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Abstract

Previous studies indicated that (+)-13a-(S)-Deoxytylophorinine (1) showed profound anti-cancer activities both in vitro and
in vivo and could penetrate the blood brain barrier to distribute well in brain tissues. CNS toxicity, one of the main factors to
hinder the development of phenanthroindolizidines, was not obviously found in 1. Based on its fascinating activities, thirty-
four derivatives were designed, synthesized; their cytotoxic activities in vitro were tested to discover more excellent
anticancer agents. Considering the distinctive mechanism of 1 and interesting SAR of deoxytylophorinine and its
derivatives, the specific impacts of these compounds on cellular progress as cell signaling transduction pathways and cell
cycle were proceeded with seven representative compounds. 1 as well as three most potent compounds, 9, 32, 33, and
three less active compounds, 12, 16, 35, were selected to proform this study to have a relatively deep view of cancer cell
growth-inhibitory characteristics. It was found that the expressions of phospho-Akt, Akt, phospho-ERK, and ERK in A549 cells
were greater down-regulated by the potent compounds than by the less active compounds in the Western blot analysis. To
the best of our knowledge, this is the first report describing phenanthroindolizidines alkaloids display influence on the
crucial cell signaling proteins, ERK. Moreover, the expressions of cyclin A, cyclin D1 and CDK2 proteins depressed more
dramatically when the cells were treated with 1, 9, 32, and 33. Then, these four excellent compounds were subjected to flow
cytometric analysis, and an increase in S-phase was observed in A549 cells. Since the molecular level assay results of Western
blot for phospho-Akt, Akt, phospho-ERK, ERK, and cyclins were relevant to the potency of compounds in cellular level, we
speculated that this series of compounds exhibit anticancer activities through blocking PI3K and MAPK signaling
transduction pathways and interfering with the cell cycle progression.
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Introduction

Phenanthroindolizidine alkaloids are pentacyclic natural prod-

ucts isolated mainly from plants belonging to Cynanchum, Pergularia,

Tylophora as well as some genera of the Asclepiadaceae [1–3]. For

many years, these natural products and synthetic derivatives

attract widespread attention for their extensively therapeutic

activities, such as anticancer activity [4–8], anti-inflammatory

activity [9–11], antibacterial activity [12–14], and so on. However,

the specific biomolecular targets of these compounds on cell

growth have not been clearly identified until now. Early studies

illustrated that phenanthroindolizidine alkaloids could inhibit

RNA, DNA synthesis, and inhibited protein synthesis at the

elongation stage of the translation procedure by locating on 40S

ribosomal component [15–20]. Recently, some possible targets

were reported, including metabolic enzymes [21–23] and some

elements engaged in gene transcription [24,25]. Moreover, recent

research demonstrated that these compounds with similar

structures may act on different targets [26]. Although the

biological activities of these compounds are affirmative, there are

some side effects limiting their application as anticancer drugs,

especially CNS toxicity arose in natural tylocrebrine obviously for

disorientation and ataxia [27]. And as far as we know, there is not

a phenanthroindolizidine alkaloid applied in clinical application

up to now. Therefore, it is very pressing to discover novel

phenanthroindolizidine alkaloids with profound anticancer activity

and reduced CNS toxicity as drug candidates.

(+)-13a-(S)-Deoxytylophorinine (1), originally isolated from the roots

of Tylophora atrofolliculata and Tylophora ovata in our laboratory (Patent

Publication Number: CN101058578A; PCT/CN2010/075083), was

found to have profound anti-cancer activities, both in vitro and in vivo

[28]. Liu et al [29] discovered that this compound could penetrate the

blood brain barrier and distribute in brain tissues without obvious

CNS toxicity. Further study confirmed that 1 could interact with

DNA and RNA dose-dependently and preferred to intercalate into

AT-repeated base pair in double-helical DNA sequences.
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Based on the fascinating activities of 1, thirty-four derivatives

were designed and synthesized in our present research. The

potential cytotoxic activities of these synthetic compounds against

series of human cancer cells in vitro were assessed and the

preliminary structure-activity relationships (SAR) were summa-

rized.

1 could interact with DNA and RNA and concomitantly block

the process of transcription to produce the anticancer effects in

Liu’s research [28,29]. And high concentrations of 1 could induce

cell apoptosis (Figure S1). Previous study indicated that phospha-

tidylinositol 3-kinase (PI3K) and mitogen-activated protein kinase

(MAPK) signaling pathways play a fundamental role in the

apoptosis induced by DNA-damaging drugs [30]. Furthermore,

only a little information is available regarding the regulation of the

PI3K and MAPK signaling transduction pathways in the context

of phenanthroindolizidine-induced apoptosis [31–34]. Thus, we

are inspired to further study the specific impacts of deoxytylo-

phorinine and its derivatives on cell progression as cell signaling

transduction pathways and cell cycle. Our study represent a

significant step forward in understanding of the cell signaling

transduction pathways and cell cycle associated with the apoptosis

elicited as the result of exposure to DNA-damaging anticancer

agents of deoxytylophorinine and its derivatives.

Results and Discussion

Design and synthesis of deoxytylophorinine derivatives
To investigate the influence of the steric propterty at C-13a on

cytotoxic activity, enantiomer of 1 ((2)-13a-(R)-deoxytylophor-

inine (2)), which was previously isolated from the roots of Pergularia

pallida plants [35], was synthesized. The amide intermediates were

also screened against cancer cell lines to determine the impact of

electric property at N-10. With respect to the substituted pattern

on phenanthrene ring, derivatives with methoxyl groups in

different locations, different number of substitutes, or other

substitute such as F in phenanthrene ring were designed. Methoxyl

group, amino group, or substituted amino groups were connected

to C-14 to reveal the impacts, including the volume of the

substitutes at C-14, on cytotoxic activities.

Using L-glutamate as chiral building block, 1 was prepared with

higher ee value than previous reports [36,37] based on Rapoport’s

[38] and Ikeda’s [39] routes accompanied with some improvement

in our synthetic research. As depicted in Figure 1, after

condensation, esterification, oxidative cyclization, and reduction

[40,41], the key intermediate d was iodized and then condensed in

situ with L-glutamate to produce f. Subsequently, g was

synthesized through cyclization and hydrolysis. From d to g,

product in each step can be used directly in the next reaction

without purification to facilitate the experiment operation in our

research. After Friedel-Crafts acylation and reduction with

NaBH4, i was treated with Et3SiH and BF3?Et2O to give j, which

was a new strategy to avoiding racemization at C-13a. Finally, the

target compound 1 was obtained by reduction with LiAlH4 in

refluxing THF, with 99% ee value and 7% total yield. Thirty-four

derivatives were subsequently designed and prepared with this

synthetic strategy.

For the synthesis of 2, same materials and procedures were

applied as synthesis of 1 except for the chiral building block of D-

glutamate. And five derivatives (3 [38], 4 [42], 5, 6 [43], and 7
[43]) with different substitutes at phenanthrene ring of 1 were

synthesized with several different substituted benzaldehydes and

phenylacetic acids.

14-methoxyl derivatives can be synthesized from the interme-

diate of i. After methylation, the resulting diastereoisomer mixture

could be isolated by silica gel column chromatography to afford k
and l. The absolute configuration of C-14 could be verified by 1H-

NMR. For the intermediate of k, H-14 appears as doublet

(J = 7.0 Hz) at 5.15 ppm, since the dihedral angel between H-13a

and H-14 was close to 180u [38]. Thus we confirmed the

configuration of C-14 was R in k. While broad singlet at 5.19 ppm

was observed for H-14 in the intermediate of l, inferring S

configuration in this position. This conclusion was further

confirmed by NOE measurement of k and l (Figure S2). The

target derivatives 8 (13aS, 14R) and 9 [44] (13aS, 14S) were

obtained by reduction of k and l respectively. Their enantiomers

10 (13aR, 14S) and 11 (13aR, 14R) could be prepared from the

enantiomer of i by the same procedures.

Reductive amination was applied to introduce substituted-

amino groups at C-14. h was reacted with substituted amines to

produce the corresponding imines [46], which were subsequently

treated with NaBH4 to afford diastereoisomer mixtures of m and

n. After isolated from chromatography, m and n were reduced to

corresponding derivatives by LiAlH4. Twenty four new derivatives

with optically pure properties at C-13a and C-14 were synthesized

through this synthetic strategy.

Biology
Since 1 exerted profound cytoxoic activities in vitro [28], its

derivatives and five synthetic intermediates (f, g, h, i, and j)
(Table 1) were screened against seven human cancer cell lines in

this research to explore their cytotoxic spectra and to discover

more potent compounds. Preliminary mechanistic studies, includ-

ing the influence on cell signaling transduction pathways and cell

cycle, were thus performed in order to reveal a more detailed

picture on the possible targets.

Evaluation of deoxytylophorinine derivatives against
human cancer cell lines in vitro and summary of
preliminary SAR study

Two optically pure deoxytylophorinines, their derivatives and

five synthetic intermediates were screened for cytotoxicity against

seven human tumor cell lines in vitro: HCT8 (human colon cancer

cell line), U251 (human glioblastoma cancer cell line), HepG2

(human hepatocellular cancer cell line), A549 (human lung

adenocarcinoma cell line), A2780 (human ovarian cancer cell

line), BGC823 (human gastric cancer cell line) and Capan2

(human pancreatic cancer cell line) by MTT assay and preliminary

SAR results were also outlined. HCT8, HepG2, A549, and

Capan2 were obtained from ATCC (Virginia, USA) and U251,

A2780, and BGC823 were obtained from Cell Culture Center,

Institute of Basic Medical Sciences, Chinese Academy of Medical

Sciences & Peking Union Medical College (Beijing, China).

As summarized in Table 2, the five synthetic intermediates were

inactive in all cell lines, with IC50 value more than 10 mM.

Interestingly, j, the amide derivative of 1, possessed dramatically

decreased potency. The ketone group at C-11 in j changes the

tertiary amine in the indolizidine nucleus to an amide, decreasing

the electron density at nitrogen-atom which may be important in

the electrostatic interaction with the target. Such a finding is in

agreement with the previous reports that C-9 amide structures of

various phenanthroindolizidines were much less potent in cancer

cell growth assays [8,47]. Other synthetic intermediates, h and i,
also confirmed this conclusion and displayed significantly reduced

activities.

As substitutes in phenanthrene ring to be concerned, a tempting

phenomenon can be seen that 3, 5 with methoxyl group at C-2 in

the phenanthrene ring were higher selective than 1 toward various

Research on Deoxytylophorinine and Derivatives
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tumor cells. Additionally, 6 bearing a fluorine atom at the C-3 and

7 without any substitute at this position, exhibited comparative

activity to the parent structure.

For the 3, 6, 7-trimethoxyl derivatives, the steric properties of C-

13a and the volume of substitutes at C-14 are two crucial factors

influencing their potency. As summarized in Table 2, 1 with S

configuration at C-13a exerted profound cytotoxic activities against

all of the cancer cells in vitro, and were about 10-fold more potent

than its enantiomer 2. Coincident results were observed for 9 and

10, 32 and 35, 33 [45] and 34, confirming that the steric propterty

of C-13a play a significant role in cytotoxic activities. Bearing

methoxyl group at the C-14 with S configuration, 9 showed about a

10-fold increased potency compared to the precursor 1. Positioning

of the amino group at the C-14, no matter what configuration is,

leads to a remarkable enhancement of cytotoxic abilities against

several cancer cell lines, as 32 and 33 with IC50 ranging from 15 to

40 nM were much stronger than their parent structure and the

positive control of Doxorubicin. However, when the amino group

connected with other substituents, neither linear nor circular, the

cytotoxic activities decreased dramatically, as can bee seen in 12–
31. 9, 32, and 33 exhibited greater cytotoxic activity than 1,

indicating that bearing small group at C-14 could improve the

parent-compound efficacy. Therefore, keeping S configuration at

C-13a and bearing small group at C-14 were necessary for the

enhancement of their potency.

The above initial SAR results may be helpful for the subsequent

structure modification to design novel and potent cytotoxic

deoxytylophorinine derivatives.

Since 1 was confirmed to interact with DNA and RNA [28,29],

what will happen to the down-stream cellular processes? Based on

previous reports that PI3K and MAPK signaling transduction

pathways played a fundamental role in the apoptosis induced by

DNA-damaging drugs, we investigated the influence of deoxyty-

lophorinine derivatives on these two signaling transduction

pathways. Moreover, PI3K and MAPK signaling transduction

pathways have emerged as promising molecular targets in the

prevention of cancers, by influencing a large variety of cellular

processes, such as cell apoptosis, survival, and cell-cycle regulation

[48,49]. Subsequently, the influence of these compounds on cell-

cycle regulation was also studied as objects to explore the

antitumor effects and mechanisms. Besides 1, three most potent

compounds 9, 32, 33 and three less active compounds 12, 16, 35
were chosen to process this research.

Effects of 1, 9, 12, 16, 32, 33 and 35 on the PI3K and
MAPK signaling transduction pathway in A549 cells

The PI3K signaling pathway is probably the best characterized

and most prominent pathway with regard to the transmission of

anti-apoptotic signals in cell survival [49,50]. The MAPK

signaling transduction pathway is also known to play crucial roles

in cell progressions [48]. The Western blot analysis results

indicated that deoxytylophorinine derivatives could influence

PI3K signaling pathway, since incubation of A549 cells with

500 nM of potent compounds 1, 9, 32, and 33 could trigger the

down-regulation of phospho-Akt and total-Akt compared with that

in the control and in less active compounds 12, 16, and 35. As a

higher expression of phospho-Akt and Akt is linked to proliferation

pathways, this down-regulatory property of tested compounds

might contribute to their anticancer action. We also examined

whether selected compounds had an inhibition on mitogen-

Figure 1. Synthesis of deoxytylophorinine and its derivatives.
doi:10.1371/journal.pone.0030342.g001
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activated protein kinase ERK activity by Western blot assay. As

illustrated in Figure 2, the potent compounds 1, 9, 32, and 33 also

exerted more notable inhibitory effects on ERK phosphorylation

than other groups. Since potent compounds against tested cancer

cell lines consistently exhibited intense suppression of Akt and

ERK activation than the less active compounds, we can deduce

that the potent inhibitory effects of these compounds on the two

signaling transduction pathways may be means of their anticancer

activities. Thus, we have provided novel insight into the

understanding of the underlying molecular mechanisms of these

synthesized phenanthroindolizidine alkaloids.

Effects of 1, 9, 12, 16, 32, 33, and 35 on the cell cyclins in
A549 cells

It is well known that cell proliferation is generally regulated by

controlling cell cycle progression through promoting or inhibiting

the activities of cyclins/cyclin-dependent kinases (CDKs) complexes

or their associated proteins [51]. The seven selected typical

compounds (1, 9, 12, 16, 32, 33, and 35) were then evaluated

for their effects on the regulatory proteins responsible for cell cycle

progression, such as cyclin A, cyclin B1, cyclin D1 and cyclin E in

A549 cells. 1, 9, 32, and 33 show more remarkable down-

regulation of cyclin A, cyclin D1 and CDK2 than the control and

the less active compounds 12, 16, and 35 (Figure 3), parallel to the

results in the cytotoxicity assay, whereas the level of the cyclin B1

and cyclin E did not change significantly. Cyclin D1 overexpression

has been observed in a number of human tumors and is associated

with poor prognosis and chemoresistance. Therefore, the down-

regulatory effect of cyclin D1 also contributes to the antitumor

activity of these potent compounds, and this conclusion was in

agreement with previous reports by Gao et al [26]. These results

indicate that these compounds inhibit cell growth through the

interruption of some proteins involved in the cell cycle progression.

Induction of S-phase arrest in A549 cells by 1, 9, 32, and
33

Cell cycle modulators that halt uncontrollable tumor growth are

regarded as highly promising therapeutic agents against human

cancers. Many natural products exhibited growth inhibitory

activities on cancer cells through cell cycle regulation [24,52].

Based on the results that 1, 9, 32, and 33 were potent compounds

at inhibiting cell growth and reducing the expressions of cyclin A,

cyclin D1 and CDK2, we further explored the effects of these four

compounds on cell cycle distribution by flow cytometric assay.

As revealed by flow cytometric analysis (Table 3), suppression of

cell proliferation with 500 nM of those four potent compounds was

accompanied by the significant accumulation of cells in the S-phase

in A549 cells as compared with the control. For instance, cell

populations in the G0/G1, S, G2/M (%) phases were 59.95%,

31.25%, and 8.80% respectively in the control group. However,

after exposure to compounds 1, 9, 32, and 33 for 24 h, cell

populations in the S-phase were noticeably enhanced by 6%, 14%,

18%, and 11% respectively. Student’s t test was used to examine the

significance of the values. For S-phase in A549 cells, statistical

analysis results were: 1 compared with control, P,0.01; 9 compared

with control, P,0.05; 32 compared with control, P,0.05; and 33
compared with control, P,0.05. This increase in the proportion of

cells in the S-phase was accompanied by a concomitant decreased

proportion of cells in the G0/G1 and G2/M phase.

The SubG0/G1 content of DNA is typically indicative of

apoptosis. Form the flow cytometric analysis, we can see the

proportion of cells in SubG0/G1 phase didn’t differ significantly

Table 1. Structures of deoxytylophorinine, its intermediate
and derivatives.

Compda R1 R2 R3 R4 R5 R6

f H OMe OMe OMe H (S) -

g H OMe OMe OMe H (S) -

h H OMe OMe OMe H (S) -

i H OMe OMe OMe H (S) OH

j H OMe OMe OMe H (S) H

k H OMe OMe OMe H (S) OMe (R)

l H OMe OMe OMe H (S) OMe (S)

m H OMe OMe OMe H (S) BnNH (R)

n H OMe OMe OMe H (S) BnNH (S)

1 H OMe OMe OMe H (S) H

2 H OMe OMe OMe H (R) H

3 OMe OMe OMe OMe H (S) H

4 OMe OMe OMe H H (S) H

5 OMe H OMe OMe H (S) H

6 H F OMe OMe H (S) H

7 H H OMe OMe H (S) H

8b H OMe OMe OMe H (S) OMe (R)

9 H OMe OMe OMe H (S) OMe (S)

10 H OMe OMe OMe H (R) OMe (S)

11 H OMe OMe OMe H (R) OMe (R)

12b H OMe OMe OMe H (S) BnNH (R)

13b H OMe OMe OMe H (S) BnNH (S)

14 H OMe OMe OMe H (R) BnNH (S)

15 H OMe OMe OMe H (R) BnNH (R)

16b H OMe OMe OMe H (S) n-PrNH (R)

17b H OMe OMe OMe H (S) n-PrNH (S)

18 H OMe OMe OMe H (R) n-PrNH (S)

19 H OMe OMe OMe H (R) n-PrNH (R)

20b H OMe OMe OMe H (S) i-PrNH (R)

21b H OMe OMe OMe H (S) i-PrNH (S)

22 H OMe OMe OMe H (R) i-PrNH (S)

23 H OMe OMe OMe H (R) i-PrNH (R)

24b H OMe OMe OMe H (S) c-PentylNH (R)

25b H OMe OMe OMe H (S) c-PentylNH (S)

26 H OMe OMe OMe H (R) c-PentylNH (S)

27 H OMe OMe OMe H (R) c-PentylNH (R)

28b H OMe OMe OMe H (S) c-HexylNH (R)

29b H OMe OMe OMe H (S) c-HexylNH (S)

30 H OMe OMe OMe H (R) c-HexylNH (S)

31 H OMe OMe OMe H (R) c-HexylNH (R)

32b H OMe OMe OMe H (S) NH2 (R)

33b H OMe OMe OMe H (S) NH2 (S)

34 H OMe OMe OMe H (R) NH2 (S)

35 H OMe OMe OMe H (R) NH2 (R)

aCompounds 1 [36,37], 2 [35], 3 [38], 4 [42], 6 [43], 7 [43], 9 [44], and 33 [45] are
known, while others are new synthesized.

bThese compounds have been claimed in a pending patent (PCT/CN2010/
070832).

doi:10.1371/journal.pone.0030342.t001
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between the control and the treatment groups with 500 nM of

these compounds for 24 h in A549 cells.

1, 9, 32, and 33 blocked S-G2 transition, resulting in S-phase

accumulation, thereby delaying the progression of cells through

G2/M phase in A549 cells. This result is consistent with the

expression levels of cyclin A/CDK2 detected by Western blot

assay, since this complex is the primary promoter of the G2 phase.

Thus we speculated that the S phase blockage of cell cycle

Table 2. Cytotoxic activities of deoxytylophorinine and its derivatives in vitro.

IC50
a(mM)

Compd HCT8 U251 HepG2 A549 A2780 BGC823 Capan2

f .10**, ## .10**, ## .10**, ## .10**, ## .10**, ## .10**, ## .10**, ##

g .10**, ## .10**, ## .10**, ## .10**, ## .10**, ## .10**, ## .10**, ##

h .10**, ## .10**, ## .10**, ## .10**, ## .10**, ## .10**, ## .10**, ##

i .10**, ## .10**, ## .10**, ## .10**, ## .10**, ## .10**, ## .10**, ##

j .10**, ## .10**, ## .10**, ## .10**, ## .10**, ## .10**, ## .10**, ##

1 0.3160.19 0.3460.14 0.1360.10 0.1460.08 0.2760.20 1.1761.17 0.3460.19

2 1.5460.86 1.3460.77 1.0860.70 1.7461.08 2.8260.23**, ## 8.5462.53*, ## 1.9061.22

3 0.2960.13 0.8960.63 0.7560.57 4.7762.85* .10**, ## 9.3161.19**, ## 8.9261.87**, ##

4 2.2561.48 1.4260.97 0.7960.21**, # 1.2760.74 5.5264.00 7.7962.19**, ## 0.6160.30

5 0.4260.08 1.7361.00 1.1961.15 2.7161.52*,# 9.2760.63**, ## 7.3064.67 .10**, ##

6 0.2260.17 0.3860.15 0.2660.14 0.2760.08 0.1960.14 0.4260.05 0.9260.75

7 0.2560.11 0.4160.17 0.2260.03 0.4260.18 .10**, ## 0.5960.19 0.6960.20

8 4.2960.85**, ## 3.1461.51*, # 3.2560.77**, ## 4.5761.26**, ## 8.0561.99**, ## 9.4960.55**, ## 6.7063.02*, #

9 0.0560.01# 0.0760.05* 0.1560.16 0.0760.03 0.0860.02# 0.0860.03 0.1960.21

10 0.4560.08 0.7060.33# 0.4460.17 2.6561.52* 8.8262.04**, ## 6.5863.79 2.7960.99*

11 3.0960.98**, # 4.6961.96*, # 0.9860.56 2.0961.15*, # 7.5962.50**, ## 6.7763.39# 1.9961.48

12 1.8561.21 2.3661.74 2.5261.13*, # 4.9861.80**, # 3.9360.94**, ## 6.8862.94*, # 4.0361.97*

13 5.5960.32**, ## 3.3560.97**, ## 4.0060.41**, ## 4.8461.18**, ## 8.8761.96**, ## 9.8560.26**, ## 6.6760.54**, ##

14 3.1761.62* 3.5661.19**, ## 3.0960.85**, ## 4.5261.94*, # 8.3162.55**, ## 7.4462.55*, # 6.3061.24**, #

15 7.7763.86*, # 6.3863.16*, # 9.0361.69**, ## 7.6162.38**, ## .10**, ## .10**, ## 9.1461.50**, ##

16 5.3561.60**, ## 2.7761.59# 3.0260.92**, ## 3.7160.72**, ## 8.7262.21**, ## 7.2963.35*, # 3.1361.16*

17 5.5761.05**, ## 3.1760.79**, ## 3.8760.63**, ## 4.9160.84**, ## 6.8162.62*, # 9.3861.08**, ## 4.0761.26**

18 2.9361.47* 2.1361.02*, # 2.4060.76**, ## 2.8361.39*, # 5.5163.32 5.0764.27 9.0261.03**, ##

19 7.0661.72**, ## 5.1460.90**, ## 4.1060.79**, ## 5.2761.21**, ## 9.2061.39**, ## 9.5060.86**, ## 6.3663.33*

20 4.7260.36**, ## 4.0260.31**. ## 4.8861.64**, ## 4.2661.03**, ## 6.6661.02**, ## 7.9561.79**, ## 5.8162.43*

21 4.9560.40**, ## 3.2460.74**, ## 4.2761.17**, ## 4.0661.33**, ## 4.7760.92**, ## 8.2661.77**, ## 5.0861.49**, #

22 3.0160.97**, # 2.6360.63**, ## 2.4560.62**, ## 3.3460.73**, ## 3.3360.83**, ## 4.5562.78 3.6762.85

23 7.6962.01**, ## 8.2061.05**, ## 5.0960.75**, ## 7.3363.42*, # .10**, ## 9.3161.19**, ## 6.3063.25*

24 4.1761.30**, ## 3.5161.83*, # 2.3461.39 3.1861.57*, # 6.6763.06*, # 7.6062.14*, ## 4.1061.30**

25 5.6860.97**, ## 3.3060.69**, ## 2.8560.35**, ## 3.9160.40**, ## 5.2161.08**, ## 7.7762.13**, ## 6.4461.26**, #

26 5.8662.31*, # 5.6161.56**, ## 4.5461.30**, ## 4.6460.96**, ## 9.2561.29**, ## .10**, ## 7.4261.66**, #

27 5.7461.08**, ## 4.6261.34**, ## 3.7761.31**, ## 6.3263.44*, # 6.2162.73*, # 8.5161.30**, ## 8.0263.42*, #

28 4.8160.94**, ## 4.5160.59**, ## 3.3660.83**, ## 5.9663.34*, ## 8.4661.81**, # 7.4662.61*, # 8.2961.57**, ##

29 3.7661.51*, # 3.2360.79**, ## 3.4561.38*, # 6.0563.52*, # 4.6160.16**, ## 7.4262.66*, # 5.7762.62*

30 4.5860.75**, ## 3.8261.28**, ## 3.4861.16**, ## 4.9261.84*, # 4.8360.34**, ## 6.0263.45 8.1462.07**, #

31 5.9761.25**, ## 3.7660.30**, ## 3.4060.27**, ## 5.9063.43*, # 7.8661.95**, ## 6.1760.14**, ## 9.5060.86**, ##

32 0.0260.02# 0.0560.01* 0.0560.01 0.0760.02 4.5661.23**, ## 0.1160.11 0.4260.30

33 0.0360.01# 0.0460.01* 0.0260.01 0.4060.15 0.0560.04,# 0.2660.13 0.4360.21

34 7.6060.52**, ## 6.2761.02**, ## 6.7562.81*, # 6.9462.72*, # 9.2061.39**, ## .10**, ## 4.7060.59**, #

35 3.9761.03**, ## 3.8960.00**, ## 5.7863.67 4.6161.15**, ## 6.6963.43*, # 9.0561.28**, ## 3.3160.70**

Doxorubicin 0.6160.25 0.1360.09 0.2360.25 0.2360.16 0.6360.27 0.9760.92 1.5761.45

aIC50 values are the test compounds concentration (mM) that inhibited the cell growth by 50%. Data represent the mean values 6 standard deviation of three
dependent experiments performed in triplicate (*, p,0.05 compared with compound 1; **, p,0.01 compared with compound 1; #, p,0.05 compared with
Doxorubicin; ##, p,0.01 compared with Doxorubicin). These IC50 values were all measured for 72 h treatment. IC50 values for 24 h treatment were in Table S1.

doi:10.1371/journal.pone.0030342.t002
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progression might be another important determinant in the

growth inhibition of deoxytylophorinine and its derivatives.

Materials and Methods

Synthesis
THF was distilled from sodium and benzophenone, acetonitrile

was distilled from 4 Å molecular sieves, and CH2Cl2 was distilled

from P2O5. All the above distillations were performed under a

nitrogen atmosphere. Triethylamine and pyridine were dried,

distilled, and kept over KOH. Other solvents and reagents were

used directly without any purification. 1H-NMR and 13C-NMR

spectra were collected by using Varian Inova-500 (500 MHz) and

Mercury Plus 400 (400 MHz) spectrometers (Figure S3). Abbre-

viations used in NMR analysis are as follows: s = singlet,

d = doublet, dd = double-doublet, ddd = double-double-doublet,

Figure 2. Effects of 1, 9, 12, 16, 32, 33, and 35 on phosphorylated and total proteins of Akt and ERK in A549 cells. A549 cells were
untreated or treated with 500 nM of 1, 9, 12, 16, 32, 33, and 35 for 24 h. Following 24 h of recovery, cell lysates were prepared and equal amounts of
protein were analyzed by SDS-PAGE. Immunoblots of cellular lysates were analyzed by antibodies of phosphorylated and total proteins of Akt and
ERK, with the expression of b-actin as an internal control. A. one of the selected immunoblot analysis results of pAkt, Akt, pERK, ERK and b-actin. B.
densitometric analysis results of pAkt, Akt, pERK, and ERK normalized to b-actin expression. Each histogram represents the mean values 6 standard
deviation of three dependent experiments. (*, p,0.05 compared with control; **, p,0.01 compared with control).
doi:10.1371/journal.pone.0030342.g002
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Figure 3. Effects of 1, 9, 12, 16, 32, 33, and 35 on cyclins in A549 cells. A549 cells were untreated or treated with 500 nM of 1, 9, 12, 16, 32,
33, and 35 for 24 h. Following 24 h of recovery, cell lysates were prepared and equal amounts of protein were analyzed by SDS-PAGE. Immunoblots
of cellular lysates were analyzed by antibodies of CDK2, cyclin A, cyclin B1, cyclin D1, and cyclin E, with the expression of b-actin as an internal control.
A. one of the selected immunoblot analysis results of CDK2, CyclinA, CyclinB1, CyclinD1, CyclinE and b-actin. B. densitometric analysis results of CDK2,
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t = triplet, m = multiplet, brs = broad singlet, brd = broad doublet,

brdd = broad double-doublet. ESI-MS spectra were recorded with

Agilent LC/MSD TOF spectrometer. High-resolution mass

spectra were obtained with an AccuTOF-CS (JMS-T100CS,

JEOL) spectrometer. Optical rotations were collected on a Perkin-

Elmer 343 polarimeter. Purities of screening compounds were

assessed by HPLC [Xtimate C18, 4.66250 mm, 5 mm] (Figure S4).

All of the final products were purified by recrystallization with

chemical purities over 95% and ee vuales of these compounds were

determined by HPLC analysis on a chiral AD-H column

[CHIRALPAK AD-H, 4.66250 mm, 5 mm].

Stilbene acid (a)
The mixture of homoveratric acid (19.60 g, 0.10 mol), p-

anisaldehyde (12 mL, 0.10 mol), triethylamine (16 mL, 0.12 mol)

and acetic anhydride (24 mL, 0.12 mol) was heated to reflux for

10 h, then cooled, filtered, and the product was washed with small

portions of EtOAc to give yellow solid a (22.60 g, 72%). mp.207–

208uC. 1H-NMR (500 MHz, CDCl3): 7.88 (1H, s), 7.06 (2H, d,

J = 8.5 Hz), 6.71 (2H, d, J = 8.5 Hz), 6.76 (1H, brs), 6.81 (1H, brd,

J = 8.0 Hz), 6.91 (1H, d, J = 8.0 Hz), 3.92 (3H, s), 3.81 (3H, s),

3.77 (3H, s).

Esterification of Stilbene acid (b)
Acid a (17.60 g, 0.06 mol) was resolved in SOCl2 (15 mL,

0.08 mol) and the reaction mixture was refluxed for 30 min. After

evaporation of the solvent, pyridine (4.53 mL, 0.06 mol) was

added and then 30 mL of MeOH was added dropwise with

stirring in an ice bath for 30 min. The product b was obtained

after filtration and washed with small portions of MeOH. (14.73 g.

80%). mp 111–112uC. 1H-NMR (500 MHz, CDCl3): 7.77 (1H, s),

7.03 (2H, d, J = 8.5 Hz), 6.69 (2H, d, J = 8.5 Hz), 6.90 (1H, d,

J = 8.0 Hz), 6.78 (1H, brd, J = 8.0 Hz), 6.74 (1H, brs), 3.93 (3H,

s), 3.80 (3H, s), 3.79 (3H, s), 3.76 (3H, s).

Methyl 3, 6, 7-Trimethoxyphenanthrene-9-carboxylate (c)
To a solution of b (10.17 g, 0.03 mol) in CH2Cl2 was added

anhydrous FeCl3 (16.90 g, 0.11 mol) in one portion under an ice

bath. After being stirred for 12 h at room temperature, the

reaction was quenched with saturated NaHCO3 solvent and the

organic layer was collected after filtration and partition. Then the

organic layer was dried, evaporated and the product was

recrystallized from MeOH to give yellow globules. (4.50 g.

44%). mp 151–152uC. 1H-NMR (400 MHz, CDCl3): 8.61 (1H,

s), 8.37 (1H, s), 7.77 (1H, s), 7.71 (1H, d, J = 2.5 Hz), 7.78 (1H, d,

J = 9.0 Hz), 7.16 (1H, dd, J = 9.0 Hz, 2.5 Hz), 4.07 (3H, s), 4.06

(3H, s), 3.99 (3H, s), 3.98 (3H, s).

9-(Hydroxymethyl)-3, 6, 7-trimethoxyphenanthren (d)
To a solution of LiAlH4 (1.00 g, 0.03 mol) in THF was added

the solution of c (4.25 g, 0.01 mol) at 0uC. After being stirred for

30 min at 20uC, the reaction was terminated with THF/H2O

(1:1). The mixture was filtered, dried, and then evaporated. And

the resulting white solid was recrystallized from MeOH to give

3.60 g product d as white needles with 93% yield. mp 155–156uC.
1H-NMR (400 MHz, CDCl3): 7.88 (1H, s), 7.58 (1H, s), 7.53 (1H,

s), 7.81 (1H, d, J = 2.0 Hz), 7.75 (1H, d, J = 9.0 Hz), 7.19 (1H, dd,

J = 9.0 Hz, 2.0 Hz), 5.09 (2H, s), 4.10 (3H, s), 4.05 (3H, s), 4.01

(3H, s).

(S)-(+)-N-[(3, 6, 7-trimethoxy-9-phenanthryl)-
methyl]pyroglutamic acid (g)

To the solution of d (4.26 g, 0.01 mol) and NaI (4.25 g,

0.03 mol) in 250 mL of acetonitrile was added TMSCl (2.44 mL,

0.02 mol) with stirring at room temperature. e was precipitated in

10 min and then L-diisopropyl glutamate (6.56 g, 0.03 mol) and

K2CO3 (4.30 g, 0.03 mol) were added. After stirring for another

5 h, the suspension was evaporated, and the residue was

partitioned between water and CH2Cl2 (100 mL62). The organic

layer was separated, dried, and evaporated to give crude f as

brown oil. Then acetic acid (50 mL) and MeOH (100 mL) were

added to the resulting oil and the mixture was stirred at 50uC for

5 h. After evaporation, the resulting residue was dissolved in 1, 4-

dioxane (22 mL), MeOH (17 mL) and 2N KOH solution (11 mL,

0.02 mol). Upon completion of addition, the reaction mixture was

stirred at room temperature for 1 h, and evaporated, and the

residue was partitioned between water and CH2Cl2 (50 mL62).

The aqueous layer was acidified to pH 4 with H3PO4. The

product of g was filtered and recrystallized from MeOH as white

needles (3.10 g, 53% over four steps). mp 275–277uC. 1H-NMR

(400 MHz, CDCl3): 7.90 (1H, s), 7.84 (1H, d, J = 2.0 Hz), 7.76

(1H, d, J = 8.8 Hz), 7.61 (1H, s), 7.49 (1H, s), 7.19 (1H, dd,

J = 8.8 Hz, 2.0 Hz), 5.61 (1H, d, J = 14.4 Hz), 4.35 (1H, d,

J = 14.4 Hz), 4.11 (3H, s), 4.04 (3H, s), 4.01 (3H, s), 3.87 (1H, m),

2.63 (1H, m), 2.42 (1H, m), 2.08–2.15 (2H, m).

(S)-3, 6, 7-trimethoxyphenanthro[9, 10-b]-11,
14-indolizidinedione (h)

To the solution of g (3.32 g, 0.01 mol) in trifluoroacetic

anhydride (10 mL, 0.07 mol) was added BF3?Et2O (20 mL,

0.16 mol) and the mixture was stirred for 3 h before poured into

50 mL of saturated NH4Cl solution. 200 mL of CH2Cl2 was

added to dissolve the resulting solid. The organic layer was

separated and washed with saturated NaHCO3 and H2O

sequentially, dried, evaporated, and washed with EtOAc to give

h as yellow powder (2.86 g, 90%). mp 249–251uC. [a]20 D +156

(c 1.0, CH2Cl2). 1H-NMR (400 MHz, CDCl3): 9.30 (1H, d,

J = 9.2 Hz), 7.87 (1H, s), 7.77 (1H, d, J = 2.4 Hz), 7.26 (1H, dd,

J = 9.2 Hz, 2.4 Hz), 7.18 (1H, s), 5.6 (1H, d, J = 18.0 Hz), 4.3 (1H,

d, J = 18.0 Hz), 4.35 (1H, m), 4.13 (3H, s), 4.06 (3H, s), 4.01 (3H,

s), 2.50–2.59 (4H, m).

Table 3. The effects of 1, 9, 32 and 33 on cell cycle
distribution in A549 cells.a

subG0/G1 (%) G0/G1 (%) S (%) G2/M (%)

control 1.53±0.22 59.95±0.21 31.25±0.78 8.80±0.42

1 (500 nM) 5.1864.41 54.1560.35** 37.4060.14** 8.4560.21

9 (500 nM) 3.8561.48 49.7565.59 45.8063.82* 4.5061.84

32 (500 nM) 2.1460.25 47.0063.96* 49.8063.25* 3.2060.71*

33 (500 nM) 1.9860.21 51.8060.14** 42.8062.69* 5.3562.76

aThese data indicate the percentage of cells in G0/G1, S, and G2/M phases of the
cell cycle. Each value is the mean 6 SD of three determinations. (*, p,0.05
compared with control; **, p,0.01 compared with control).

doi:10.1371/journal.pone.0030342.t003

CyclinA, CyclinB1, CyclinD1, and CyclinE normalized to b-actin expression. Each histogram represents the mean values 6 standard deviation of three
dependent experiments. (*, p,0.05 compared with control; **, p,0.01 compared with control).
doi:10.1371/journal.pone.0030342.g003
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(S)-3, 6, 7-trimethoxyphenanthro[9, 10-b]-11-
indolizidinone (j)

To a solution of h (0.45 g, 1.13 mmol) in a mixture of CH2Cl2
(10 mL) and MeOH (10 mL) was added NaBH4 (0.10 g,

2.26 mmol). After stirring for 30 min, 20 mL of saturated NH4Cl

solution was poured into the reactant mixture with stirring. The

organic layer was separated, dried, and evaporated to give i. The

mixture of i, Et3SiH (2 mL, 12.50 mmol) and BF3?Et2O (8 mL,

64.80 mmol) was intensively stirred for 6 h at room temperature.

10 mL of saturated NH4Cl solution was added slowly to quench

the reaction and then 20 mL of CH2Cl2 was added. The organic

layer was dried and evaporated. The residue was washed with hot

EtOH to give j (0.37 g, 85%). mp.216–218uC. [a]20 D +162 (c

0.2, CH2Cl2). 1H-NMR (500 MHz, CDCl3): 7.90 (1H, d,

J = 9.0 Hz), 7.21 (1H, dd, J = 9.0 Hz, 2.0 Hz), 7.88 (1H, d,

J = 2.0 Hz), 7.90 (1H, s), 7.12 (1H, s), 5.25 (1H, d, J = 17.0 Hz),

4.50 (1H, d, J = 17.0 Hz), 4.11 (3H, s), 4.04 (3H, s), 4.02 (3H, s),

3.88 (1H, m), 3.51 (1H, m), 2.79 (1H, m), 2.52–2.59 (3H, m), 1.98

(1H, m).

(+)-13a-(S)-deoxytylophorinine (1)
To the solution of j (0.08 g, 0.21 mmol) in 10 mL of THF was

added LiAlH4 (0.01 g, 0.26 mmol) under the protection of argon

atmosphere. The mixture was heated to reflux and stirred for 2 h

in dark. Then the reaction mixture was cooled to room

temperature and added THF/H2O (1:1) dropwise to quench the

reaction, then filtered, dried, and evaporated. The product of 1
(0.06 g, 71%) was obtained by recrystallization from acetone/

MeOH (1:1) as white needles. mp.219–221uC. [a]20 D +102 (c

0.25, CHCl3). 99% ee [flow rate 1.0 mL/min, 18% isopropanol/

hexane and 0.2% Et3N, tR (major) = 23.81 min, tR (min-

or) = 31.22 min]. ESI-MS: 364.2 [M+H]+. 1H-NMR (500 MHz,

CDCl3): d 7.92 (1H, d, J = 9.0 Hz, H-1), 7.20 (1H, dd, J = 9.0 Hz,

2.5 Hz, H-2), 7.87 (1H, d, J = 2.5 Hz, H-4), 7.89 (1H, s, H-5), 7.12

(1H, s, H-8), 4.57 (1H, d, J = 15.0 Hz, Ha-9), 3.61 (1H, d,

J = 15.0 Hz, Hb-9), 4.09 (3H, s, CH3O-6), 4.04 (3H, s, CH3O-7),

4.00 (3H, s, CH3O-3), 3.46 (1H, m, Ha-11), 3.38 (1H, dd,

J = 16.0 Hz, 2.5 Hz, Ha-14), 2.91 (1H, dd, J = 16.0 Hz, 13.5 Hz,

Hb-14), 2.41–2.47 (2H, m, H-13a, Hb-11), 2.21 (1H, m, Ha-13),

2.02 (1H, m, Ha-12), 1.91 (1H, m, Hb-12), 1.75 (1H, m, Hb-13).
13C-NMR (125 MHz, CDCl3): d 157.52, 149.38, 148.23, 130.33,

126.97, 125.59, 125.54, 125.27, 125.10, 123.30, 114.74, 104.55,

103.95, 103.14, 60.13, 55.96, 55.88, 55.47, 55.13, 53.93, 33.55,

31.22, 21.59. HRESIMS calcd for [M+H]+ C23H26NO3

364.1913, found 364.1925. The purity was 99.8% determined

by HPLC [flow rate 1.0 mL/min, 38% MeCN/H2O (0.06 M

NH4H2PO4, 0.2% Et3N, 2.5% THF)].

General Procedures for Synthesis of 2, 3, 4, 5, 6, 7
These derivatives were prepared from different substituted

phenanthrene-9-carboxylic ester and L- or D-glutamate. The

same reaction procedures and conditions were used as the

synthesis of (+)-deoxytylophorinine.

(2)-13a-(R)-deoxytylophorinine (2)
7% total yield. White needles (from acetone/MeOH (1:1)). mp

219–221uC. [a]20 D 2114 (c 0.25, CHCl3). 99% ee [flow rate

1.0 mL/min, 18% isopropanol/hexane and 0.2% Et3N, tR
(major) = 31.30 min, tR (minor) = 24.00 min]. ESI-MS: 364.2

(M+H)+. 1H-NMR (400 MHz, CDCl3): d 7.92 (1H, d,

J = 9.2 Hz, H-1), 7.21 (1H, dd, J = 9.2 Hz, 2.0 Hz, H-2), 7.88

(1H, d, J = 2.0 Hz, H-4), 7.90 (1H, s, H-5), 7.12 (1H, s, H-8), 4.62

(1H, d, J = 14.8 Hz, Ha-9), 3.71 (1H, d, J = 14.8 Hz, Hb-9), 4.09

(3H, s, CH3O-6), 4.04 (3H, s CH3O-7), 4.00 (3H, s, CH3O-3),

3.45 (1H, m, Ha-11), 3.41 (1H, dd, J = 16.0 Hz, 2.8 Hz, Ha-14),

2.98 (1H, dd, J = 16.0 Hz, 10.8 Hz, Hb 214), 2.52–2.61 (2H, m,

H-13a, Hb-11), 2.25 (1H, m, Ha-13), 2.05 (1H, m, Ha-12), 1.94

(1H, m, Hb-12), 1.80 (1H, m, Hb-13). 13C-NMR (100 MHz,

CDCl3): d 157.61, 149.42, 148.30, 130.39, 126.78, 125.42, 125.41,

125.21, 125.11, 123.34, 114.83, 104.55, 103.92, 103.02, 60.15,

55.96, 55.90, 55.48, 54.91, 53.46, 33.03, 31.03, 21.53. HRESIMS

calcd for [M+H]+ C23H26NO3 364.1913, found 364.1920. HPLC

purity: 99.9% [flow rate 1.0 mL/min, 38% MeCN/H2O (0.06 M

NH4H2PO4, 0.2% Et3N, 2.5% THF)].

(S)-2, 3, 6, 7-tetramethoxyphenanthro[9, 10-b]-
indolizidine [(+)-Tylophorine] (3)

7% total yield. White needles (from acetone/MeOH (1:1)). mp

284–286uC. [a]20 D +73 (c 0.1, CH2Cl2). 93% ee [flow rate

1.0 mL/min, 26% isopropanol/hexane and 0.2% Et3N, tR
(major) = 10.28 min, tR (minor) = 13.16 min]. 1H-NMR

(500 MHz, CDCl3): d 7.82 (2H, brs), 7.31 (1H, s), 7.15 (1H, s),

4.11 (6H, s), 4.06 (3H, s), 4.05 (3H, s), 4.63 (1H, d, J = 14.5 Hz),

3.66 (1H, d, J = 14.5 Hz), 3.48 (1H, brs), 3.37 (1H, brd,

J = 16.0 Hz), 2.93 (1H, d, J = 16.0 Hz, 10.5 Hz), 2.47–2.50 (2H,

m), 2.23 (1H, m), 2.05 (1H, m), 1.94 (1H, m), 1.79 (1H, m).

HRESIMS calcd for [M+H]+ C24H28NO4 394.2013, found

394.2026. HPLC purity: 98.6% [flow rate 1.0 mL/min, 46%

MeCN/H2O (0.08 M NH4H2PO4, 0.2% Et3N)].

(S)-2, 3, 6-trimethoxyphenanthro[9, 10-b]-indolizidine
[(+)-Antofine] (4)

6% total yield. White needles (from acetone). mp 215–217uC.

[a]20 D +102 (c 0.1, CH2Cl2). 97% ee [flow rate 1.0 mL/min,

26% isopropanol/hexane and 0.2% Et3N, tR (major) = 14.49 min,

tR (minor) = 21.27 min]. 1H-NMR (500 MHz, CDCl3): d 7.91

(1H, s), 7.90 (1H, d, J = 2.0 Hz), 7.80 (1H, d, J = 9.0 Hz), 7.20

(1H, dd, J = 9.0 Hz, 2.0 Hz), 7.30 (1H, s), 4.70 (1H, d,

J = 15.0 Hz), 3.70 (1H, d, J = 15.0 Hz), 4.10 (3H, s), 4.06 (3H,

s), 4.01 (3H, s), 3.47 (1H, brs), 3.34 (1H, brd, J = 15.5 Hz), 2.91

(1H, dd, J = 15.5 Hz, 10.5 Hz), 2.44–2.53 (2H, m), 2.24 (1H, m),

2.04 (1H, m), 1.93 (1H, m), 1.79 (1H, m). HRESIMS calcd for

[M+H]+ C23H26NO3 364.1907, found 364.1918. HPLC purity:

99.1% [flow rate 1.0 mL/min, 46% MeCN/H2O (0.08 M

NH4H2PO4, 0.2% Et3N)].

(S)-2, 6, 7-trimethoxyphenanthro[9, 10-b]-indolizidine (5)
5% total yield. White solid (from acetone). mp 198–200uC.

[a]20 D +97 (c 0.1, CH2Cl2). 100% ee [flow rate 1.0 mL/min,

26% isopropanol/hexane and 0.2% Et3N, tR = 25.08 min]. 1H-

NMR (400 MHz, CDCl3): d 8.43 (1H, d, J = 9.2 Hz), 7.21 (1H,

dd, J = 9.2 Hz, 2.8 Hz), 7.31 (1H, d, J = 2.8 Hz), 7.90 (1H, s), 7.12

(1H, s), 4.59 (1H, d, J = 14.8 Hz), 3.61 (1H, d, J = 14.8 Hz), 4.08

(3H, s), 4.03 (3H, s), 3.96 (3H, s), 3.46 (1H, m), 3.31 (1H, dd,

J = 15.6 Hz, 2.8 Hz), 2.87 (1H, dd, J = 15.6 Hz, 10.4 Hz), 2.39–

2.46 (2H, m), 2.21 (1H, m), 2.02 (1H, m), 1.91 (1H, m), 1.75 (1H,

m). HRESIMS calcd for [M+H]+ C23H26NO3 364.1907, found

364.1916. HPLC purity: 99.2% [flow rate 1.0 mL/min, 46%

MeCN/H2O (0.08 M NH4H2PO4, 0.2% Et3N)].

(S)-3-fluoro-6, 7-dimethoxyphenanthro[9, 10-b]-
indolizidine (6)

9% total yield. Light yellow solid (from acetone/MeOH (1:1)).

mp 190–192uC. [a]20 D +92 (c 0.1, CH2Cl2). 92% ee [flow rate

1.0 mL/min, 26% isopropanol/hexane and 0.2% Et3N, tR
(major) = 9.29 min, tR (minor) = 13.24 min]. 1H-NMR (500 MHz,
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CDCl3): d 8.11 (1H, brd, J = 11.5 Hz), 7.98 (1H, dd, J = 8.5 Hz,

6.0 Hz), 7.29 (1H, ddd, J = 9.0 Hz, 8.5 Hz, 2.0 Hz), 7.85 (1H, s),

7.16 (1H, s), 4.60 (1H, d, J = 15.0 Hz), 3.66 (1H, d, J = 15.0 Hz),

4.10 (3H, s), 4.06 (3H, s), 3.47 (1H, m), 3.41 (1H, brd,

J = 16.0 Hz), 2.95 (1H, dd, J = 16.0 Hz, 10.5 Hz), 2.45–2.48

(2H, m), 2.24 (1H, m), 2.03 (1H, m), 1.93 (1H, m), 1.76 (1H, m).

HRESIMS calcd for [M+H]+ C22H23FNO2 352.1707, found

352.1719. HPLC purity: 98.4% [flow rate 1.0 mL/min, 46%

MeCN/H2O (0.08 M NH4H2PO4, 0.2% Et3N)].

(S)- 6, 7-dimethoxyphenanthro[9, 10-b]-indolizidine (7)
8% total yield. White solid (from acetone/MeOH (1:1)). mp 196–

198uC. [a]20 D +112 (c 0.1, CH2Cl2). 90% ee [flow rate 1.0 mL/

min, 26% isopropanol/hexane and 0.2% Et3N, tR (major) = 13.70 -

min, tR (minor) = 24.50 min]. 1H-NMR (400 MHz, CDCl3): d 8.53

(1H, d, J = 7.6 Hz), 8.03 (1H, s), 8.01 (H, d, J = 7.6 Hz), 7.57 (2H,

brdd, J = 7.6 Hz, 7.6 Hz), 7.16 (1H, s), 4.62 (1H, d, J = 14.8 Hz),

3.66 (1H, d, J = 14.8 Hz), 4.10 (3H, s), 4.05 (3H, s), 3.43–3.49 (2H,

m), 2.97 (1H, dd, J = 15.6 Hz, 10.8 Hz), 2.43–2.49 (2H, m), 2.23

(1H, m), 2.03 (1H, m), 1.92 (1H, m), 1.77 (1H, m). HRESIMS calcd

for [M+H]+ C22H24NO2 334.1802, found 334.1808. HPLC purity:

99.9% [flow rate 1.0 mL/min, 46% MeCN/H2O (0.08 M

NH4H2PO4, 0.2% Et3N)].

(13aS, 14R)-14-methoxy-3, 6, 7-trimethoxyphenanthro[9,
10-b]-11-indolizidinone (k) and (13aS, 14S)-14-methoxy-3,
6, 7-trimethoxyphenanthro[9, 10-b] -11-indolizidinone (l)

To the solution of i (0.20 g, 0.51 mmol) in 5 mL of THF was

added NaH (70%, 0.07 g, 2.04 mmol) under protection of

nitrogen gas. The mixture was stirred at room temperature for

30 min and then CH3I (0.16 mL, 3.15 mmol) was added. The

reaction was continued for another 5 h and quenched by 10 mL of

saturated NH4Cl solution. The organic layer was washed with

water and dried. After evaporation the residue was isolated by

silica gel column chromatography eluting with CH2Cl2/MeOH

(50:1) to give k (0.06 g, 29%)and l (0.08 g, 39%) respectively.

k. 1H-NMR (500 MHz, CDCl3): d 8.21 (1H, d, J = 9.0 Hz),

7.22 (1H, dd, J = 9.0 Hz, 2.0 Hz), 7.88 (1H, d, J = 2.0 Hz), 7.91

(1H, s), 7.21 (1H, s), 5.38 (1H, d, J = 17.0 Hz), 4.43 (1H, d,

J = 17.0 Hz), 5.15 (1H, d, J = 7.0 Hz), 4.07 (1H, m), 4.12 (3H, s),

4.06 (3H, s), 4.02 (3H, s), 3.19 (3H, s), 2.66 (1H, m), 2.58 (2H, m),

2.24 (1H, m). NOEs were observed between H-14 (dH 5.15) and

H-13 (dH 2.23), CH3O-14 (dH 3.19), and H-1 (dH 8.21).

l. 1H-NMR (500 MHz, CDCl3): d 8.19 (1H, d, J = 9.0 Hz),

7.27 (1H, dd, J = 9.0 Hz, 2.0 Hz), 7.92 (1H, d, J = 2.0 Hz), 7.93

(1H, s), 7.26 (1H, s), 5.36 (1H, d, J = 17.5 Hz), 4.63 (1H, d,

J = 17.5 Hz), 5.19 (1H, brs), 3.96 (1H, m), 4.12 (3H, s), 4.06 (3H,

s), 4.02 (3H, s), 3.16 (3H, s), 2.68 (1H, m), 2.60–2.51 (2H, m), 2.32

(1H, m). NOEs were observed between H-14 (dH 5.19) and

CH3O-14 (dH 3.16), H-13a (dH 3.96), and H-1 (dH 8.19).

(13aS, 14R)-14-methoxy-3, 6, 7-trimethoxyphenanthro[9,
10-b]-indolizidine (8)

To the solution of k (0.08 g, 0.20 mmol) in 5 mL of THF was

added LiAlH4 (0.04 g, 1.05 mmol) under nitrogen gas. The

mixture was heated to reflux and continued for 2 h in dark and

then cooled to room temperature. THF/H2O (1:1) was added

slowly to the reactant until no bubble evolved. The mixture was

filtered and the filtrate was dried and evaporated. The residue was

recrystallized from MeOH to gave 8 (0.06 g, 78%) as white solid.

mp 208–210uC (decomposed). [a]20 D +88 (c 0.1, CH2Cl2). 92%

ee [flow rate 1.0 mL/min, 8% isopropanol/hexane and 0.2%

Et3N, tR (major) = 10.32 min, tR (minor) = 18.27 min]. 1H-NMR

(500 MHz, C5D5N): d 8.50 (1H, d, J = 9.0 Hz), 7.42 (1H, brd,

J = 9.0 Hz), 8.33 (2H, brs), 7.44 (1H, s), 5.26 (1H, d, J = 8.0 Hz),

4.68 (1H, d, J = 14.5 Hz), 3.71 (1H, d, J = 14.5 Hz), 3.98 (3H, s),

3.94 (3H, s), 3.90 (3H, s), 3.34 (3H, s), 3.25 (1H, brt, J = 7.5 Hz),

2.68 (1H, m), 2.38–2.33 (2H, m), 1.94–1.84 (2H, m), 1.76 (1H, m).
13C-NMR (125 MHz, C5D5N): d 158.24, 150.57, 150.10

(overlapped), 131.62, 130.03, 128.53, 128.31, 125.68 (62),

124.95, 115.74, 105.22, 104.99, 104.85, 81.00, 64.85, 56.00,

55.82, 55.41, 54.61, 54.22, 54.11, 31.77, 22.45. HRESIMS calcd

for [M+H]+ C24H28NO4 394.2013, found 394.2024. HPLC

purity: 99.9% [flow rate 1.0 mL/min, 46% MeCN/H2O

(0.08 M NH4H2PO4, 0.2% Et3N)].

(13aS, 14S)-14-methoxy-3, 6, 7-trimethoxyphenanthro[9,
10-b]-indolizidine (9)

The same reaction procedures and conditions were involved as

the synthesis of 8. 69% yield. White globules (from MeOH). mp

173–175uC. [a]20 D +73 (c 0.1, CH2Cl2). 100% ee [flow rate

1.0 mL/min, 26% isopropanol/hexane and 0.2% Et3N,

tR = 17.57 min]. 1H-NMR (500 MHz, C5D5N): d 8.63 (1H, d,

J = 9.0 Hz), 7.46 (1H, brd, J = 9.0 Hz), 8.38 (2H, brs), 7.49 (1H,

s), 5.28 (1H, brs), 4.86 (1H, d, J = 15.0 Hz), 3.54 (1H, d,

J = 15.0 Hz), 4.01 (3H, s), 3.96 (3H, s), 3.92 (3H, s), 3.45 (3H,

s), 3.33 (1H, brt, J = 7.5 Hz), 2.45–2.49 (2H, m), 2.21 (1H, m),

1.90–1.93 (2H, m), 1.74 (1H, m). 13C-NMR (125 MHz, C5D5N): d
158.54, 150.59, 150.10 (overlapped), 131.43, 130.16, 127.18,

126.42, 125.74, 125.44, 125.32, 116.21, 105.25, 104.94 (62),

71.10, 65.70, 56.03, 55.85, 55.48 (62), 54.57, 54.41, 24.67, 22.13.

HRESIMS calcd for [M+H]+ C24H28NO4 394.2013, found

394.2024. HPLC purity: 99.9% [flow rate 1.0 mL/min, 46%

MeCN/H2O (0.08 M NH4H2PO4, 0.2% Et3N)].

(13aR, 14S)-14-methoxy-3, 6, 7-trimethoxyphenanthro[9,
10-b]-indolizidine (10)

The same reaction procedures and conditions were involved as

the synthesis of 8. 66% yield. White solid (from MeOH). mp 208–

210uC (decomposed). [a]20 D 286 (c 0.1, CH2Cl2). 99% ee [flow

rate 1.0 mL/min, 8% isopropanol/hexane and 0.2% Et3N, tR
(major) = 18.38 min, tR (minor) = 10.35 min]. 1H-NMR

(500 MHz, C5D5N): d 8.50 (1H, d, J = 9.0 Hz), 7.42 (1H, brd,

J = 9.0 Hz), 8.33 (2H, brs), 7.43 (1H, s), 5.26 (1H, d, J = 8.0 Hz),

4.68 (1H, d, J = 14.5 Hz), 3.71 (1H, d, J = 14.5 Hz), 3.98 (3H, s),

3.94 (3H, s), 3.90 (3H, s), 3.34 (3H, s), 3.25 (1H, brt, J = 8.0 Hz),

2.69 (1H, m), 2.33–2.37 (2H, m), 1.84–1.94 (2H, m), 1.76 (1H, m).

HRESIMS calcd for [M+H]+ C24H28NO4 394.2013, found

394.2020. HPLC purity: 99.9% [flow rate 1.0 mL/min, 46%

MeCN/H2O (0.08 M NH4H2PO4, 0.2% Et3N)].

(13aR, 14R)-14-methoxy-3, 6, 7-trimethoxyphenanthro[9,
10-b]-indolizidine (11)

The same reaction procedures and conditions were involved as the

synthesis of 8. 72% yield. White globules (from MeOH). mp 173–

175uC. [a]20 D 277 (c 0.1, CH2Cl2). 94% ee [flow rate 1.0 mL/min,

26% isopropanol/hexane and 0.2% Et3N, tR (major) = 23.34 min, tR
(minor) = 18.16 min]. 1H-NMR (500 MHz, C5D5N): d 8.63 (1H, d,

J = 9.0 Hz), 7.46 (1H, dd, J = 9.0 Hz, 2.5 Hz), 8.39 (1H, s), 8.38 (1H,

d, 2.5 Hz), 7.50 (1H, s), 5.29 (1H, brs), 4.86 (1H, d, J = 15.0 Hz), 3.54

(1H, d, J = 15.0 Hz), 4.01 (3H, s), 3.96 (3H, s), 3.92 (3H, s), 3.45 (3H,

s), 3.33 (1H, brt, J = 7.5 Hz), 2.45–2.50 (2H, m), 2.21 (1H, m), 1.90–

1.93 (2H, m), 1.75 (1H, m). HRESIMS calcd for [M+H]+

C24H28NO4 394.2013, found 394.2021. HPLC purity: 99.6% [flow

rate 1.0 mL/min, 46% MeCN/H2O (0.08 M NH4H2PO4, 0.2%

Et3N)].
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General procedures for the preparation of 14-alkylamino
substituted derivatives

The solution of h (0.50 mmol) in 10 mL of dry CH2Cl2 was

cooled to 220uC. To this solution was added amine (0.1 mL) and

TiCl4 (0.25 mmol) sequently under nitrogen gas. The mixture was

stirred and warmed slowly to room temperature in 2 h. The

reaction was continued for another 24 h and filtered. The filtrate

was concentrated to 5 mL and added 5 mL of MeOH. NaBH4

(0.10 g) was added to the resulting solution and stirred for 30 min,

then quenched with saturated NH4Cl solution. The organic layer

was dried and evaporated. The residue was subjected to silica gel

column chromatography eluting by CH2Cl2/MeOH (50:1) to give

m and n respectively. Reduction of m and n by LiAlH4 afforded

target compounds. These compounds could be purified by

recrystallization from MeOH or acetone/H2O (1:1) mixture

respectively.

(13aS, 14R)-14-benzylamino-3, 6, 7-
trimethoxyphenanthro[9, 10-b]-11-indolizidinone (m)

58% yield. White solid (from MeOH). 1H-NMR (500 MHz,

CDCl3): d 8.01 (1H, d, J = 9.0 Hz), 7.88 (1H, m), 7.89 (1H, s),

7.28–7.17 (7H, m), 5.45 (1H, d, J = 16.5 Hz), 4.37 (1H, d,

J = 16.5 Hz), 4.55 (1H, d, J = 6.5 Hz), 4.09 (1H, overlapped), 4.11

(3H, s), 4.06 (3H, s), 4.02 (3H, s), 3.77 (1H, d, J = 12.5 Hz), 3.63

(1H, d, J = 12.5 Hz) 2.70 (1H, m), 2.56–2.60 (2H, m), 2.18 (1H,

m).

(13aS, 14S)-14-benzylamino-3, 6, 7-
trimethoxyphenanthro[9, 10-b]-11-indolizidinone (n)

39% yield. White solid (from MeOH). 1H-NMR (500 MHz,

CDCl3): d 8.05 (1H, d, J = 9.5 Hz), 7.93 (2H, s), 7.28–7.19 (7H,

m), 5.34 (1H, d, J = 18.0 Hz), 4.65 (1H, d, J = 18.0 Hz), 4.53 (1H,

brs), 3.99 (1H, m), 4.12 (3H, s), 4.06 (3H, s), 4.05 (3H, s), 3.91 (1H,

d, J = 12.5 Hz), 3.82 (1H, d, J = 12.5 Hz) 2.80 (1H, m), 2.55–2.61

(2H, m), 2.31 (1H, m).

(13aS, 14R)-14-benzylamino-3, 6, 7-
trimethoxyphenanthro[9, 10-b]-indolizidine (12)

82% yield. Light yellow cluster crystals (from MeOH). mp 192–

194uC. [a]20 D +33 (c 0.1, CH2Cl2). 100% ee [flow rate 1.0 mL/

min, 1% isopropanol/hexane and 0.2% Et3N, tR = 67.62 min].
1H-NMR (500 MHz, C5D5N): d 8.67 (1H, d, J = 9.0 Hz), 7.43

(1H, dd, J = 9.0 Hz, 2.0 Hz), 8.33 (1H, d, J = 2.0 Hz), 8.35 (1H,

s), 7.48 (1H, s), 7.47 (2H, d, J = 8.5 Hz), 7.30 (2H, t, J = 8.5 Hz),

7.22 (1H, t, J = 8.5 Hz), 4.73 (1H, d, J = 6.5 Hz), 4.70 (1H, d,

J = 15.0 Hz), 3.76 (1H, d, J = 15.0 Hz), 3.98 (3H, s), 3.95 (3H, s),

3.90 (3H, s), 3.97 (1H, overlapped), 3.82 (1H, d, J = 12.5 Hz), 3.30

(1H, brt, J = 7.0 Hz), 2.70 (1H, m), 2.37–2.45 (2H, m), 1.88–1.92

(2H, m), 1.79 (1H, m). 13C-NMR (125 MHz, C5D5N): d 158.17,

150.60, 150.10 (overlapped), 142.06, 131.84, 130.51, 129.34 (64),

128.57, 128.36, 127.04, 126.07, 125.58, 124.59, 115.40, 105.31,

104.88 (62), 68.07, 61.09, 56.06, 55.85, 55.40, 54.79, 54.17,

50.77, 32.29, 22.50. HRESIMS calcd for [M+H]+ C30H33N2O3

469.2486, found 469.2502. HPLC purity: 98.2% [flow rate

1.0 mL/min, 46% MeCN/H2O (0.08 M NH4H2PO4, 0.2%

Et3N)].

(13aS, 14S)-14-benzylamino-3, 6, 7-
trimethoxyphenanthro[9, 10-b]-indolizidine (13)

84% yield. Light yellow cluster crystals (from MeOH). mp 147–

149uC. [a]20 D +46 (c 0.1, CH2Cl2). 100% ee [flow rate 1.0 mL/

min, 26% isopropanol/hexane and 0.2% Et3N, tR = 13.96 min].
1H-NMR (500 MHz, C5D5N): d 8.51 (1H, d, J = 9.0 Hz), 7.46

(1H, dd, overlapped), 8.39 (2H, brs), 7.47 (1H, s), 7.44 (2H, d,

J = 7.5 Hz), 7.28 (2H, t, J = 7.5 Hz), 7.21 (1H, t, overlapped), 4.85

(1H, d, J = 15.0 Hz), 3.70 (1H, d, J = 15.0 Hz), 4.63 (1H, brs),

4.27 (1H, d, J = 14.0 Hz), 4.04 (1H, d, J = 14.0 Hz), 4.00 (3H, s),

3.94 (3H, s), 3.93 (3H, s), 3.37 (1H, brt, J = 7.5 Hz), 2.66 (1H, m),

2.46–2.54 (2H, m), 2.34 (1H, m), 1.85–1.96 (2H, m), 1.78 (1H, m).
13C-NMR (125 MHz, C5D5N): d 158.34, 150.60, 150.10

(overlapped), 142.79, 131.53, 131.28, 128.51 (62), 128.43 (62),

127.17, 126.95, 126.87, 126.26, 125.99, 124.73, 115.75, 105.33,

104.98, 104.75, 65.62, 56.06, 55.84, 55.61, 55.47, 54.71, 53.24,

52.61, 26.07, 22.65. HRESIMS calcd for [M+Na]+

C30H32N2NaO3 491.2311, found 491.2243. HPLC purity:

98.7% [flow rate 1.0 mL/min, 46% MeCN/H2O (0.08 M

NH4H2PO4, 0.2% Et3N)].

(13aR, 14S)-14-benzylamino-3, 6, 7-
trimethoxyphenanthro[9, 10-b]-indolizidine (14)

79% yield. Light yellow cluster crystals (from MeOH). mp 192–

194uC. [a]20 D 232 (c 0.1, CH2Cl2). 100% ee [flow rate 1.0 mL/

min, 1% isopropanol/hexane and 0.2% Et3N, tR = 62.37 min].
1H-NMR (500 MHz, C5D5N): d 8.67 (1H, d, J = 9.0 Hz), 7.43

(1H, brd, J = 9.0 Hz), 8.33 (1H, brs), 8.35 (1H, s), 8.48 (1H, s),7.47

(2H, d, J = 7.5 Hz), 7.30 (2H, t, J = 7.5 Hz), 7.22 (1H, t,

J = 7.5 Hz), 4.73 (1H, d, J = 7.0 Hz), 4.70 (1H, d, J = 14.5 Hz),

3.76 (1H, d, J = 14.5 Hz), 3.98 (3H, s), 3.95 (3H, s), 3.90 (3H, s),

3.97 (1H, overlapped), 3.82 (1H, d, J = 13.0 Hz), 3.30 (1H, brt,

J = 7.5 Hz), 2.70 (1H, m), 2.37–2.45 (2H, m), 1.88–1.92 (2H, m),

1.81 (1H, m). HRESIMS calcd for [M+H]+ C30H33N2O3

469.2486, found 469.2498. HPLC purity: 99.0% [flow rate

1.0 mL/min, 46% MeCN/H2O (0.08 M NH4H2PO4, 0.2%

Et3N)].

(13aR, 14R)-14-benzylamino-3, 6, 7-
trimethoxyphenanthro[9, 10-b]-indolizidine (15)

80% yield. Light yellow cluster crystals (from MeOH). mp 147–

149uC. [a]20 D 247 (c 0.1, CH2Cl2). 100% ee [flow rate 1.0 mL/

min, 26% isopropanol/hexane and 0.2% Et3N, tR = 16.62 min].
1H-NMR (500 MHz, C5D5N): d 8.51 (1H, d, J = 9.0 Hz), 7.45

(1H, dd, overlapped), 8.40 (2H, brs), 7.48 (1H, s), 7.44 (2H, d,

J = 7.5 Hz), 7.27 (2H, t, J = 7.5 Hz), 7.21 (1H, overlapped), 4.86

(1H, d, J = 15.0 Hz), 3.70 (1H, d, J = 15.0 Hz), 4.63 (1H, brs),

4.27 (1H, d, J = 14.0 Hz), 4.04 (1H, d, J = 14.0 Hz), 4.00 (3H, s),

3.94 (3H, s), 3.93 (3H, s), 3.37 (1H, brt, J = 7.5 Hz), 2.69 (1H, m),

2.46–2.54 (2H, m), 2.33 (1H, m), 1.85–1.96 (2H, m), 1.77 (1H, m).

HRESIMS calcd for [M+H]+ C30H33N2O3 469.2486, found

469.2502. HPLC purity: 99.8% [flow rate 1.0 mL/min, 46%

MeCN/H2O (0.08 M NH4H2PO4, 0.2% Et3N)].

(13aS, 14R)-14-propylamino-3, 6, 7-
trimethoxyphenanthro[9, 10-b]-indolizidine (16)

69% yield. Light yellow needles (from MeOH). mp 129–131uC.

[a]20 D +50 (c 0.1, CH2Cl2). 98% ee [flow rate 1.0 mL/min, 8%

isopropanol/hexane and 0.2% Et3N, tR (major) = 9.34 min, tR
(minor) = 17.18 min]. 1H-NMR (500 MHz, C5D5N): d 8.59 (1H,

d, J = 9.0 Hz), 7.44 (1H, dd, J = 9.0 Hz, 2.0 Hz), 8.33 (1H, d,

J = 2.0 Hz), 8.34 (1H, s), 7.46 (1H, s), 4.69 (1H, d, J = 15.0 Hz),

3.71 (1H, d, J = 15.0 Hz), 4.55 (1H, d, J = 7.0 Hz), 3.98 (3H, s),

3.95 (3H, s), 3.91 (3H, s), 3.29 (1H, brt, J = 7.5 Hz), 2.69 (1H, m),

2.56–2.62 (2H, m), 2.34–2.39 (2H, m), 1.85–1.89 (2H, m), 1.77–

1.79 (2H, m), 1.39–1.44 (2H, m), 0.83 (3H, t, J = 7.5 Hz). 13C-

NMR (125 MHz, C5D5N): d 158.13, 150.60, 150.10 (overlapped),

131.83, 130.99, 129.04, 128.35, 126.11, 125.69, 124.51, 115.33,

105.32, 104.90 (62), 68.49, 61.32, 56.05, 55.85, 55.41, 54.77,
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54.22, 48.81, 32.34, 24.48, 22.49, 12.18. HRESIMS calcd for

[M+H]+ C26H33N2O3 421.2485, found 421.2489. HPLC purity:

99.6% [flow rate 1.0 mL/min, 46% MeCN/H2O (0.08 M

NH4H2PO4, 0.2% Et3N)].

(13aS, 14S)-14-propylamino-3, 6, 7-
trimethoxyphenanthro[9, 10-b]-indolizidine (17)

65% yield. Light yellow cluster crystals (from acetone/H2O

(1:1)). mp 137–139uC. [a]20 D +68 (c 0.1, CH2Cl2). 98% ee [flow

rate 1.0 mL/min, 8% isopropanol/hexane and 0.2% Et3N, tR
(major) = 20.37 min, tR (minor) = 38.33 min]. 1H-NMR

(500 MHz, C5D5N): d 8.51 (1H, d, J = 9.0 Hz), 7.51 (1H, dd,

J = 9.0 Hz, 2.5 Hz), 8.38 (1H, d, J = 2.5 Hz), 8.37 (1H, s), 7.46

(1H, s), 4.86 (1H, d, J = 15.0 Hz), 3.67 (1H, d, J = 15.0 Hz), 4.47

(1H, brs), 3.99 (3H, s), 3.94 (3H, s), 3.93 (3H, s), 3.38 (1H, brt,

J = 7.5 Hz), 3.03 (1H, m), 2.87 (1H, m), 2.64 (1H, m), 2.31–2.40

(2H, m), 1.86–1.95 (2H, m), 1.76 (1H, m), 1.41–1.45 (2H, m), 0.81

(3H, t, J = 7.5 Hz). 13C-NMR (125 MHz, C5D5N): d 158.29,

150.57, 150.10 (overlapped), 131.93, 131.55, 127.11, 126.45,

126.29, 126.00, 124.62, 115.70, 105.33, 105.01, 104.73, 65.67,

56.04, 55.82, 55.62, 55.47, 54.76, 53.86, 51.41, 26.06, 24.89,

22.57, 12.13. HRESIMS calcd for [M+Na]+ C26H32N2NaO3

443.2311, found 443.2308. HPLC purity: 99.8% [flow rate

1.0 mL/min, 46% MeCN/H2O (0.08 M NH4H2PO4, 0.2%

Et3N)].

(13aR, 14S)-14-propylamino-3, 6, 7-
trimethoxyphenanthro[9, 10-b]-indolizidine (18)

71% yield. Light yellow needles (from MeOH). mp 129–131uC.

[a]20 D 250 (c 0.1, CH2Cl2). 100% ee [flow rate 1.0 mL/min, 8%

isopropanol/hexane and 0.2% Et3N, tR = 17.43 min]. 1H-NMR

(500 MHz, C5D5N): d 8.59 (1H, d, J = 9.0 Hz), 7.44 (1H, dd,

J = 9.0 Hz, 2.0 Hz), 8.33 (1H, d, J = 2.0 Hz), 8.34 (1H, s), 7.46

(1H, s), 4.68 (1H, d, J = 15.0 Hz), 3.72 (1H, d, J = 15.0 Hz), 4.55

(1H, d, J = 7.0 Hz), 3.98 (3H, s), 3.95 (3H, s), 3.91 (3H, s), 3.28

(1H, brt, J = 7.5 Hz), 2.69 (1H, m), 2.56–2.62 (2H, m), 2.34–2.39

(2H, m), 1.85–1.89 (2H, m), 1.78 (1H, m), 1.40–1.44 (2H, m), 0.83

(3H, t, J = 7.5 Hz). HRESIMS calcd for [M+H]+ C26H33N2O3

421.2486, found 421.2494. HPLC purity: 99.1% [flow rate

1.0 mL/min, 46% MeCN/H2O (0.08 M NH4H2PO4, 0.2%

Et3N)].

(13aR, 14R)-14-propylamino-3, 6, 7-
trimethoxyphenanthro[9, 10-b]-indolizidine (19)

66% yield. Light yellow cluster crystals (from acetone/H2O

(1:1)). mp 137–139uC. [a]20 D 268 (c 0.1, CH2Cl2). 99% ee [flow

rate 1.0 mL/min, 8% isopropanol/hexane and 0.2% Et3N, tR
(major) = 38.29 min, tR (minor) = 20.97 min]. 1H-NMR

(500 MHz, C5D5N): d 8.51 (1H, d, J = 9.0 Hz), 7.51 (1H, dd,

J = 9.0 Hz, 2.5 Hz), 8.38 (1H, d, J = 2.5 Hz), 8.37 (1H, s), 7.46

(1H, s), 4.86 (1H, d, J = 15.0 Hz), 3.67 (1H, d, J = 15.0 Hz), 4.47

(1H, brs), 3.99 (3H, s), 3.94 (3H, s), 3.93 (3H, s), 3.38 (1H, brt,

J = 8.0 Hz), 3.03 (1H, m), 2.86 (1H, m), 2.63 (1H, m), 2.31–2.40

(2H, m), 1.86–1.95 (2H, m), 1.78 (1H, m), 1.39–1.46 (2H, m), 0.81

(3H, t, J = 7.5 Hz). HRESIMS calcd for [M+H]+ C26H32N2NaO3

421.2486, found 421.2489. HPLC purity: 99.5% [flow rate

1.0 mL/min, 46% MeCN/H2O (0.08 M NH4H2PO4, 0.2%

Et3N)].

(13aS, 14R)-14-isopropylamino-3, 6, 7-
trimethoxyphenanthro[9, 10-b]-indolizidine (20)

83% yield. White solid (from MeOH). mp 117–119uC. [a]20 D

+47 (c 0.1, CH2Cl2). 98% ee [flow rate 1.0 mL/min, 8%

isopropanol/hexane and 0.2% Et3N, tR (major) = 7.58 min, tR
(minor) = 6.55 min]. 1H-NMR (500 MHz, C5D5N): d 8.69 (1H, d,

J = 9.0 Hz), 7.45 (1H, dd, J = 9.0 Hz, 2.0 Hz), 8.33 (1H, d,

J = 2.0 Hz), 8.34 (1H, s), 7.46 (1H, s), 4.75 (1H, d, J = 7.0 Hz),

4.65 (1H, d, J = 14.5 Hz), 3.69 (1H, d, J = 14.5 Hz), 3.98 (3H, s),

3.95 (3H, s), 3.90 (3H, s), 3.16–3.25 (2H, m), 2.51 (1H, m), 2.31–

2.39 (2H, m), 1.74–1.92 (3H, m), 1.27 (3H, d, J = 6.0 Hz), 0.96

(3H, d, J = 6.0 Hz). 13C-NMR (125 MHz, C5D5N): d 158.02,

150.57, 150.10 (overlapped), 131.85, 131.31, 128.99, 128.85,

126.17, 125.77, 124.48, 115.11, 105.27, 104.87, 104.76, 70.00,

57.66, 56.03, 55.85, 55.42, 54.40, 53.61, 45.74, 32.96, 25.30,

22.59, 22.19. HRESIMS calcd for [M+H]+ C26H33N2O3

421.2486, found 421.2496. HPLC purity: 97.7% [flow rate

1.0 mL/min, 46% MeCN/H2O (0.08 M NH4H2PO4, 0.2%

Et3N)].

(13aS, 14S)-14-isopropylamino-3, 6, 7-
trimethoxyphenanthro[9, 10-b]-indolizidine (21)

71% yield. Light yellow amorphous solid (from acetone/H2O

(1:1)). mp 149–151uC. [a]20 D +65 (c 0.1, CH2Cl2). 100% ee [flow

rate 1.0 mL/min, 8% isopropanol/hexane and 0.2% Et3N,

tR = 17.34 min]. 1H-NMR (500 MHz, C5D5N): d 8.58 (1H, d,

J = 9.0 Hz), 7.51 (1H, dd, J = 9.0 Hz, 2.0 Hz), 8.38 (1H, d,

J = 2.0 Hz), 8.36 (1H, s), 7.46 (1H, s), 4.88 (1H, d, J = 15.0 Hz),

3.71 (1H, d, J = 15.0 Hz), 4.64 (1H, brs), 3.99 (3H, s), 3.94 (3H, s),

3.93 (3H, s), 3.33–3.38 (2H, m), 2.66 (1H, m), 2.49 (1H, m), 2.33

(1H, m), 1.77–1.92 (3H, m), 1.09 (3H, d, J = 6.0 Hz), 0.99 (3H, d,

J = 6.0 Hz). 13C-NMR (125 MHz, C5D5N): d 158.30, 150.60,

150.10 (overlapped), 133.32, 131.46, 127.08, 126.31, 126.27,

126.23, 124.55, 115.41, 105.31, 104.99, 104.68, 65.57, 56.04,

55.82, 55.75, 55.49, 54.61, 50.56, 45.83, 26.19, 25.19, 24.38,

22.87. HRESIMS calcd for [M+H]+ C26H33N2O3 421.2486,

found 421.2500. HPLC purity: 99.1% [flow rate 1.0 mL/min,

46% MeCN/H2O (0.08 M NH4H2PO4, 0.2% Et3N)].

(13aR, 14S)-14-isopropylamino-3, 6, 7-
trimethoxyphenanthro[9, 10-b]-indolizidine (22)

77% yield. White solid (from MeOH). mp 117–119uC. [a]20 D

243 (c 0.1, CH2Cl2). 99% ee [flow rate 1.0 mL/min, 8%

isopropanol/hexane and 0.2% Et3N, tR (major) = 6.48 min, tR
(minor) = 7.44 min]. 1H-NMR (500 MHz, C5D5N): d 8.69 (1H,

overlapped), 7.45 (1H, dd, overlapped), 8.33 (1H, d, J = 2.0 Hz),

8.34 (1H, s), 7.46 (1H, s), 4.74 (1H, d, J = 7.0 Hz), 4.65 (1H, d,

J = 14.5 Hz), 3.69 (1H, d, J = 14.5 Hz), 3.98 (3H, s), 3.95 (3H, s),

3.91 (3H, s), 3.25–3.16 (2H, m), 2.50 (1H, m), 2.34–2.37 (2H, m),

1.78–1.88 (3H, m), 1.27 (3H, d, J = 6.0 Hz), 0.96 (3H, d,

J = 6.0 Hz). HRESIMS calcd for [M+H]+ C26H33N2O3

421.2486. found 421.2492. HPLC purity: 99.3% [flow rate

1.0 mL/min, 46% MeCN/H2O (0.08 M NH4H2PO4, 0.2%

Et3N)].

(13aR, 14R)-14-isopropylamino-3, 6, 7-
trimethoxyphenanthro[9, 10-b]-indolizidine (23)

73% yield. Light yellow amorphous solid (from acetone/H2O

(1:1)). mp 149–151uC. [a]20 D 265 (c 0.1, CH2Cl2). 99% ee [flow

rate 1.0 mL/min, 8% isopropanol/hexane and 0.2% Et3N, tR
(major) = 35.90 min, tR (minor) = 17.83 min]. 1H-NMR

(500 MHz, C5D5N): d 8.58 (1H, d, J = 9.0 Hz), 7.51 (1H, dd,

J = 9.0 Hz, 2.0 Hz), 8.38 (1H, d, J = 2.0 Hz), 8.36 (1H, s), 7.46

(1H, s), 4.88 (1H, d, J = 15.5 Hz), 3.71 (1H, d, J = 15.5 Hz), 4.64

(1H, brs), 3.99 (3H, s), 3.94 (3H, s), 3.93 (3H, s), 3.32–3.38 (2H,

m), 2.66 (1H, m), 2.49 (1H, m), 2.33 (1H, m), 1.76–1.94 (3H, m),

1.09 (3H, d, J = 6.0 Hz), 0.99 (3H, d, J = 6.0 Hz). HRESIMS
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calcd for [M+H]+ C26H33N2O3 421.2486. found 421.2488. HPLC

purity: 98.3% [flow rate 1.0 mL/min, 46% MeCN/H2O (0.08 M

NH4H2PO4, 0.2% Et3N)].

(13aS, 14R)-14-cyclopentylamino-3, 6, 7-
trimethoxyphenanthro[9, 10-b]-indolizidine (24)

78% yield. White needles (from MeOH). mp 150–152uC. [a]20 D

+45 (c 0.1, CH2Cl2). 99% ee [flow rate 1.0 mL/min, 8%

isopropanol/hexane and 0.2% Et3N, tR (major) = 7.37 min, tR
(minor) = 6.23 min]. 1H-NMR (500 MHz, C5D5N): d 8.68 (1H, d,

J = 9.0 Hz), 7.46 (1H, dd, J = 9.0 Hz, 2.5 Hz), 8.33 (1H, d,

J = 2.5 Hz), 8.34 (1H, s), 7.47 (1H, s), 4.68 (1H, overlapped), 4.67

(1H, d, J = 14 Hz), 3.72 (1H, d, J = 14 Hz), 3.98 (3H, s), 3.95 (3H, s),

3.91 (3H, s), 3.38 (1H, m), 3.26 (1H, brt, J = 7.5 Hz), 2.56 (1H, m),

2.35–2.39 (2H, m), 1.71–1.92 (6H, m), 1.49–1.63 (4H, m), 1.36 (1H,

m), 1.21 (1H, m). 13C-NMR (125 MHz, C5D5N): d 158.04, 150.58,

150.10 (overlapped), 131.85, 131.36, 129.00, 128.92, 126.18,

125.81, 124.49, 115.06, 105.29, 104.87, 104.73, 69.43, 59.19,

57.02, 56.03, 55.85, 55.42, 54.59, 53.79, 35.30, 32.86 (62), 24.34,

23.99, 22.65. HRESIMS calcd for [M+H]+ C28H35N2O3 447.2642,

found 447.2650. HPLC purity: 99.0% [flow rate 1.0 mL/min, 46%

MeCN/H2O (0.08 M NH4H2PO4, 0.2% Et3N)].

(13aS, 14S)-14-cyclopentylamino-3, 6, 7-
trimethoxyphenanthro [9, 10-b] -indolizidine (25)

74% yield. Light yellow solid (from acetone/H2O (1:1)). mp

112–114uC. [a]20 D +73 (c 0.1, CH2Cl2). 99% ee [flow rate

1.0 mL/min, 8% isopropanol/hexane and 0.2% Et3N, tR
(major) = 16.13 min, tR (minor) = 40.03 min]. 1H-NMR

(500 MHz, C5D5N): d 8.58 (1H, d, J = 9.0 Hz), 7.53 (1H, dd,

J = 9.0Hz, 2.0 Hz), 8.39 (1H, d, J = 2.0 Hz), 8.37 (1H, s), 7.46

(1H, s), 4.88 (1H, d, J = 15.5 Hz), 3.72 (1H, d, J = 15.5 Hz), 4.58

(1H, brs), 3.99 (3H, s), 3.94 (3H, s), 3.93 (3H, s), 3.52 (1H, m), 3.36

(1H, brt, J = 7.5 Hz), 2.67 (1H, m), 2.49 (1H, m), 2.35 (1H, m),

1.83–1.96 (2H, m), 1.71–1.80 (2H, m), 1.50–1.68 (3H, m), 1.43–

1.24 (5H, m). 13C-NMR (125 MHz, C5D5N): d 158.20, 150.48,

150.10 (overlapped), 133.08, 131.27, 127.11, 126.28, 126.19,

126.08, 124.44, 115.29, 105.20, 104.82, 104.56, 65.36, 57.35,

55.94, 55.71, 55.64, 55.38, 54.48, 51.45, 35.56, 34.27, 25.94,

24.38, 24.17, 22.77. HRESIMS calcd for [M+H]+ C28H35N2O3

447.2642, found 447.2653. HPLC purity: 98.9% [flow rate

1.0 mL/min, 46% MeCN/H2O (0.08 M NH4H2PO4, 0.2%

Et3N)].

(13aR, 14S)-14-cyclopentylamino-3, 6, 7-
trimethoxyphenanthro[9, 10-b]-indolizidine (26)

81% yield. White needles (from MeOH). mp 150–152uC. [a]20

D 244 (c 0.1, CH2Cl2). 99% ee [flow rate 1.0 mL/min, 8%

isopropanol/hexane and 0.2% Et3N, tR (major) = 6.06 min, tR
(minor) = 7.68 min]. 1H-NMR (500 MHz, C5D5N): d 8.68 (1H, d,

J = 9.0 Hz), 7.46 (1H, overlapped), 8.32 (1H, brs), 8.34 (1H, s),

7.47 (1H, s), 4.68 (1H, overlapped), 4.67 (1H, d, J = 14.5 Hz), 3.72

(1H, d, J = 14.5 Hz), 3.98 (3H, s), 3.95 (3H, s), 3.91 (3H, s), 3.38

(1H, m), 3.26 (1H, brt, J = 7.5 Hz), 2.57 (1H, m), 2.38–2.40 (2H,

m), 1.70–1.88 (6H, m), 1.49–1.64 (4H, m), 1.37 (1H, m), 1.21 (1H,

m). HRESIMS calcd for [M+H]+ C28H35N2O3 447.2642, found

447.2650. HPLC purity: 98.5% [flow rate 1.0 mL/min, 46%

MeCN/H2O (0.08 M NH4H2PO4, 0.2% Et3N)].

(13aR, 14R)-14-cyclopentylamino-3, 6, 7-
trimethoxyphenanthro[9, 10-b]-indolizidine (27)

67% yield. Light yellow solid (from acetone/H2O (1:1)). mp

112–114uC. [a]20 D 273 (c 0.1, CH2Cl2). 100% ee [flow rate

1.0 mL/min, 8% isopropanol/hexane and 0.2% Et3N,

tR = 40.11 min]. 1H-NMR (500 MHz, C5D5N): d 8.58 (1H, d,

J = 9.0 Hz), 7.53 (1H, overlapped), 8.39 (1H, d, J = 2.0 Hz), 8.37

(1H, s), 7.46 (1H, s), 4.88 (1H, d, J = 15.5 Hz), 3.72 (1H, d,

J = 15.5 Hz), 4.58 (1H, brs), 3.99 (3H, s), 3.94 (3H, s), 3.93 (3H, s),

3.53 (1H, brs), 3.36 (1H, brs), 2.67 (1H, m), 2.49 (1H, m), 2.34

(1H, m), 1.88–1.93 (3H, m), 1.74–1.77 (2H, m), 1.54–1.63 (4H, m),

1.27–1.41 (3H, m). HRESIMS calcd for [M+H]+ C28H35N2O3

447.2642, found 447.2655. HPLC purity: 99.7% [flow rate

1.0 mL/min, 46% MeCN/H2O (0.08 M NH4H2PO4, 0.2%

Et3N)].

(13aS, 14R)-14-cyclohexylamino-3, 6, 7-
trimethoxyphenanthro[9, 10-b]-indolizidine (28)

82% yield. White needles (from MeOH). mp 163–165uC. [a]20

D +57 (c 0.1, CH2Cl2). 99% ee [flow rate 1.0 mL/min, 8%

isopropanol/hexane and 0.2% Et3N, tR (major) = 7.07 min, tR
(minor) = 5.49 min]. 1H-NMR (500 MHz, C5D5N): d 8.71 (1H,

overlapped), 7.49 (1H, brd, J = 9.0 Hz), 8.33 (1H, brs), 8.34 (1H,

s), 7.46 (1H, s), 4.81 (1H, brs), 4.66 (1H, d, J = 14.5 Hz), 3.71 (1H,

d, J = 14.5 Hz), 3.98 (3H, s), 3.95 (3H, s), 3.91 (3H, s), 3.25 (1H,

brs), 2.86 (1H, m), 2.54 (1H, m), 2.31–2.39 (3H, m), 1.88–1.91

(2H, m), 1.75–1.78 (2H, m), 1.50–1.65 (4H, m), 1.17–1.34 (3H, m),

1.08–1.12 (2H, m). 13C-NMR (125 MHz, C5D5N): d 158.03,

150.55, 150.10 (overlapped), 131.86, 131.38, 128.97, 128.84,

126.18, 125.75, 124.47, 115.13, 105.27, 104.87, 104.77, 69.99,

57.24, 56.03, 55.84, 55.42, 54.44, 54.05, 53.63, 35.84, 33.30,

32.91, 26.52, 25.58, 25.30, 22.60. HRESIMS calcd for [M+H]+

C29H37N2O3 461.2799, found 461.2807. HPLC purity: 98.0%

[flow rate 1.0 mL/min, 46% MeCN/H2O (0.08 M NH4H2PO4,

0.2% Et3N)].

(13aS, 14S)-14-cyclohexylamino-3, 6, 7-
trimethoxyphenanthro[9, 10-b]-indolizidine (29)

79% yield. Light yellow solid (from acetone/H2O (1:1)). mp

106–108uC. [a]20 D +87 (c 0.1, CH2Cl2). 100% ee [flow rate

1.0 mL/min, 8% isopropanol/hexane and 0.2% Et3N,

tR = 15.52 min]. 1H-NMR (500 MHz, C5D5N): d 8.59 (1H, d,

J = 9.0 Hz), 7.54 (1H, overlapped), 8.37 (1H, brs), 8.35 (1H, s),

7.46 (1H, s), 4.90 (1H, d, J = 15.0 Hz), 3.72 (1H, d, J = 15.0 Hz),

4.67 (1H, brs), 3.98 (3H, s), 3.94 (3H, s), 3.93 (3H, s), 3.38 (1H, brt,

J = 8.0 Hz), 3.00 (1H, m), 2.67 (1H, m), 2.49 (1H, m), 2.35 (1H,

m), 1.73–2.00 (6H, m), 1.63 (1H, m), 1.53 (1H, m), 1.41 (1H, m),

1.13–1.21 (3H, m), 1.04–1.07 (2H, m). 13C-NMR (125 MHz,

C5D5N): d 158.30, 150.58, 150.10 (overlapped), 133.39, 131.48,

127.08, 126.34, 126.26, 126.21, 124.56, 115.42, 105.30, 104.91,

104.66, 65.66, 56.03, 55.81, 55.78, 55.47, 54.69, 54.05, 50.29,

35.65, 35.14, 26.48, 26.30, 25.27, 25.18, 22.91. HRESIMS calcd

for [M+H]+ C29H37N2O3 461.2799, found 461.2811. HPLC

purity: 99.5% [flow rate 1.0 mL/min, 46% MeCN/H2O (0.08 M

NH4H2PO4, 0.2% Et3N)].

(13aR, 14S)-14-cyclohexylamino-3, 6, 7-
trimethoxyphenanthro[9, 10-b]-indolizidine (30)

78% yield. White needles (from MeOH). mp 163–165uC. [a]20

D 255 (c 0.1, CH2Cl2). 99% ee [flow rate 1.0 mL/min, 8%

isopropanol/hexane and 0.2% Et3N, tR (major) = 5.43 min, tR
(minor) = 7.16 min]. 1H-NMR (500 MHz, C5D5N): d 8.71 (1H,

overlapped), 7.49 (1H, brd, J = 9.0 Hz), 8.34 (1H, brs), 8.33 (1H,

s), 7.46 (1H, s), 4.81 (1H, d, J = 4.0 Hz), 4.66 (1H, d, J = 14.5 Hz),

3.71 (1H, d, J = 14.5 Hz), 3.98 (3H, s), 3.95 (3H, s), 3.91 (3H, s),

3.25 (1H, brs), 2.85 (1H, m), 2.54 (1H, m), 2.31–2.39 (3H, m),

1.1.89–1.90 (2H, m), 1.76–1.81 (2H, m), 1.50–1.65 (4H, m), 1.17–
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1.31 (3H, m), 1.08–1.12 (2H, m). HRESIMS calcd for [M+H]+

C29H37N2O3 461.2799, found 461.2814. HPLC purity: 98.1%

[flow rate 1.0 mL/min, 46% MeCN/H2O (0.08 M NH4H2PO4,

0.2% Et3N)].

(13aR, 14R)-14-cyclohexylamino-3, 6, 7-
trimethoxyphenanthro[9, 10-b]-indolizidine (31)

76% yield. Light yellow solid (from acetone/H2O (1:1)). mp

106–108uC. [a]20 D 286 (c 0.1, CH2Cl2). 99% ee [flow rate

1.0 mL/min, 8% isopropanol/hexane and 0.2% Et3N, tR
(major) = 30.72 min, tR (minor) = 15.92 min]. 1H-NMR

(500 MHz, C5D5N): d 8.60 (1H, d, J = 9.0 Hz), 7.55 (1H,

overlapped), 8.39 (1H, brs), 8.37 (1H, s), 7.48 (1H, s), 4.91 (1H,

d, J = 15.0 Hz), 3.73 (1H, d, J = 15.0 Hz), 4.69 (1H, brs), 4.00

(3H, s), 3.96 (3H, s), 3.95 (3H, s), 3.40 (1H, brt, J = 8.0 Hz), 3.01

(1H, m), 2.69 (1H, m), 2.53 (1H, m), 2.37 (1H, m), 1.75–2.02 (6H,

m), 1.65 (1H, m), 1.56 (1H, m), 1.42 (1H, m), 1.17–1.22 (3H, m),

1.05–1.09 (2H, m). HRESIMS calcd for [M+H]+ C29H37N2O3

461.2799, found 461.2813. HPLC purity: 99.8% [flow rate

1.0 mL/min, 46% MeCN/H2O (0.08 M NH4H2PO4, 0.2%

Et3N)].

(13aS, 14R)-14-amino-3, 6, 7-trimethoxyphenanthro[9, 10-
b]-indolizidine (32)

To the solution of 12 (0.1 g) in 10 mL of EtOH and 0.5 mL of

concentrated hydrochloric acid was added 10% Pd/C (0.1 g). The

mixture was stirred under H2 at 25 psi for 24 h and then filtered.

The catalyst was washed with 10 mL of water. The filtrate was

combined and evaporated. The residue was dissolved in 5 mL of

water and alkalified to pH 10 with 10% NaOH. The resulting

precipitate was filtered and washed with water. Recrystallized

from acetone/H2O (1:2) gave the product as light yellow solid

(66 mg, 82%). mp 166–168uC (decomposed). [a]20 D +53 (c 0.1,

CH2Cl2). 99% ee [flow rate 1.0 mL/min, 8% isopropanol/hexane

and 0.2% Et3N, tR (major) = 20.45 min, tR (minor) = 38.40 min].
1H-NMR (500 MHz, C5D5N): d 8.70 (1H, overlapped), 7.40 (1H,

dd, J = 9.5 Hz, 2.0 Hz), 8.34 (2H, brs), 7.44 (1H, s), 4.67 (1H, d,

J = 15.0 Hz), 3.67 (1H, d, J = 15.0 Hz), 4.62 (1H, d, J = 7.5 Hz),

3.99 (3H, s), 3.95 (3H, s), 3.90 (3H, s), 3.31 (1H, brt, J = 7.5 Hz),

2.29–2.43 (3H, m), 1.98–2.10 (2H, m), 1.87–1.88 (2H, m), 1.77

(1H, m). 13C-NMR (125 MHz, C5D5N): d 157.84, 150.41, 150.10

(overlapped), 133.03, 131.88, 128.63, 127.49, 125.90, 125.28,

124.25, 115.07, 105.09, 104.92, 104.69, 71.35, 55.85, 55.65,

55.37, 55.23, 55.12, 54.66, 30.67, 22.03. HRESIMS calcd for

[M+H]+ C23H27N2O3 379.2016, found 379.2019. HPLC purity:

99.7% [flow rate 1.0 mL/min, 46% MeCN/H2O (0.08 M

NH4H2PO4, 0.2% Et3N)].

(13aS, 14S)-14-amino-3, 6, 7-trimethoxyphenanthro[9, 10-
b]-indolizidine (33)

33 was synthesized under the same reaction condition as 32
from 13. The product was obtained as light yellow solid (from

acetone/H2O (1:2)). 80% yield. mp 133–135uC. [a]20 D +154 (c

0.1, CH2Cl2). 100% ee [flow rate 1.0 mL/min, 26% isopropanol/

hexane and 0.2% Et3N, tR = 31.26 min]. 1H-NMR (500 MHz,

C5D5N): d 8.53 (1H, d, J = 9.0 Hz), 7.45 (1H, brd, J = 9.0 Hz),

8.36 (2H, brs), 7.42 (1H, s), 4.76 (1H, d, J = 15.0 Hz), 3.68 (1H, d,

J = 15.0 Hz), 4.47 (1H, brs), 3.99 (3H, s), 3.93 (3H, s), 3.92 (3H, s),

3.32(1H, brt, J = 7.5 Hz), 2.58 (1H, m), 2.30–2.36 (2H, m), 2.12–

2.16 (2H, m), 1.76–1.86 (3H, m). 13C-NMR (125 MHz, C5D5N): d
158.29, 150.54, 150.10 (overlapped), 133.54, 131.72, 126.93,

125.97, 125.80, 125.71, 124.54, 115.95, 105.28, 105.00, 104.66,

65.11, 56.00, 55.79, 55.74, 55.47, 54.80, 48.41, 25.17, 22.92.

HRESIMS calcd for [M+H]+ C23H27N2O3 379.2016, found

379.2022. HPLC purity: 99.7% [flow rate 1.0 mL/min, 46%

MeCN/H2O (0.08 M NH4H2PO4, 0.2% Et3N)].

(13aR, 14S)-14-amino-3, 6, 7-trimethoxyphenanthro[9, 10-
b]-indolizidine (34)

83% yield. Light yellow solid (from acetone/H2O (1:2)). mp

166–168uC (decomposed). [a]20 D 253 (c 0.1, CH2Cl2). 99% ee

[flow rate 1.0 mL/min, 8% isopropanol/hexane and 0.2% Et3N,

tR (major) = 38.36 min, tR (minor) = 21.01 min]. 1H-NMR

(500 MHz, C5D5N): d 8.70 (1H, overlapped), 7.40 (1H, brd,

J = 9.0 Hz), 8.34 (2H, brs), 7.43 (1H, s), 4.67 (1H, d, J = 14.0 Hz),

3.66 (1H, d, J = 14.0 Hz), 4.62 (1H, d, J = 6.5 Hz), 3.99 (3H, s),

3.95 (3H, s), 3.90 (3H, s), 3.31 (1H, brs), 2.31–2.41 (3H, m), 1.99–

2.05 (2H, m), 1.86–1.90 (2H, m), 1.74 (1H, m). HRESIMS calcd

for [M+H]+ C23H27N2O3 379.2016, found 379.2024. HPLC

purity: 98.8% [flow rate 1.0 mL/min, 46% MeCN/H2O (0.08 M

NH4H2PO4, 0.2% Et3N)].

(13aR, 14R)-14-amino-3, 6, 7-trimethoxyphenanthro[9,
10-b]-indolizidine (35)

75% yield. Light yellow solid (from acetone/H2O (1:2)). mp

133–135uC. [a]20 D 2156 (c 0.1, CH2Cl2). 100% ee [flow rate

1.0 mL/min, 26% isopropanol/hexane and 0.2% Et3N,

tR = 20.13 min]. 1H-NMR (500 MHz, C5D5N): d 8.53 (1H, d,

J = 9.0 Hz), 7.45 (1H, d, J = 9.0 Hz), 8.37 (2H, brs), 7.43 (1H, s),

4.76 (1H, d, J = 15.0 Hz), 3.68 (1H, d, J = 15.0 Hz), 4.48 (1H,

brs), 3.99 (3H, s), 3.93 (3H, s), 3.92 (3H, s), 3.33(1H, brs), 2.59 (1H,

m), 2.33–2.35 (2H, m), 2.13–2.20 (2H, m), 1.77–1.84 (3H, m).

HRESIMS calcd for [M+H]+ C23H27N2O3 379.2016, found

379.2019. HPLC purity: 99.7% [flow rate 1.0 mL/min, 46%

MeCN/H2O (0.08 M NH4H2PO4, 0.2% Et3N)].

Cell culture
HCT8, U251, HepG2, A549, A2780, BGC823, and Capan2

were maintained in the RPMI-1640 medium containing 2 g/L

sodium bicarbonate, 10% (v/v) fetal bovine serum (FBS; HyClone,

Logan, UT) supplemented with 100 units/mL of penicillin and

streptomycin (Sigma-Aldrich, St. Louis, MO). All cells were

cultured at 37uC in a humidified incubator with 5% CO2. Test

compounds were dissolved in DMSO (Sigma-Aldrich) to prepare

5 mM stock for the following experiments. The stock was diluted

with culture medium to desired concentrations for drug treatment.

MTT cytotoxicity assay
Doxorubicin (Sigma-Aldrich) was used as the positive control

cytotoxic drug in this experiment. The cytotoxicity of deoxytylo-

phorinine and its derivatives on cells were assessed using MTT

method. HCT8, U251, HepG2, A549, A2780, BGC823 and

Capan2 cells were seeded on 96-well polystyrene cell culture plates

at a density of 26104 cells/mL (100 mL). After 24 h attachment,

the cells were treated with six different concentrations of test

compounds for 72 h. After that, the drug containing medium was

removed and replaced by the culture medium with 100 mL of

0.5 mg/mL MTT (Sigma-Aldrich) solution for 4 h. After that,

formazan formed from MTT was extracted by adding 180 mL of

DMSO. Absorbance was then determined using a Spectra

Max190 (MD, USA) at 570 nm.

Western blot assay in A549 cells
1, 9, 12, 16, 32, 33, and 35 were added at a final concentration

of 500 nM, and the cell pellets were isolated 24 hours later. And

then A549 cells were washed with PBS and were lysed in 100 mL
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of ice-cold lysis buffer (150 mM NaCl, 50 mM Tris base, 0.5%

sodium deoxycholate, 0.5 mM sodium orthovanadate, 1% NP-40,

and 0.1% SDS) containing protease inhibitor cocktail and

phosphatase inhibitor cocktail. Clear lysates were obtained by

centrifugation (12,000 rpm for 20 min). Whole-cell lysates were

mixed with 56 sample buffer and heated at 96uC for 10 min.

Then equal amounts of protein per lane were separated by SDS-

PAGE (4% stacker and 10% resolving). Proteins were then

transferred onto nitrocellulose membranes by electroblotting.

Nonspecific binding of the membranes was blocked with Tris-

buffered saline (TBS) containing 5%(w/v) skim milk and 0.1% (v/

v) Tween-20 (TBST) for more than 2 h. And then, the transblotted

membranes were incubated with antibodies of Akt (1:1,000, rabbit

monoclonal antibody; Cell Signaling), ERK (1:500, rabbit

polyclonal antibody; Santa Cruz Biotechnology), cyclin A

(1:2,000, mouse monoclonal antibody; Cell Signaling), cyclin B1

(1:1,000, rabbit monoclonal antibody; oncogene), cyclin D1

(1:500, mouse monoclonal antibody; Santa Cruz Biotechnology),

cyclin E (1:200, rabbit polyclonal antibody; Beijing Biosynthesis

Biotechnology), CDK2 (1:500, rabbit polyclonal antibody; Santa

Cruz Biotechnology), b-actin (1:500, mouse monoclonal antibody;

Santa Cruz Biotechnology) in TBST containing 5% skim milk or

phospho-Akt (Ser473) (1:1,000, rabbit monoclonal antibody; Cell

Signaling), phospho-ERK (Tyr204) (1:500, rabbit polyclonal

antibody; Santa Cruz Biotechnology) in TBST containing 3%

bovine serum albumin (BSA; Sigma-Aldrich) overnight at 4uC.

Subsequently, the membranes were washed with TBST and

incubated for 1.5 h with an appropriate secondary antibody

(1:3,000, horseradish peroxidase-conjugated goat anti-mouse or

anti-rabbit IgG) at room temperature. After washing the

membrane three times for 10 min in TBST, the immunoblots

were visualized by enhanced chemiluminescence using ECL

Western blotting detection reagents and exposed ECL hyperfilm

in Las-3000 (FUJFILM, JP). Multi Gauge v3.0 was used for image

acquisition and data analysis.

Flow cytometric analysis
After 24 h administration of fresh media containing test sample

(1, 9, 32, and 33 at 500 nM), A549 cells were harvested, washed

twice with phospho-buffered saline (PBS) and fixed overnight in

70% EtOH at 4uC. After washing twice with cold PBS, the fixed

cells were then resuspended in 1 ml of cell cycle buffer (50 mg/mL

RNase and 10 mg/mL propidium iodide) for DNA staining at

room temperature for 1 h. DNA content was measured on a

EPICS XL flow cytometer (Beckman Coulter, USA) and the

distribution of cells in the cell cycle was calculated using SYSTEM

II software (BD Biosciences, USA).

Supporting Information

Figure S1 Apoptosis of A549 cells could be induced by
high concentrations of 1.

(DOC)

Figure S2 NOE experiments for compounds l and k. In

the NOE experiments, the NOE association between H-14 (dH

5.19, brs) and H-13a (dH 3.96, m) indicated that the H-14 was cis

to H-13a in compound l. However, for k, the trans-orientation of

H-14 and H-13a was suggested by the NOE association between

H-14 (dH 5.15, d, J = 7.0 Hz) and H-13 (dH, 2.23, m) and the

larger coupling contant of H-14 (J = 7.0 Hz).

(DOC)

Figure S3 NMR spectra for compounds 1–35.

(DOC)

Figure S4 Purity data for compounds 1–35.

(DOC)

Table S1 Cytotoxic activities of Compounds 1, 9, 12, 16,
32, 33, 35 in A549 cells for 24 h treatment. These data

represent the mean values 6 standard deviation of three

dependent experiments performed in triplicate.

(DOC)
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