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Abstract

Binocular vision requires intricate control of eye movement to align overlapping visual fields for fusion in the visual cortex,
and each eye is controlled by 6 extraocular muscles (EOMs). Disorders of EOMs are an important cause of symptomatic
vision loss. Importantly, EOMs represent specialized skeletal muscles with distinct gene expression profile and susceptibility
to neuromuscular disorders. We aim to investigate and describe the anatomy of adult zebrafish extraocular muscles (EOMs)
to enable comparison with human EOM anatomy and facilitate the use of zebrafish as a model for EOM research. Using
differential interference contrast (DIC), epifluorescence microscopy, and precise sectioning techniques, we evaluate the
anatomy of zebrafish EOM origin, muscle course, and insertion on the eye. Immunofluorescence is used to identify
components of tendons, basement membrane and neuromuscular junctions (NMJs), and to analyze myofiber
characteristics. We find that adult zebrafish EOM insertions on the globe parallel the organization of human EOMs,
including the close proximity of specific EOM insertions to one another. However, analysis of EOM origins reveals important
differences between human and zebrafish, such as the common rostral origin of both oblique muscles and the caudal origin
of the lateral rectus muscles. Thrombospondin 4 marks the EOM tendons in regions that are highly innervated, and laminin
marks the basement membrane, enabling evaluation of myofiber size and distribution. The NMJs appear to include both en
plaque and en grappe synapses, while NMJ density is much higher in EOMs than in somatic muscles. In conclusion, zebrafish
and human EOM anatomy are generally homologous, supporting the use of zebrafish for studying EOM biology. However,
anatomic differences exist, revealing divergent evolutionary pressures.

Citation: Kasprick DS, Kish PE, Junttila TL, Ward LA, Bohnsack BL, et al. (2011) Microanatomy of Adult Zebrafish Extraocular Muscles. PLoS ONE 6(11): e27095.
doi:10.1371/journal.pone.0027095

Editor: Harold A. Burgess, National Institutes of Health/NICHD, United States of America

Received July 17, 2011; Accepted October 10, 2011; Published November 23, 2011

Copyright: � 2011 Kasprick et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This study was supported by a Fight for Sight Student Award (DSK), Research to Prevent Blindness Career Development Award (AK), Alliance for Vision
Research (AK), grant K08 EY018689 (AK) from the National Eye Institute of the National Institutes of Health and a Vision Research Core Award P30 EY007003 to the
Department of Ophthalmology and Visual Sciences, Kellogg Eye Center, University of Michigan. The Zebrafish International Resource Center is supported by grant
P40 RR012546 from the National Health Institute-National Center for Research resources. The funders had no role in study design, data collection and analysis,
decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: akahana@med.umich.edu

Introduction

Zebrafish and humans both utilize six highly specialized

extraocular muscles (EOMs) per eye to control the precise pursuit

and saccade movements required to track moving items and

maintain stable images on the retina for high acuity vision. In

humans, five of the six muscles – inferior rectus (IR), superior

rectus (SR), lateral rectus (LR), medial rectus (MR), and superior

oblique (SO) - originate at the Annulus of Zinn, a common

tendinous ring of fibrous tissue that surrounds the optic nerve,

ophthalmic artery, and ophthalmic vein at their entrance through

the apex of the orbit. The sixth muscle, inferior oblique (IO), has a

separate origin point on the orbital side of the bony maxilla at the

anterior inferomedial strut. Each of these muscles has a distinct

insertion site on the globe (Figure 1) and generates a unique

primary rotation of the eye when acting alone. Additionally, each

muscle has secondary and tertiary influences over eye movement

when combined with action from one or more of the other six

EOMs. The specific eye movements elicited by each muscle or

group of muscles is dictated by the anatomical position of the

EOM origin sites within the bony orbit, the functionality of

connective tissue pulleys, the insertion site positions of the EOMs

on the eye, and the rotational position of the eye which modifies

the primary tension vector generated by any given muscle. Highly

coordinated contraction of the proper EOMs at the proper time

allows humans to achieve binocular vision. This mode of vision

provides stereoptic cues for depth perception and object size

determination, but limits the range of the cumulative visual field.

Human EOM is divided into two layers with characteristic

innervations, fiber types [1,2], metabolism [3], and gene expression

profiles [4,5,6]. The inner global layer (GL) inserts on the eye and

the similarly sized outer orbital layer (OL) inserts on a connective

tissue ring forming the EOM pulley system. The OL positions the

EOM pulley along individual rectus muscles to change the position

of the functional origin. The OL and GL are also distinguished from

each other by a 2-fold greater density of multiply innervated fibers

(MIFs) observed in OL muscle [1]. Both the GL and OL are

dominated by singly innervated fibers (SIF), similar to skeletal

muscle, but differences in neuromuscular junction (NMJ) distribu-

tion patterns have been observed between EOM and limb muscle in

several animal models [7]. Changes in NMJ frequency or

distribution can serve as important markers for neuromuscular

disease [8,9] and are an important component of EOM anatomy.

The unique functional and morphological characteristics of EOM

can be attributed at least partially to its unique embryonic origin

involving interaction between cranial mesoderm and migrating

neural crest cell populations [10,11,12,13,14].

Zebrafish eyes are positioned laterally on the head providing a

field of view that surpasses that of humans but leaves fish with a

limited area of overlapping visual fields. The nomenclature of the
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six EOMs in zebrafish remains the same as in humans and the

overall anatomic organization of the muscles within the orbit

shows distinct similarities as well. In 1996, Stephen Easter

reported on the organization of the EOMs within the orbit of a

96-hour post fertilization (hpf) embryo [15], but there have been

no systematic studies published on the comparative anatomy of

adult zebrafish EOMs. The present study highlights the remark-

able similarity between zebrafish and human EOM gross and

microscopic anatomy through a detailed exploration of the adult

zebrafish orbit both in vivo and using two-dimensional cross

section analysis. We propose that adult zebrafish can serve as a

useful model for studying EOM structure and function.

Materials and Methods

Zebrafish (Danio rerio) Rearing
All animal work was performed ethically and in compliance

with the ARVO Statement for the Use of Animals in Ophthalmic

and Vision Research, and approved by the University of Michigan

Committee on the Use and Care of Animals, protocol 10205. The

Tg(a -actin::EGFP) fish line was a generous gift from Dr. Simon

Hughes, Kings College London, United Kingdom. Sexually

mature adult (4-18 month old) wild type (WT) and transgenic

Tg(a-actin::EGFP) zebrafish were raised per standard protocol at

28uC with a 14-h light/10-h dark alternating cycle. Tg(a-

actin::EGFP) lines express EGFP under the control of the muscle-

specific a-actin promoter, enabling visualization of EOMs in vivo

[16,17].

Specimen Processing and Microscopy
Adult Tg(a-actin::EGFP) fish were anesthetized in 0.05% tricaine

and placed on a moist viewing platform created by placing roughly

10 lab tissues into a 0.5 cm deep, 9.5 cm diameter petri dish lid

and saturating with 0.05% tricaine diluted in fish system water.

Fish were laid flat on one side for visualization of the MR and LR

and were propped up against moistened folded paper towel with

the dorsal side up to image the SR and SO and with the ventral

side up to image the IR and IO. A micromanipulator equipped

with a fine point blunt probe was used to gently rotate and hold

the eye in the proper position for muscle exposure and image

capture. A Leica MZ16FA stereomicroscope with a Leica DFC

295 camera (Leica Microsystems CMS GmbH, Wetzler Germany)

was used to capture fluorescent images highlighting EGFP-

expressing EOM. Images were processed using Photoshop CS5

(Adobe Systems, San Jose, California) and Leica Application Suite

Advanced Fluorescence (LAS AF) software.

Fish to be used for DIC gross anatomy mosaics were

euthanized, decapitated several millimeters behind the gills using

a clean razor blade, and fixed in 4% paraformaldehyde (PFA) for

2 hours at room temperature. Decalcification was achieved by

gently shaking in 5% nitric acid for 10 minutes, washing in distilled

deionized water twice for 5 minutes, quenching in dilute

ammonium hydroxide (10 drops of pure ammonium hydroxide

added to 200 ml distilled deionized water), and then additional

washing in water for 10–20 minutes. These samples were gently

shaken overnight at 4uC in 5% sucrose in 0.1 M phosphate buffer

and then changed over to 20% sucrose in 0.1 M phosphate buffer

and gently shaken at 4uC overnight once again. Specimens were

placed into an OCT filled mold and frozen in a dry-ice cooled

ethanol bath. Specimens were sectioned at 12 microns, mounted

on slides, dried at RT for 30 min, and rinsed twice in PBS for 5

minutes to remove excess OCT. Permanent coverslips were placed

using ProLong Gold Antifade Reagent (Invitrogen).

Fish to be used for immunohistochemistry or a-bungarotoxin

(BTX) staining were euthanized, briefly dipped in Shandon M-1

embedding matrix (Thermo Shandon, Pittsburgh, PA), and snap

frozen by dropping the head into a liquid nitrogen bath and

allowing 5–10 seconds for freezing to occur. Specimens were

transferred to dry-ice chilled conical tubes and stored at 280uC
until sectioning. Twelve micron-thick sections were cut and slides

were kept on dry ice or in a 280uC freezer until ready for staining

and imaging.

Images were obtained using a Leica DM6000 B microscope

with Leica DFC295 (DIC) and Hamamatsu ORCA (epi-

fluorescence) cameras (Hamamatsu Photonics, Hamamatsu City,

Japan), using Leica LAS and LAS AF software. Mosaics were

created by capturing images of the entire desired field of view by

moving the microscope stage by hand and ensuring roughly 25%

overlap between consecutive images. Images were merged using

the automated ‘‘photomerge’’ function in Adobe Photoshop CS5.

Individual muscles were shaded on coronal and transverse DIC

mosaics using the Photoshop paintbrush tool. High magnification

fluorescent data obtained with the 40x and 63x objectives were

gathered as z-stack images, then deconvolved and 3D-projected

using LAS AF software.

Whole muscle mosaic images of a-BTX labeled NMJ’s were

obtained using a Leica SP5 confocal imaging microscope with an

automated stage for coordinated image tile capture. Leica LAS AF

software was used to assemble individual tiles into complete

mosaics and z-stacks were converted into single layer images using

the LAS AF 3D projection tool.

Immunohistochemistry
Slides were warmed for 2–3 minutes at room temperature then

placed into 50 ml of ice-cold methanol for 10 minutes to fix the

tissue. Slides were washed once for 5 minutes in PBS, placed in

blocking solution (5% goat serum in PBS +0.2% Tween) for 30

minutes, and then washed in PBS + 0.2% Tween (PBST) 4 times

for 5 minutes. Slides were incubated in a humid chamber for

2 hours at room temperature in primary antibody (rabbit

polyclonal anti-laminin, Sigma Aldrich, St. Louis, MO; rabbit

polyclonal anti-thrombospondin-4 (Thbs-4), Santa Cruz Biotech-

Figure 1. Illustration of human eye showing 6 EOMs inserting
on the globe in what is referred to as the Spiral of Tillaux.
doi:10.1371/journal.pone.0027095.g001
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nology Inc., CA) diluted to 1:200 in PBST + 2% goat serum. Slides

were again washed 4 times for 5 minutes in PBST and then

incubated in the dark with Alexafluor 647-conjugated goat anti-

rabbit secondary antibody (Invitrogen) diluted 1:1000 in PBS +
0.2% Tween. Slides were washed again and nuclei were stained

with Hoechst (Anaspec Inc., San Jose, CA) for 2 minutes at a

concentration of 2 mM in PBS. A final wash was done with PBS

followed by permanent coverslipping with ProLong Gold Antifade

Reagent. Slides were stored long term at 4uC in the dark.

Neuromuscular Junction Labeling and Density
Quantification

Slides were washed for 5 minutes in PBST to remove excess

embedding medium then incubated for 2 hours in 50 ml of cold

1 mg/ml Alexafluor 488-conjugated a–BTX; (Invitrogen) diluted

in PBS + 2 mm sodium azide. Slides were washed for 5 minutes in

PBS and nuclei were stained with Hoechst nuclear stain for 2

minutes at a concentration of 2 mm in PBS. A final 5-minute wash

in PBS was followed by application of ProLong Gold Anti-Fade

Reagent and coverslipping. Slides were stored long term at 4uC in

the dark. For double-staining, the a-BTX binding was performed

immediately following the washing of the secondary antibody.

After image capture, muscle surface area was calculated using

ImageJ software version 1.44 (National Institute of Health,

Bethesda, Maryland). Total surface area of a–BTX – labeled

NMJs was calculated using the ImageJ ‘‘particle analysis’’ tool to

automatically trace and calculate the total combined surface area

of NMJs. Mouse anti-synaptotagmin antibodies (znp1; Zebrafish

International Resource Center, Eugene, OR) were used at 1:100

dilution to identify presynapses, and double-staining experiments

with znp1 and a–BTX enabled evaluation of the morphology and

distribution of the NMJs.

Results

EOM Anatomy - In vivo Microscopy
To image adult EOMs in vivo, adult Tg(a -actin::EGFP) zebrafish,

ages 6 months and older, were anesthetized and evaluated using

epifluorescent microscopy. Attention was first directed to the

muscle insertions on the globe. Caudal rotation of the eye to

expose the antero-medial orbit revealed that the medial rectus

(MR) runs parallel to the long axis of the fish and inserts on the

anterior side of the eye at the sclera-corneal (SC) junction

(Figure 2A). The lateral rectus (LR) lies within the same

anatomical plane as the MR, attached to its insertion site on the

caudal side of the eye at the SC junction and extending deep into

the orbit and out of view (Figure 2B). The dorsal side of the adult

zebrafish eye revealed a significant overlap of the superior rectus

(SR) and superior oblique (SO; Figure 2C) at their common

insertion site near the SC junction (the figure is representative of at

least 100 fish imaged in a similar fashion). This overlapping of

insertions on the globe contrasted with embryo EOMs in which

the oblique and rectus muscle insertions do not cross (Figure 3,

representative of at least 200 embryos imaged). A similar overlap

of the inferior oblique (IO) and inferior rectus (IR) muscles

appeared to take place on the ventral side of the globe (Figure 2D),

but these muscles were not as easily visualized in vivo because it

required rotating the eye to the point of stretching the muscles.

Further analysis of tissue sections confirms the overlap of the IO

and IR at their insertions on the globe (Figure 4L). In vivo imaging

clearly shows that the SO travels from a rostral origin point while

the SR shows a path originating from a more caudal point. Hence,

in vivo imaging of this transgenic strain provides an accurate

assessment of zebrafish EOM anatomy.

In order to assess embryo and larval EOM anatomy, we

evaluated the same strain microscopically in vivo using 5-day-old

Figure 2. Adult transgenic zebrafish expressing GFP under the control of the a-actin muscle protein promoter allow for clear
visualization of all 6 EOMs using epifluorescent stereomicroscopy. The MR and LR (A,B) are shown running parallel to the long axis of the
fish and inserting on the anterior and posterior sides of the eye respectively. The SO and SR course from their respective rostral and caudal origin
points to insert on the dorsal side of the eye with significant overlap of fibers (C). The IO and IR mirror the SO and SR as they insert onto the ventral
side of the eye. Arrowheads mark scleromuscular insertion sites located at the scleral-corneal (SC) junction. Muscle origins are deep within the orbit
and are not visible. The anterior (A), posterior (P), dorsal (D), and ventral (V) directions are noted on frame A and apply to frames B–D.
doi:10.1371/journal.pone.0027095.g002
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Figure 3. 5 dpf embryos showing lack of overlap for SR/SO and IR/IO at their insertion sites (arrows). (A) ventral; (B) dorsal. Images
reflect maximum projections following deconvolution of macroscopic Z-stacks. IR = inferior rectus; IO = inferior oblique; MR = medial rectus; AM =
adductor mandibulae (jaw muscle – thin arrow); LR = lateral rectus; SR = superior rectus; SO = superior oblique.
doi:10.1371/journal.pone.0027095.g003

Figure 4. Key anatomical features within the WT adult zebrafish orbit are highlighted on 12 m m thick coronal sections originally
imaged at 200X magnification with DIC prisms to reveal topographical tissue architecture. Sections proceed in the dorsal (4A) to ventral
(4L) direction and show all 6 muscles extending from origin to globe insertion. Please refer to the text for further details. Specific EOMs can be
observed on the following figures: Superior oblique (4A–4D). Superior rectus (4A–4J). Inferior Oblique (4C–4L). Inferior rectus (4G–4L). Medial rectus
(4E–4J). Lateral rectus (4G–4K). Anterior (A), posterior (P), left (L), and right (R) directions are noted on each frame and a schematic illustrating the
specific plane of section is located in the lower left corner. Key features are labeled as follows: B – brain, C – cornea, IO – inferior oblique, IR – inferior
rectus, LR – lateral rectus, L – lens, MR – medial rectus, ON – optic nerve, SO – superior oblique, SR – superior rectus, R – retina. For larger versions of
the images, please refer to supplemental figures 1A-1L.
doi:10.1371/journal.pone.0027095.g004
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larvae (Figure 3). Interestingly, the SO and SR have distinct

insertions onto the globe (Figure 3A,B), as do the IO and IR

(Figure 3C). With over 200 embryos imaged, overlapping

insertions were never noted. Therefore, the overlapping insertions

develop later, as the larvae grow and reach adulthood. The

significance of this is unclear.

Two Dimensional Orbital Anatomy
Coronal/Longitudinal Sections. Whole head serial sec-

tions (12 mm thickness), obtained from 6 month old WT zebrafish,

were evaluated for the presence of key anatomical landmarks and

relationships. Images of anatomically descriptive sections were

captured using differential interference contrast (DIC) microscopy.
Throughout Figures 4A, B, C, D, E, F, G, H, I, J, K,L the plane of

section is slightly oblique to the longitudinal axis and tilted slightly

to the left. The left eye in each section has a slightly more ventral

section depth compared to the right eye. The ordered sections

proceed from dorsal (Figure 4A) to ventral (Figure 4L).

The SO and SR muscles are positioned close to each other near

their overlapping insertion site on the dorsal side of the eye

(Figure 4A). They deviate from each other as sections proceed

ventrally and the muscles travel rostrally (SO) and caudally (SR) to

their respective origin points (Figure 4B). Deeper sections reveal

the common origin point of all four oblique muscles at the anterior

ethmoid plate. The SO and IO muscles to both the left and right

eye appear to meet at a central bony prominence where oblique

EOM fibers overlap with each other (Figures 4C and D).

The MR muscle is displayed in longitudinal cross section as it

passes immediately lateral to the IO muscle and inserts on the

anterior side of the eye (Figure 4E). It can be seen along its

pathway to the common origin point of the SR, MR, and IR as

sections proceed in the caudal/ventral direction (Figure 4F).

Eventually the MR originates from a midline bony plate where it is

positioned just medial to the IR and SR (Figures 4G, H, I,J).

The SR and IR muscles overlap significantly as they meet and

cross at their origins just lateral to the MR and attached to the

same bony plate (Figures 4G, H, I,J). The shared origin and close

proximity of the MR, IR, and SR may have functional

consequences (see discussion).

The LR muscles cut in longitudinal cross-section travel from an

origin point immediately inferior and posterior to the dienceph-

alon, significantly caudal to the origin of the other rectus muscles

(Figures 4I, 4J). The LR muscles deviate from each other as they

travel rostrally and make a near 90-degree lateral turn before they

pass lateral to the SR, MR, and IR origin and insert on the

posterior side of the eye. The left and right LR are in very close

proximity at their points of origin (Figures 4H and 4I) with

significant crossing and overlapping of muscle fibers.

The IO and IR muscles travel in a similar pattern to the SO and

SR muscles and eventually insert and cross with each other on the

ventral side of the eye (Figure 4L). The IO muscles originate from

the same central bony prominence as their paired SO muscles

(Figures 4C and 4D). The IR muscle originates from the same

bony plate as the MR and SR just lateral to the medial rectus

origin (Figures 4G, H, I, J).

This slide set reveals that adult zebrafish possess conserved

distinct origin sites for specific EOMs.

1. All four oblique muscles (2 SO and 2 IO) originate from a

singular bony prominence positioned anterior to the other 4

muscles and equidistant from the left and right eye.

2. Both the left and right LR muscles originate from a central

point immediately posterior to the diencephalon.

3. The paired MR, IR, and SR are respectively positioned medial

to lateral at their central origin point. The left and right eye

muscle group origins appear not to overlap significantly with

each other.

High magnification inspection of Figure 4 mosaics reveals a

distribution of myofiber diameter: at the origin and insertion

points, fiber diameter ranges from 3 to 5 microns, while in mid-

muscle, fiber diameters as large as 50–60 microns can be easily

observed. This is nicely illustrated by SR and IO cross-sections in

Figure 4E, F, G, H, I, J, K. The larger diameter myofibers of the

SO, SR, IO, and IR appear to localize to the globe side of each

muscle. For larger versions of the images, please refer to Figures

S1, S2, S3, S4, S5, S6, S7, S8, S9, S10, S11, S12.

Transverse (Frontal) Sections. Using the same methods as

for the coronal/longitudinal section, we evaluated transverse

sections. Throughout figures 5A, B, C, D, E, F, G, H, I, J, the

plane of section is approximately transverse and the ordered

sections proceed rostral (5A) to caudal (5J).

The common origin point of the four oblique muscles (one

inferior and one superior to each eye) is the most rostral (anterior)

anatomical position of the zebrafish EOM anatomy. The four

muscles can be seen medial to the MR, originating from a central

bony prominence, and eventually inserting on the dorsal and

ventral surfaces of the eye as sections proceed more caudally

(Figures 5A,B, C, D, E).

Sections proceeding in the caudal direction reveal the SR and

IR near their dorsal and ventral scleral insertion sites (Figure 5F).

The MR continues to appear in cross section as it courses to its

origin point shared with the SR and IR (Figure 5G). The MR, IR,

and SR are respectively positioned medial to lateral at their shared

origin (Figures 5H and 5I). The MR maintains an inferomedial

position to the optic nerves as they travel superiorly toward the

optic tectum (Figures 5G and 5H).

The most posterior sections of the eye display the LR as wide

fans of muscle fibers running parallel to the plane of section at

their globe insertion sites (Figure 5J). High magnification

inspection of Figure 5 mosaics reveals a gradual progression from

small to large myofiber diameter within the MR and LR (also

observed in SR, SO, IR, and IO – see coronal mosaics). Myofiber

diameter increases gradually from the superior to the inferior side

of both the MR (5E) and LR (5J). For larger versions of the images,

please refer to Figures S13, S14, S15, S16, S17, S18, S19, S20,

S21, S22.

Laminin Distribution via Immunohistochemistry
Laminin is a basement membrane glycoprotein that is

important for muscle function [18,19]. Evaluation of laminin

expression in zebrafish EOMs revealed even distribution through-

out the basement membranes in all 6 EOMs. Expression level did

not appear to vary between large and small diameter myofibers

(Figure 6), and allowed for measuring fiber diameters across

multiple muscles. These measurements revealed that small fiber

diameters are in the 3–5 micron range, while large fiber diameters

are in the 50–60 micron range. Each muscle contained

interdigitating myofibers of different sizes. Additionally, laminin

was localized to the outer edge of bone, and was broadly expressed

in cartilage and EOM tendon at muscle origin sites (Figure 7) as

well as the scleral insertion sites (Figure 8)

Thrombospondin-4 distribution via
immunohistochemistry

Thbs-4 is an extracellular matrix glycoprotein that is associated

with muscle tendon and promotes neurite growth [20,21,22].

Microanatomy of Zebrafish Extraocular Muscles
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Based on experimental observation of Thomas Schilling et al.

(personal communication), we tested the hypothesis that EOM

tendons are enriched with thbs-4. Immunolabelling confirmed that

thbs-4 is a component of zebrafish EOM tendon at muscle origins

(Figure 9). Very low levels of thbs-4 staining can also be observed

at scleral insertion sites, in which the tendon is very attenuated,

and consistent with Jaggi et al. who described human MR and LR

insertions with minimal tendinous connective tissue [23]. Inter-

estingly, Thbs-4 is enriched in basement membranes of the small

diameter myofibers observed in SR and SO at mid-muscle in

transverse sections (Figure 10).

Neuromuscular Junction Distribution, Density, and
Morphology

In order to identify and study the morphology and distribution

of NMJs, we used a-BTX which binds irreversibly to post-synaptic

acetylcholine receptors, and anti-synaptotagmin antibodies (znp1)

to mark presynaptic structures. NMJs appear to be distributed

relatively evenly throughout the body of the MR and LR muscles

(Figure 11), although imaging of the SR and SO near their

tendons (identified by Thbs-4 Ab) suggests increased number of

NMJs near tendons (Figure 10). Post-synaptic density was

evaluated in each of the muscles by determining the combined

Figure 6. Fluorescent immunohistochemistry reveals uniform distribution of laminin throughout mid-muscle myocyte basement
membranes. DIC imaging shows SO cut in mid-muscle cross section sandwiched between the globe and orbital bone with myocyte diameter
increasing in the posterior to anterior direction (A). Laminin (red) is evenly distributed within basement membranes of individual myocytes
throughout the entire muscle in cross section (B). Peripherally located nuclei, characteristic of muscle, are highlighted in blue. The anterior (A) and
posterior (P) directions are noted in Frame B. Images were captured with a 20x objective lens. Red = Laminin; Blue = Nuclei.
doi:10.1371/journal.pone.0027095.g006

Figure 5. Key anatomical features within the WT adult zebrafish orbit are highlighted on 12 m m thick transverse sections originally
imaged at 200X magnification with DIC prisms to reveal topographical tissue architecture. Sections proceed in the rostral (5A) to caudal
(5J) direction and show all 6 muscles extending from origin to globe insertion. Please refer to the text for further details. Specific EOMs can be
observed on the following figures. Superior and inferior oblique (5A–5E). Superior and inferior rectus (5F–5I). Medial rectus (5A–5I). Dorsal (D), ventral
(V), left (L), and right (R) directions are noted on each frame and a schematic illustrating the specific plane of section is located in the lower left corner.
Key features are labeled as follows: C – cornea, D – diencephalon, FB – forebrain, IO – inferior oblique, IR – inferior rectus, LR – lateral rectus, L – lens,
MR – medial rectus, OC – optic chiasm, ON – optic nerve, SO – superior oblique, SR – superior rectus, R – retina. For larger versions of the images,
please refer to supplemental figures 2A-1J.
doi:10.1371/journal.pone.0027095.g005

Microanatomy of Zebrafish Extraocular Muscles
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surface area of a-BTX per mm2 of muscle tissue using ImageJ

software. LR (.0324 mm2 NMJ/1 mm2 muscle) and MR

(.0283 mm2/1 mm2 muscle) revealed a roughly 6 fold greater

post-synaptic density compared to mid-body somitic muscle

(.0061 mm2 NMJ/1 mm2 muscle). We chose to evaluate NMJ

density using synapse surface area vs. total muscle surface area

because the highly variable morphology of NMJs in EOMs

introduces subjectivity when attempting to count individual

junction points. Transverse cross sections of SR and SO indicate

that synaptic density is greatest in the region of small diameter

myofibers that are also enriched for the glycoprotein thbs-4, near

the muscle tendons (Figure 10). Microscopic evaluation of the

appearance of NMJ structures, using specimens that were double-

immunolabeled with a-BTX (post-synaptic) and anti-synaptotag-

min (pre-synaptic) antibodies, suggested the presence of both en

plaque and en grappe synaptic junctions, although there was not a

clear distribution pattern (Figure 12). NMJs were identified based

on their anatomic appearance, with en plaque junctions visualized

as broad synaptic junctions, and en grappe junctions visualized as

‘‘beads/grapes on a string’’ (arrows in Figure 12) [12,13].

Discussion

Comparing the gross and microscopic anatomy of zebrafish and

human EOMs reveals broad anatomic and structural similarities

along with some important differences. The similarities include the

Figure 7. Fluorescent immunohistochemistry highlights laminin localization at the MR, SR, and IR origin site. DIC imaging reveals MR,
SR, and IR from the left and right eye meeting at two common origin points with EOM tendons marked by asterisk (A). Fluorescent overlay shows
laminin (red) evenly distributed throughout basement membranes of individual myocytes from all six muscles. Laminin appears to distribute evenly
throughout EOM tendon and along the edge of bone as well (B). Anterior (A) and posterior (P) directions are noted (Frame A). Image tiles were
captured with a 40x objective lens and merged into mosaics.
doi:10.1371/journal.pone.0027095.g007
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overall organization, i.e. 4 rectus and 2 oblique muscles that insert

on the globe at prototypical locations commensurate with their

function. Comparing EOM insertion on the globe between

embryos and adults revealed that while the overall organization

is stably formed by the larval stage, there are overlapping

insertions of the SO and SR muscles, as well as the IO and IR

muscles. This latter point may be important: in humans, the SO

and SR muscle insertions overlap, and the IO path crosses over

the IR before inserting posterolateral to the IR insertion point.

Hence, the close anatomic relationships of the SO/SR and IO/IR

pairs appear to have been evolutionarily conserved.

Furthermore, key components of EOM microanatomy are

comparable between zebrafish and humans and indicate that there

is significant structural similarity. Laminin is an important

extracellular matrix and basement membrane protein that

influences many biological processes including cell proliferation,

adhesion [24], migration [25], NMJ formation [26], and even

myocyte survival [27,28]. Identical to what has been observed in

human EOM [29], laminin localization in zebrafish EOM

basement membrane is uniform throughout the entire length of

the muscle, does not show preference for any cross sectional

myofiber zone (e.g. OL vs. GL), and envelopes the myotendinous

junctions. The even distribution of laminin in EOM basement

membrane supports its use as a reliable marker for overall muscle

anatomy and myofiber organization. Any observed changes in

laminin expression levels or localization are likely to be due to

actual disruptions in myofiber structure accompanying active

disease or repair processes.

Microscopic evaluation of NMJ morphology in zebrafish EOMs

revealed the presence of both the more common en plaque and the

less common en grappe synapses, in agreement with mammalian

EOM synapses. Assessment of NMJ morphology was based on

appearance rather than molecular markers, and future evaluations

of the NMJs in zebrafish EOMs may provide additional

information. The distribution of NMJs was not uniform, with

higher synaptic densities around muscle origins and in the context

of smaller-diameter myofibers. The synaptic-density gradients we

observed in EOM transverse cross sections likely explains the

discrepancy with longitudinal sections. A more thorough analysis

of synaptic density will require 3D-reconstruction of full thickness

EOMs in order to account for zone specific density differences

within individual muscles.

There are two notable gross anatomical differences between the

zebrafsh and human orbit: zebrafish LR muscles originate

substantially posterior to the other rectus muscles, and the

zebrafish oblique muscles originate together from the anterior

ethmoid plate. The SO does not pass through a trochlea as it does

in humans. Interestingly, the near 90-degree lateral turn of the LR

in the zebrafish allows this muscle to generate a primary tension

vector originating from the general direction of the shared MR/

SR/IR origin, just as LR does in humans. The human SO tension

vector originates from a trochlea on the superomedial side of the

orbit rather than from the muscle origin at the orbital apex.

Considering the lack of a trochlea to modify the direction of action

of the SO in the zebrafish orbit, it is fitting that this muscle does

not originate with the MR, SR, and IR muscles as it does in

humans. The zebrafish SO origin must be positioned separately

from the rectus muscle origins in order to generate a tension vector

similar in direction to that of the human SO.

Notably, the gross anatomic differences between zebrafish and

human EOM organization generally cause little difference in the

role that each muscle plays in the generation of eye movements.

However, three of the four rectus muscles on each side share a

caudal origin, and all the oblique muscles share a rostral origin. As

Figure 8. Fluorescent immunohistochemistry reveals an even distribution of laminin throughout myocyte basement membranes at
the SR/SO and IR/IO insertion sites. DIC images show SR and SO overlapping near their globe insertion site on the superior side of the eye and IR
and IO in a similar arrangement on the inferior side of the eye (A,C). Fluorescent overlays highlight uniform laminin (red) distribution throughout
basement membranes of individual myocytes (B,D). Broader areas of laminin expression surrounding the muscle represent either broad laminin
expression throughout a myotendinous junction or simply myocyte basement membrane cut in perfectly tangential section. Images were captured
with a 20x objective lens.
doi:10.1371/journal.pone.0027095.g008
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Figure 9. Fluorescent immunohistochemistry shows thbs-4 enrichment in EOM origin tendons. Low magnification (20x objective) DIC
image (A) displays pairs of MR, SR, and IR converging at their common origin points with fluorescent thbs-4 (red) overlay (B) and fluorescent/DIC
merged image (C). High magnification (63x) DIC images (D,G) show SR, IR, and MR attaching to bone with MR tendons (*) and IR tendons (arrows)
marked. IR tendons marked with thbs-4 (E,F,H,I) are observed sandwiched at the furthest proximal point of the IR bordered by the MR and SR on
either side. Thbs-4 is expressed in MR tendons (*) at their most proximal point as they insert on bone at their origin.
doi:10.1371/journal.pone.0027095.g009

Figure 10. Fluorescent immunohistochemistry indicates that thrombospondin-4 (thbs-4) localizes to basement membranes of small
diameter EOM myocytes. SR and SO are shown in transverse cross section (A,B – DIC). Thbs-4 (red) localizes to the basement membrane of smaller
diameter myocytes and progressively decreases until becoming absent from large diameter myocyte basement membranes (C,D). Smaller diameter
fibers appear to be more highly innervated as the density of a-BTX labeled NMJs (green) is greatest in the small diameter myocyte, thbs-4 expressing
zone. Images were originally captured with a 40x objective lens and merged together to form mosaics.
doi:10.1371/journal.pone.0027095.g010
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these muscles extend toward the eye and insert on the globe, they

maintain close anatomic relationships to one another. Interesting-

ly, the muscles that have the longest areas of contact with one

another are the ones that are innervated by the oculomotor nerve:

MR, SR, IR and IO. The LR and SO muscles (innervated by the

abducens and trochlear nerves, respectively) make less contact

with the other EOMs. The functional significance of that is

unclear, but evolutionarily this likely reflects a shared embryonic

ancestry, in that the LR and SO originate from paraxial

mesoderm, whereas the other 4 EOMs originate from prechordal

head mesoderm [16].

The organization of human EOM into an outer orbital layer

(OL) and an inner global layer (GL) is generally absent in

zebrafish EOM. Transverse cross sections of all 6 zebrafish

EOMs reveal that large-diameter myofibers are closer to the

globe, while smaller-diameter myofibers are on the orbital side.

However, this likely reflects continuously added myocytes at the

origins and insertion, the result of the life-long growth that is

characteristic of fish. Interestingly, both small and large diameter

myofibers contact both the globe and the orbit in zebrafish. Mid

muscle cross-section of zebrafish EOM reveals extremely thin

muscles (when compared with human EOM) that are a mere 2–3

myocytes thick in the large diameter zone and 5–6 myocytes

thick in the small diameter myofiber zone. The thickest

myofibers of mature fish were found to measure only 50–60

microns in diameter. It is possible that the thin nature of

zebrafish EOM precludes true division between orbital and

global layering.

Thbs-4 is the first identified specific marker for zebrafish EOM

tendons (Thomas Schilling, personal communication). This

Figure 11. NMJ post-synapses labeled with a–BTX (green) reveal even distribution from EOM origin to insertion. DIC images display
full length LR and MR in longitudinal section from origin to insertion (A,C). NMJs (green) labeled with fluorescently conjugated a-BTX are distributed
throughout both muscles from origin to insertion and do not appear to be organized into any particular longitudinal pattern across EOM (C,D). Nuclei
are stained blue with Hoechst nuclear stain throughout. Mosaics were originally captured using a 63x objective lens.
doi:10.1371/journal.pone.0027095.g011
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extracellular matrix glycoprotein is also as a component of small

zebrafish EOM myocyte basement membrane but is absent from

larger diameter myofibers. The progressive decrease in myocyte

diameter across EOM cross sections, combined with the

correlative increase in thbs-4 presence, suggests that thbs-4 may

play a role in muscle growth. We also found that NMJ density is

greatest in the small diameter myofibers that express thbs-4, which

may reflect the reported role of thrombospondin in neurite

development [20].

In summary, despite some important differences, Zebrafish

EOMs generally exhibit significant similarity to human EOMs,

extending from the level of gross anatomy down to the NMJ

structures and the individual glycoprotein components of myocyte

basement membranes. Zebrafish are widely accepted as a powerful

model for the study of mechanisms driving disease processes and

tissue repair. We conclude that the significant degree of

anatomical homology between zebrafish and humans provides

researchers with a powerful tool to study EOM disease and tissue

repair mechanisms in an organism that is well suited to genetic

manipulation.
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Figure S2

Figure S3

Figure S4

Figure S5

Figure S6

Figure S7

Figure S8

Figure S9

Figure S10

Figure S11

Figure S12

Key anatomical features within the WT adult zebrafish
orbit are highlighted on 12 mm thick coronal sections
originally imaged using 200X magnification with DIC
prisms to show topographical tissue architecture.
Sections proceed in the dorsal (S1) to ventral (S12) direction and

show all 6 muscles extending from origin to globe insertion. A

detailed analysis of the anatomy can be found in the Results

section of this paper. For easy reference, specific EOMs can be

observed on the following figures. Superior oblique (S1-S4).

Superior rectus (S1-S10). Inferior Oblique (S3S12). Inferior rectus

(S7-S12). Medial rectus (S5-S10). Lateral rectus (S7-S11). Anterior

(A), posterior (P), left (L), and right (R) directions are noted on each

frame and a schematic illustrating the specific plane of section is

located in the lower left corner.

(TIF)

Figure S13

Figure S14

Figure S15

Figure S16

Figure S17

Figure S18

Figure S19

Figure S20

Figure S21

Figure S22

Key anatomical features within the WT adult zebrafish
orbit are highlighted on 12 mm thick transverse sections
originally imaged using 200X magnification with DIC
prisms to show topographical tissue architecture.
Sections proceed in the rostral (S13) to caudal (S22) direction

and show all 6 muscles extending from origin to globe insertion. A

detailed analysis of the anatomy can be found in the Results

section of this paper. For quick reference, specific EOMs can be

observed on the following figures. Superior and inferior oblique

(S13-S17). Superior and inferior rectus (S18-S21). Medial rectus

(S18-S21). Dorsal (D), ventral (V), left (L), and right (R) directions

are noted on each frame and a schematic illustrating the specific

plane of section is located in the lower left corner.

(TIF)
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Figure 12. Zebrafish EOMs contain both en plaque and en
grappe NMJs. (A) DIC and (B) immunofluorescence (IF) images of NMJs
in longitudinally sectioned EOMs double stained with both pre- and
post-synpatic markers (znp1 and a-BTX), revealing under high-
magnification (C) the presence of both en plaque and en grappe
(arrow) junctions, the former more numerous than the latter. Transverse
sections (IF, D, and DIC, E) also reveal the presence of en grappe
junctions (arrows), with palisading fibers. Red = Synaptotagmin/znp1;
Green = a-BTX.
doi:10.1371/journal.pone.0027095.g012
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