-carrageenan were purchased from Sigma-Aldrich (Milano,

Italy). All drugs were dissolved in 0.05% DMSO in ACSF.

Animals
Male ICR (CD-1) mice (35–40 g) were housed 3 per cage under

controlled illumination (12:12 h light:dark cycle; light on 06.00 h)

Figure 8. Effects of spinal application (microinjections) of vehicle (0.05% DMSO in ACSF), PGF2a (0.5, 1 and 2 nmol) alone (A), or in
combination with AGN 211336 (6 nmol) or AL 8810 (0.06 nmol) (B), and the effects of AL 8810 (0.06 nmol) alone (B), on mouse paw
withdrawal latency (PWL). Vehicle or drugs were administered at time 0, as indicated by the black arrow, whereas AGN 211336 (6 nmol) or AL
8810 (0.06 nmol) were administered 10 min before (not shown). Each point represents the mean 6 S.E.M 7 mice per group. * indicates statistically
significant difference versus vehicle, and u versus PGF2a (2 nmol). P values,0.05 were considered statistically significant (one-way ANOVA).
Representative ratemeters show the spontaneous activity and the responses to a noxious stimulation (von Frey filaments 97.8 mN/2 sec) of a single
NS neuron both before and after spinal application of PGF2a (2 nmol) alone, which increased the spontaneous activity and the noxious stimulation-
evoked activity of NS neurons (C), or in combination with AL 8810 (0.06 nmol), which prevented the effect induced by PGF2a (2 nmol) alone on NS
spontaneous activity or on evoked activity (D). Scale grey bar indicates 5 min intervals for ratemeter records and small black arrows indicate the
noxious stimulation on mouse hind paw.
doi:10.1371/journal.pone.0031111.g008

Spinal Prostamides in Inflammatory Pain

PLoS ONE | www.plosone.org 10 February 2012 | Volume 7 | Issue 2 | e31111



and environmental conditions (room temperature 20–22uC,

humidity 55–60%) for at least 1 week before the commencement

of experiments. Mouse chow and tap water were available ad

libitum.

Inflammatory pain model
The induction of knee joint inflammation has been performed

accordingly with Telleria-Diaz et al., 2010 [7]. Briefly, a 26-gauge

needle was introduced through the patellar ligament of anesthe-

tized mice (sodium pentobarbital, 60 mg/kg i.p.), and 40 ml of a

4% kaolin suspension were slowly injected into the articular cavity.

After flexing and extending the joint slowly for 15 min, 40 ml of a

2% l-carrageenan solution were injected, and the joint was moved

for another 5 min.

Electrophysiological recordings
On the day of electrophysiological recordings, mice were

initially anesthetized with sodium pentobarbital (60 mg/kg i.p.).

After tracheal cannulation, a catheter was placed into the right

external jugular veins, to allow continuous infusion of propofol (5–

10 mg/kg/h, i.v.) and spinal cord segments L4–L6 were exposed

by laminectomy, medially near the dorsal root entry zone up to a

depth of ,1000 mm [23]. An elliptic rubber ring (about 365 mm)

was tightly sealed with silicone gel onto the surface of the cord.

This ring formed a trough with about 10–15 ml capacity over the

spinal segments used for topical spinal drug application and to

gain access to spinal neurons that receive input from either the

ipsilateral paw, were the mechanical stimulation was applied, or

knee where the inflammation was induced. Animals were then

secured in a stereotaxic apparatus (David Kopf Instruments,

Tujunga, CA, USA) supported by clamps attached to the vertebral

processes on either side of the exposure site. The exposed area of

the spinal cord was initially framed by agar and then filled with

mineral oil. Body temperature was maintained at 37uC with a

temperature-controlled heating pad [7,23]. A glass-insulated

tungsten filament electrode (3–5 MV) (FHC Frederick Haer &

Co., ME, USA) was used to record single unit extracellular activity

of dorsal horn NS neurons. NS neurons were defined as those

neurons that respond only to high-intensity (noxious) stimulation

[23]. For normal and inflamed knee animals, each neuron was

characterized after mechanical stimulation of the ipsilateral hind

paw by von Frey filament with bending force of 97.8 mN (noxious

stimulation) for 2 s with it slightly buckled [24,25,26] to confirm

NS response patterns. Only neurons that specifically responded to

noxious hind paw stimulation, without responding to stimulation

of the surrounding skin/tissue, were kept for recordings in normal

and inflamed knee mice. The recorded signals were amplified and

displayed on a digital storage oscilloscope to ensure that the unit

under study was unambiguously discriminated throughout the

experiment. Signals were also fed into a window discriminator,

whose output was processed by an interface CED 1401 (Cam-

bridge Electronic Design Ltd., UK) connected to a Pentium III

PC. Spike2 software (CED, version 4) was used to create

peristimulus rate histograms on-line and to store and analyse

digital records of single unit activity off-line. Configuration, shape,

and height of the recorded action potentials were monitored and

recorded continuously using a window discriminator and Spike2

software for on-line and off-line analysis. This study only included

neurons whose spike configuration remained constant and could

clearly be discriminated from activity in the background through-

out the experiment, indicating that the activity from one neuron

only and from the same one neuron was measured. In each mouse,

only one neuron was recorded before and after vehicle or drug

administration. After characterization, three baseline responses,

separated by 5 min each, to specific stimulation (see below) of the

NS neurons were recorded. Spontaneous and evoked neuronal

activity was then measured, after spinal vehicle or drug

applications, in the 5 minutes leading up to each stimulus up to

90 min and up to 120 min in normal knee and inflamed knee

mice, respectively, and was expressed as spikes/sec (Hz). A mean

of the three pre-drug spontaneous and evoked activity was

calculated to represent baseline evoked activity. For each neuron,

the post-drug spontaneous and evoked activity was calculated as a

percent of the respective baseline levels. At the end of the

experiment, each animal was killed with a lethal dose of urethane.

Behavioural tests
After surgical preparation as previous described for electro-

physiological experiments, thermal hyperalgesia was evaluated by

using a thermal stimulus elicited by a radiant heat source as well as

the tail flick unit (Ugo Basile, Varese, Italy) focused on the mouse

plantar surface of the hind paw. The paw was placed over the

surface of a slightly projecting window receiving the I.R. energy.

The I.R. intensity in our experiments has been set to 50 Cu [27].

Nociceptive responses for thermal sensitivity were expressed as

thermal PWL in seconds and it was determined by a timer

connected to a photoelectric cell which stopped the timer (and

switched off the lamp) at the movement of the paw which was

withdrawn. PWL was misured every 5 min for at least 15 min

prior to microinjecting drugs, or the respective vehicle, 0.05%

dimethyl sulfoxide (DMSO) in artificial cerebrospinal fluid (ACSF,

composition in mM: KCl 2.5; NaCl 125; MgCl2 1.18; CaCl2 1.26),

on spinal cord surface.

Treatments
Animals receiving spinal (intrathecal) application of 2 ml vehicle

(DMSO/ACSF, 0.05%, v/v) or drug solutions were grouped as

follows:

1. Normal knee mice treated with: a) vehicle; b) PMF2a (4, 8 and

16 nmol); c) PMF2a (16 nmol) in combination with

AGN211336 (6 nmol) or AL8810 (0.06 nmol), a prostamide

antagonist and a selective FP prostanoid receptor antagonist,

respectively; d) AGN 211336 (6 nmol) or AL 8810 (0.06 nmol)

alone; e) PGF2a (0.5, 1 and 2 nmol); f) PGF2a (2 nmol) in

combination with AGN211336 (6 nmol) or in combination

with AL8810 (0.06 nmol);

2. Sham knee mice (receiving only saline in the knee) treated with

vehicle, for behavioural studies and electrophysiological

recordings;

3. Inflamed knee mice treated with: a) vehicle; b) AGN 211336

(6 nmol), for behavioural studies and electrophysiological

recordings.

For nociceptive behaviour and in vivo single-unit extracellular

recordings, experimental groups consisted of 7 mice. Only one

neuron was recorded in each mouse. When AGN211336 and/or

AL8810 were used in combination with PMF2a or PGF2a, the

latter compounds were administered 10 minutes after the

antagonists. Drug doses were chosen according to previous

experiments [9,28,29].

Finally, groups of 4 healthy mice and/or of mice knee

inflammation were treated with: a) vehicle; b) indomethacin, a

non-selective COX inhibitor (8 mM); c), SC-560, a selective

COX-1 inhibitor (3 mM); and d) NS-398, a selective COX-2

inhibitor (1.3 mM). The volume injected was always 5 ml. COX

inhibitors were intratecally administered 7 h after induction of

acute kaolin/l-carrageenan inflammation. One hour post COX
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inhibitor injections mice were sacrificed and whole spinal cord

(L4–L6) explanted and used for the quantification of endocanna-

binoids and their COX-2 derivatives. Drugs doses were chosen

accordingly with previous experiments [7,30].

Statistics
Behavioural and electrophysiology data are represented as

means 6 SEM and statistical analysis of these data were

performed by two way ANOVA for repeated measured followed

by the Student-Newman-Keuls for multiple comparisons to

determine statistical significance between different treated groups

of mice.
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