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Abstract

Mariprofundus ferrooxydans PV-1 has provided the first genome of the recently discovered Zetaproteobacteria subdivision.
Genome analysis reveals a complete TCA cycle, the ability to fix CO2, carbon-storage proteins and a sugar
phosphotransferase system (PTS). The latter could facilitate the transport of carbohydrates across the cell membrane
and possibly aid in stalk formation, a matrix composed of exopolymers and/or exopolysaccharides, which is used to store
oxidized iron minerals outside the cell. Two-component signal transduction system genes, including histidine kinases,
GGDEF domain genes, and response regulators containing CheY-like receivers, are abundant and widely distributed across
the genome. Most of these are located in close proximity to genes required for cell division, phosphate uptake and
transport, exopolymer and heavy metal secretion, flagellar biosynthesis and pilus assembly suggesting that these functions
are highly regulated. Similar to many other motile, microaerophilic bacteria, genes encoding aerotaxis as well as antioxidant
functionality (e.g., superoxide dismutases and peroxidases) are predicted to sense and respond to oxygen gradients, as
would be required to maintain cellular redox balance in the specialized habitat where M. ferrooxydans resides. Comparative
genomics with other Fe(II) oxidizing bacteria residing in freshwater and marine environments revealed similar content,
synteny, and amino acid similarity of coding sequences potentially involved in Fe(II) oxidation, signal transduction and
response regulation, oxygen sensation and detoxification, and heavy metal resistance. This study has provided novel
insights into the molecular nature of Zetaproteobacteria.
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Introduction

Zetaproteobacteria
Zetaproteobacteria are proposed as a novel class of Proteobacteria that

were first discovered at iron-rich low temperature hydrothermal

vents of the Loihi Seamount, Hawaii [1]. Biogenically formed

iron oxide mats that cover the seafloor around the seamount

are dominated by Zetaproteobacteria [2]. M. ferrooxydans PV-1 is a

representative of a cluster of related isolates that share in common

the production of an Fe-oxyhydroxide encrusted helical stalk, and

an apparent obligate requirement for ferrous iron (Fe(II)) as an

energy source. 16S diversity of the Zetaproteobacteria class appears to

be high [3], however, all known strains have the ecological and

biogeochemically important trait of Fe(II) oxidation, biomineral

and iron mat formation in common (e.g. [4]). Other related iron-

oxidizing Zetaproteobacteria have been identified using cultivation-

independent techniques at widely distributed sites in deep-sea

environments: these include the Red Sea, the Guaymas basin, the

Cleft segment hydrothermal system off the coast of Oregon, the

Mariana Trench in the Western Pacific, microbial mats from NW

Eifuku Volcano along the Marian Island Arc, the South Tonga

Arc, and the Cleft Segment of the Juan de Fuca Ridge

[1,5,6,7,8,9]. Recently, Zetaproteobacteria have also been found

associated with deep oceanic crustal boreholes in the western

Pacific [10] and coastal environments in the eastern United States

[11]. Despite the apparent global distribution and biogeochemical

importance of the Zetaproteobacteria, there has been no genetic or

biochemical data on this class; the PV-1 genome thus provides the

first molecular insights into potential mechanisms employed by

this group to succeed in the deep ocean.

Mariprofundus ferrooxydans
Cells of M. ferrooxydans are gram-negative, motile curved rods

[1]. During its cell cycle, M. ferrooxydans alternates between a free-
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living, often motile stage, and a stage where cells excrete highly

structured stalks, primarily composed of iron oxyhydroxides and

an organic matrix (Fig. 1) [12]. In the model proposed by [12],

stalks direct iron oxide formation, preventing engulfment of the

cell by solid phase iron minerals by positioning cells in the

dynamic gradients of Fe(II) and O2. As noted above, Fe oxide

filaments similar to those made by PV-1 have been found broadly

in the deep ocean (e.g. Axial Volcano, Juan de Fuca Ridge,

Vailul’u Volcano, and Loihi) [12,13,14].

PV-1 is an obligate chemolithoautotroph that oxidizes reduced

Fe from a variety of substrates at pH 5.5–7.2 (e.g. FeS, FeCO3,

FeCl2, Fe(NH4)2(SO4)2, FeSO4, Fe0). Oxygen serves as the only

electron acceptor and cells are aerotactic [1]. Though Fe(II)

oxidizing bacteria (FeOB) have also been isolated from freshwater

environments, e.g. [2,15,16,17,18,19,20,21,22,23,24], little is

known about the molecular basis of Fe(II) oxidation: to date most

genetic and biochemical studies have been conducted on the

acidophilic bacterium Acidithiobacillus ferrooxidans [25], and the

anoxygenic photosynthetic organisms Rhodobacter sp. strain

SW2002 [26], and Rhodopseudomonas palustris [27]. These studies

have led to the discovery of various proteins that are implicated in

the enzymatic oxidation of Fe(II), however, proteins with an active

role in microaerophilic Fe(II) oxidation by chemolithoautrophic

bacteria at circumneutral pH have not been identified to date.

We have conducted a functional annotation of the genome of

Mariprofundus ferrooxydans PV-1 with the aim of gaining insights into

its phylogeny, physiology, and biochemistry. Comparative geno-

mic analyses including genomes from other FeOB were used to

define genomic commonalities between these phylogenetically and

ecologically distinct neutrophilic Fe(II) oxidizing bacteria.

Results and Discussion

Phylogenetic context
A previous phylogenetic analysis based on comparisons of the

16S rRNA gene, as well as GyrB and RecA proteins indicated that

M. ferrooxydans did not belong to any of the recognized classes of

Proteobacteria (Fig. S1) [1]. Analysis based on an amino acid

sequence tree of ten concatenated conserved proteins (Fig. 2)

supports these previous analyses and further demonstrates that

PV-1 belongs to a new class within the Proteobacteria.

General genome organization and content
The Mariprofundus ferrooxydans PV-1 draft genome sequence

consists of 32 scaffolds. It comprises 2,867,087 bp with an average

G+C content of 54% and has 2,866 protein coding sequences

(CDSs). A mathematical model by [28] of the draft predicts

the genome to include ,98.5% of all CDSs, thus implying only

,44 genes are missing. PV-1 carries 6 phage integrases and 21

transposases. The transposases are distributed relatively evenly

across the genome scaffolds and are typically located next to genes

with higher or lower G+C content compared to the genome

average, required for signal transduction mechanisms, posttrans-

lational modification, and cell motility, suggesting that some of the

genes encoding these functions were obtained via lateral gene

transfer (LGT).

One phage gene cluster consists of 32 CDSs and is flanked by a

transposase (SPV1_02953) and three hypothetical proteins located

upstream (Fig. S2). The G+C content varies between 48%–60%

across the gene cluster, with 19 genes at 2–10 higher G+C% and 7

genes at 2–10 lower G+C%. The phage gene clusters with most

significant nucleotide sequence alignment scores across the entire

cluster of all 32 genes are found in Pseudomonas phage MP29 (30%

NAID), Bacteriophage D3112 (29% NAID), and Sideroxydans

lithotrophicus ES-1 (24% NAID) indicating potential LGT events

between these organisms. Considering the similarity of prophage

sequences between PV-1 and ES-1, this prophage region may have

provided a selective advantage to neutrophilic FeOB.

Metabolic processes
Carbon acquisition and storage. M. ferrooxydans is capable

of growth in a mineral salts medium with Fe(II) as an energy

source and CO2 as a carbon source [1]. The genome contains two

sets of ribulose bisphosphate carboxylase (RuBisCo) genes,

including the large and small subunit Form IAq RuBisCo

(SPV1_12797, SPV1_12802) and a Form II RuBisCo

(SPV1_04963). Both, Form I and Form II RuBisCo genes are

located in typical gene clusters containing the two RuBisCo

activation proteins CbbQ (SPV1_12807, SPV1_04958) and CbbO

(SPV1_12812, SPV1_04953). Form IAq RuBisCo appears

predominantly in obligate chemolithotrophs and functions best

in niches with medium to low CO2 concentrations (0.1–1%) and

O2 present [29]. Form IAq RuBisCo is not associated with

carboxysomes and carbon concentrating mechanisms [29],

however, it is not clear if that necessarily implies that organisms,

which solely contain form IAq RuBisCo, are not capable of

building carboxysomes. Form II RuBisCo proteins have a low

discrimination threshold against O2 as an alternative substrate,

poor affinity for CO2, and therefore potentially take over when the

organism moves to a high-CO2 (.1.5%) and low-O2 environment

[29]. It has been suggested that Form II RuBisCo may be a more

ancient type of enzyme and Form I RuBisCo therefore an

aerotolerant descendant [30]. Proteobacteria that encode both Form

I and II RubBisCo proteins include purple non-sulfur bacteria

and certain chemoautotrophic bacteria; most of these organisms

appear to be predominantly facultative anaerobes that are

metabolically versatile and globally distributed [31,32,33]. At the

Loihi Seamount, temperature differences between bottom water

(4uC) and hydrothermal efflux (55uC) may create turbulent eddies

in the water column, which would expose cells to oscillating

anaerobic and microaerobic conditions, where CO2 levels are

variable (ranging from 2 mM to 20 mM) and dependent on

Figure 1. PV-1 cultures. Left: the bottle on the right contains a PV-1
culture in log phase showing orange biological iron oxide precipitates,
the left bottle contains the uninoculated control; right: Transmission
Electron Microscopy (TEM) picture of a PV-1 cell with twisted stalk made
of iron oxides and organic matrix.
doi:10.1371/journal.pone.0025386.g001

Mariprofundus ferrooxydans PV-1
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positioning within the chemocline interface [29,34]. Utilization of

Form I and II RuBisCo proteins could thus enable PV-1 to

optimize the acquisition of carbon under a wider range of CO2

and O2 concentrations in this dynamic system.

PV-1 also has three carbonic anhydrase-encoding genes

(SPV1_01467, SPV1_09083, SPV1_07931) predicted to function

in the rapid conversion of CO2 to bicarbonate (typically ,106

reactions per second) [35]. Two gene homologs to cmpB

(SPV1_06134) and cmpC (SPV1_06129), which were shown to

function in an operon (cmpABCD) encoding for bicarbonate uptake

in Synechococcus sp. strain PCC 7942 [36], are located on a large

gene cluster (20 genes), which includes a predicted urea

carboxylase (SPV1_06124). Urea carboxylase is known to catalyze

the conversion of ATP, urea, and bicarbonate to ADP, phosphate,

and urea-1-carboxylate. CmpB, cmpC, and urea carboxylase

could be part of a carbon-concentrating mechanism (CCM),

although neither ccmKLMNOP, chpXY nor cmpABCD operons are

observed and no carboxysomes have ever been observed by TEM

(Chan, unpublished data). The range of inorganic and organic

carbon substrates appears to be rather narrow for M. ferrooxydans

[1], however PV-1 possesses a predicted operon (SPV1_t10271,

SPV1_10194, SPV1_10199, SPV1_10204, SPV1_10209,

SPV1_10214, SPV1_10219, SPV1_10224, SPV1_10229,

SPV1_10234, SPV1_, SPV1_10239) encoding for a phosphoeno-

Figure 2. Phylogenetic placement of PV-1. Maximum-likelihood tree of ten proteins considered evolutionarily conserved: FusA, GyrB, IleS, LepA,
LeuS, PyrG, RecA, RecG, RplB, RpoB [72]. Mariprofundus ferrooxydans PV-1 branches out as a distinct class within the Proteobacteria and appears most
closely related to the Magnetococci subdivision, which only comprises one sequenced genome, Magnetococcus sp. MC-1, to date.
doi:10.1371/journal.pone.0025386.g002

Mariprofundus ferrooxydans PV-1
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lypyruvate-dependent sugar phosphotransferase system (PTS),

which is the major carbohydrate transport system in bacteria

[37]. The PTS enzyme II is a fructose/mannose-specific

transporter in PV-1 (SPV1_10229). Fructose metabolism requires

1-P-phosphofructokinase [38], which appears to be missing in the

PV-1 genome, however, imported mannose-6-phosphate could be

converted by manA (SPV1_07961) to fructose-6-phosphate, which

may then enter glycolysis I. This raises the possibility that carbon

could be acquired in the form of carbohydrates from the

environment, which would allow PV-1 to grow mixotrophically,

although such behavior has not yet been observed in previous

experiments, but was also not tested for fructose or mannose

[1,37]. Mannose may otherwise be used in glycoproteins and

glycolipids, e.g. proteins that extend into the extracellular space,

such as are required during stalk formation, and integral

membrane proteins.

The genome of M. ferrooxydans shows the organism’s potential

ability to acquire and potentially store carbon from various sources

as well as genomic evolution to the highly dynamic hydrothermal

vent environment at Loihi. It remains to be experimentally tested

if PV-1 solely utilizes imported carbohydrates for membrane and/

or stalk synthesis or if this organism is in fact a mixotroph. The

latter would imply that the organism could acquire carbon even

when CO2 fixation is not possible in the niche it resides, and

thereby enhance its chance of survival although carbon storage

does not appear to be encoded in the genome.

Energy acquisition: Aerobic Fe(II) oxidation at neutral pH
Microaerophily. The aerobic oxidation of Fe(II) requires

M. ferrooxydans to live at the anoxic-oxic interface where it can

outcompete the abiotic oxidation of Fe(II) [39], thus PV-1 should be

adapted to capture oxygen at very low concentrations. Additionally,

in oxic environments Fe(II) may react with hydrogen peroxide that

is generated through oxidative processes, to form highly reactive

oxygen species (ROS) via Fenton chemistry [40]. Since ROS have

the potential to cause oxidative damage to DNA, RNA, and

proteins, bacteria require defense mechanisms to convert these

compounds into oxygen and water. The PV-1 genome contains a

cytochrome cbb3 oxidase regulon (ccoNOP) (SPV1_10291,

SPV1_10301, SPV1_10306). CcoQ does not appear to be

encoded, however, lack of this gene was shown to have no

apparent effect upon the assembly or activity of cytochrome cbb3

oxidase [41]. Cbb3-type cytochromes are members of the heme-

copper oxidase superfamily that have the highest affinity for O2

among all cytochrome oxidases involved in microaerobic

respiration [42,43]. Substrate affinities have been measured in

very few organisms so far, however, the high degree of sequence

conservation of the catalytic subunit CcoN in cbb3-type cytochrome

oxidases and the exclusive bacterial gene expression patterns under

microaerophilic conditions suggests that cytochrome cbb3-type share

oxygen affinities in M. ferrooxydans that are likely to be similar to such

measured in other microaerophilic microorganisms [43].

In addition, there are two distinct cytochrome bd quinol

oxidases (SPV1_03663, SPV1_03668) in the genome. These

enzymes are distinct from heme-copper terminal oxidases and

can function as oxidases and O2-scavengers [44] with Km values

for O2 in the range of 3–8 nM reported for E. coli [45].

Cytochrome bd may also help to mitigate oxidative stress by

protecting cells from reactive oxygen species [44]. The expression

of these genes could allow growth in oxygen limited habitats, such

as is required in the reducing environment of the Loihi

hydrothermal vents.

Protection against free oxygen radicals inside the cell is provided

in part by a superoxide dismutase (SPV1_10466), several

peroxidases (SPV1_03628, SPV1_11291, SPV1_13092), and alkyl

hydroperoxide reductases (SPV1_06464, SPV1_08671), which

also encode for predicted antioxidant response. Interestingly,

genes encoding catalase and glutathione reductase that are present

in nearly all organisms that are exposed to oxygen, including

microaerophiles, such as S. lithotrophicus, were not found in the PV-

1 genome [46]. While catalase produces H2O and O2 during the

breakdown of H2O2, peroxidase requires NADH, but only

produces H2O. The use of several peroxidases may therefore also

be favored over that of catalase and superoxide dismutase because

peroxidase reactions do not yield O2, which - when released to the

environment - could affect the sensitive redox balance of iron and

exacerbate microaerophilic Fe(II) oxidation. The suite of genes

involved in respiration under microaerobic conditions as well as

oxygen radical defense display how performance in a low oxygen

environment is supported in the genome.

Fe(II) oxidation model. All current models for microbial

Fe(II) oxidation and reduction involve the coupling of electron

transfer to iron in the cytoplasmic membrane, so that insoluble

minerals precipitate outside the cell. In the case of Fe(III)

reduction, this concept is referred to as extracellular electron

transfer [47] and several key genes have been identified in

Shewanella oneidensis and Geobacter sulfurreducens [48,49]. Similarly,

there have been various key genes identified as relevant for Fe(II)

oxidation. These include the pio and fox operon in the

phototrophic organisms Rhodobacter sp. strain SW2 and R.

palustris, respectively [27], and iro, cyc1, cyc2, cox genes and

rus in the acidophilic A. ferrooxidans [25,50]. The diversity of

environmental conditions, under which microbial Fe(II) oxidation

and ferric iron (Fe(III)) reduction may be performed, gives rise to

diverse physiological mechanisms, biochemical pathways, and

gene families involved in this process. Conservation of gene

families between different microbial groups involved in Fe(II)

oxidation and Fe(III) reduction is absent in most cases, however,

few homologs with variable - generally low - sequence identities

among key genes are observed [51]. The PV-1 genome harbors

more than 70 genes required for electron transport (identified with

Pfam domains). Most redox carriers belong to the cytochrome

family, however, there are no gene homologs to the above

mentioned iron redox genes in the PV-1 genome.

Heme-containing cytochromes with peroxidase activity were

shown to be specifically expressed during Fe(II) oxidation in

various organisms [26,27,50]. A protein significantly expressed in

PV-1 cells oxidizing Fe(II) was extracted and identified as

molybdopterin oxidoreductase Fe4S4 region (SPV1_03948). Pro-

tein topology prediction indicates a location of the encoded

protein outside either membrane, possibly within the periplasm

(Fig. S3). The gene neighborhood includes a cluster of 17 CDSs

together with other cytochrome, succinate dehydrogenase, and

ferredoxin encoding genes (Fig. 3A). Orthologous gene neighbor-

hood comparison suggest most conserved gene content and

synteny occurs with G. capsiferriformans and S. lithotrophicus, and to

a lesser extent in Geobacter uraniumreducens, Geobacter metallireducens,

and Geobacter sp. (Fig. 3B).

Molybdenum functions as a redox-active center, constituting a

pterin cofactor in various enzymes involved in catalyzing oxygen

atom transfer reactions to or from an electron donating/accepting

substrate. Some of these enzymes facilitate the first step in redox

reactions, (e.g. sulfite oxidase and assimilatory nitrate reductase),

whereas other enzymes function as terminal respiratory oxidases,

(e.g. DMSO reductase and biotin-S-oxide reductase) [52]. Electron

transfer pathways proposed to specifically involve a molybdopterin

oxidoreductase, include H2 oxidation during sulfate reduction [53]

and the alternative complex III respiratory system [54]. Consid-

Mariprofundus ferrooxydans PV-1
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ering these examples and the protein isolation results (Barco et al.,

in prep.), molybdopterin oxidoreductase and genes located in the

same potential operon may play a significant role in the electron

transport during Fe(II) oxidation.

We propose an Fe(II) oxidation model as shown in Fig. 4A. The

conversion of Fe(II) to Fe(III) may be catalyzed by an iron oxidase

located in the outer membrane that is closely associated with a

molybdopterin oxidoreductase Fe-S region located in the peri-

plasm. The enzyme accepts electrons from ferrous iron and passes

them on to an electron transport chain consisting of several oxygen

sensitive cytochromes, which are predicted to be essential in the

microaerobic environment PV-1 inhabits. Since the electrons

obtained from the oxidation of Fe(II) with O2 are low potential

electrons, reverse electron transport and the concurrent consump-

tion of proton motive force are required for NADH synthesis.

Energy storage and life cycle. PV-1 exhibits a cell cycle

from free-living motile cells to attached, stalk producing cells,

which attach to substrates (glass surfaces, other Fe oxides, etc.),

and produce Fe oxyhydroxides (Fig. 4C; also see [12]). Cells often

undergo division and stalk bifurcation prior to detaching from

attached substrate, when single cells enter a free living, motile

stage. Motile cells are unattached to stalks and do not appear to

oxidize Fe(II). During this motile phase cells are presumably using

stored energy, like other obligate chemolithoautotrophic and

photolithoautotrophic bacteria [55,56], and may ferment stored

organic compounds under anaerobic conditions to obtain ATP

[56,57].

Neither carboxysomes, nor poly-b-hydroxybutyric acid subcel-

lular bodies have been identified in cells [58], and no genes

(ccmKLMNOP, chpXY, cmpABCD) encoding carbon-concentrating

mechanisms were identified in the genome. However, two genes

encode glycogen/starch synthesis proteins (SPV1_03773,

SPV1_01897) and glycogen and starch hydrolysis, i.e. usage of

stored polysaccharides, are encoded by several amylases

(SPV1_09118, SPV1_09123, SPV1_05592).

Polyphosphate (poly P) has previously been proven to serve as

energy and/or phosphate reservoir in Thiobacillus strain Q and

Accumulibacter phosphatis [55,59,60]. Candidate genes involved in

poly P synthesis were identified and poly P bodies were observed in

PV-1 (Fig. 5). Several metabolic models for the use of poly P have

been proposed, the consensus of which describes the uptake of

inorganic phosphate (Pi) via either low or high affinity Pi

transporters (e.g. SPV1_07119, SPV1_07314, SPV1_07139) and

conversion into poly P via ATP during conditions of carbon and

energy excess in an aerobic environment [59]. Under anaerobic

conditions, when the organism is in need of energy for the uptake

of volatile fatty acids (VFAs), such as acetate and propionate that

are stored as polyhydroxyalkanoates (PHAs), the phosphodiester

Figure 3. Iron oxidation candidate genes. A) Gene neighborhood of the extracted molybdopterin oxidoreductase protein (scaffold 1). Unlabeled
genes are annotated as ‘‘hypothetical protein’’. Putative functions of orange labeled genes were acquired via BLASTP search. B) Most similar
orthologous neighborhoods were found in genomes from other metal oxidizing and reducing organisms in various Proteobacteria subdivisions. Most
PV-1 genes within the red box (underlined) contain transmembrane helices indicating a location in either the inner or outer membrane and a
potential role in electron transfer across membranes during Fe(II) oxidation. Coloring in A) and B) follows COG classification: blue = energy production
and conversion; red: carbohydrate transport and metabolism; purple = general function prediction only; light green = posttranslational modification;
rose = cell motility; grey = signal transduction mechanisms; orange = cell wall/membrane/envelope biogenesis; pink = inorganic ion transport and
metabolism; dark green = coenzyme transport and metabolism. Source: IMG.
doi:10.1371/journal.pone.0025386.g003

Mariprofundus ferrooxydans PV-1
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bonds of the stored poly P are broken [59]. Enzymes shown to be

involved in the degradation of poly P are polyphosphate:AMP

phosphotransferase (SPV1_08276), which catalyzes the phosphor-

ylation of AMP to ADP, and polyphosphate kinase (PPK)

(SPV1_07169), which catalyzes ATP formation from ADP thereby

enabling the use of poly P as energy source. Poly P may also be

degraded into Pi for ATP production via V- and F-type ATPases

(e.g. SPV1_13804, SPV1_13814, SPV1_13824) [59]. The source

of the reducing power (NAD(P)H) required for PHA production

may originate in the reverse electron transport chain through a

bc1 and NADH-Q oxidoreductase complex (e.g. SPV1_03858,

SPV1_03863, SPV1_13739, SPV1_13744), as shown in Thiobacil-

lus ferrooxidans [61]. Since the genome of PV-1 appears to encode

for a complete set of genes required for the uptake and conversion

of poly P to ATP, there is strong indication that the organism may

use poly P as energy source as well as phosphate reserve during

anaerobic conditions.

Regulation and Signaling
M. ferrooxydans thrives best at low oxygen and high Fe(II)

concentrations, however, the hydrothermal vent environment at

Loihi is chemically heterogeneous and highly dynamic [34]. The

organism therefore requires a chemotactic system that allows rapid

sensation, signal transduction, and cell response in order to ensure

flexibility and survival under suboptimal conditions. 9.35% of all

CDSs in PV-1 are predicted to encode regulatory and signaling

proteins, dominated by histidine kinases (43 CDSs) with various

function domains, including PAS/PAC sensors, GGDEF/EAL,

and multisensors. Other abundant functional genes include

diguanylate cyclases (15), sensory box proteins (9), and (two-

component) transcriptional regulators (19). In comparison, among

other known neutrophilic Fe(II) oxidizers, regulatory and signa-

ling genes comprise 10.61% (G. capsiferriformans) to 12.61% (S.

lithotrophicus) of all CDSs, very similar to PV-1. In Thiomicrospira

crunogena XCL-2, a sulfide oxidizer known to inhabit hydrothermal

vents, 9.5% of all CDSs fulfill these functions, similar to strain

PV-1. The primary role of PAS/PAC domains is the sensing of

oxygen, redox, small ligand and overall cell energy level by

binding redox or oxygen-sensitive ligands, such as heme and FAD

in the cytosol [62]. PAS domains are understood to provide

enhanced flexibility in adapting to complex redox environments

[62]. EAL/GGDEF domain proteins catalyze the hydrolysis and

the synthesis of cyclic diguanylate, an important intracellular

signaling molecule, which in some species dictates the switch

between attached and planktonic lifestyle via initiation of flagellar

degradation and stalk formation [63]. All of these protein domains

may provide an advantage when PV-1 detaches from its stalk and

enters a stalk-free phase until it initiates Fe(II) oxidation and stalk

Figure 4. Conceptual iron oxidation model in relation to the life cycle in M. ferrooxydans PV-1. A: Proteins potentially involved in the
energy acquisition via Fe(II) oxidation through the outer and inner membrane as predicted from genomic analysis. The ‘‘Mob gene’’, possibly located
in the periplasm, represents the experimentally identified molybdopterin oxidoreductase Fe4-S4 region (SPV1_03948), which was extracted under iron
oxidizing conditions as mentioned earlier. Its function may include the shuttling of electrons between outer and inner membrane. B: Biologically
formed iron oxides are stored in the stalk of PV-1 as edge-sharing Fe-O6 octahedral linkages as previously described in [76]. As the cell performs Fe(II)
oxidation, it rotates, which results in a twisted, coiled stalk. C: Schematic of the life cycle in PV-1. The cell moves in the environment until it identifies
conditions suitable for Fe(II) oxidation. The flagella are discarded and stalk growth initiated. As the cell divides, the stalk becomes bifurcated, and
each cell continues to form a stalk that is initially half the width as observed by [12]. When O2 concentrations exceed the maximum tolerable by PV-1,
the cell detaches from the stalk and forms flagella to move to a better-suited niche, where the life cycle starts over.
doi:10.1371/journal.pone.0025386.g004
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formation in a better suited redox environment. Interestingly, the

PV-1 genome draft harbors very few methyl-accepting chemotaxis

protein-encoding (MCP) genes compared to other Fe(II) oxidizers

as well as hydrothermal vent inhabiting organisms. There are only

three CheY-like receiver proteins and one CheW protein. The

family of MCP genes mediates chemotaxis to diverse signals,

responding to changes in the concentration of attractants and

repellents in the environment by altering swimming behavior.

Each MCP is specific to a particular nutrient or toxin [64],

therefore PV-1 may not require a large suite of MCPs if it follows a

simple autotrophic lifestyle. There is also a full complement of

flagellar genes (SPV1_01957-1967, SPV1_05769, SPV1_05579-

05784, SPV1_07696-07701, SPV1_13924, SPV1_13954-13979)

in the genome, which is consistent with the observation that PV-1

has a motile cell cycle stage (Fig. 4C). The mechanism by which it

coordinates motility in response to chemical gradients remains to

be biochemically established.

Conclusions
Genome analysis of M. ferrooxydans PV-1 revealed first insights

into the Zetaproteobacteria and disclosed candidate genes involved in

inorganic and organic carbon acquisition, oxygen scavenging and

defense, energy acquisition in the form of poly P, chemotaxis, and

neutrophilic Fe(II) oxidation. The relative abundance of regulatory

and signaling protein-encoding genes in PV-1 may be a reflection

of the temporal and spatial heterogeneity of its hydrothermal vent

habitat as previously described for the genome of T. crunogena

XLC-2 [64]. The genomic potential predicting ability and tight

regulation of mixotrophic growth, CO2 fixation under a variety of

CO2/O2 concentration ratios and energy storage in phosphates as

predicted from genomic potential show previously unknown

degrees of flexibility that PV-1 may use to adapt to rapid redox

chemistry changes at Loihi. Genes that have a potential role in

Fe(II) oxidation show closest resemblance in gene content and

synteny to organisms known to perform metal redox processes. M.

ferrooxydans may be thus used as a model organism for future studies

on neutrophilic, microaerophilic Fe(II) oxidation, which should

address experimental verification of the suite of genes required for

the enzymatically catalyzed conversion of Fe(II) to Fe(III).

Despite apparent genomic parallels to other FeOB from various

Proteobacteria classes, relatively low amino acid sequence similarities

between PV-1 and other Proteobacteria limit the ability to evaluate

the evolutionary history of this organism’s genome. The

completion of this genome would allow more meaningful

comparative genomics, verify or disprove speculations about

missing functional genes, and provide insights into events in

genome evolution, e.g. gene duplication and loss. Sequencing of

additional Zetaproteobacteria strains will be useful to understand the

metabolic and phylogenetic diversity within this recently discov-

ered class and to examine the degree, to which the genomic

potential is responsible for its dominance at the Loihi Seamount

and possibly in other environments.

Materials and Methods

Organism and DNA preparation
Mariprofundus ferrooxydans PV-1 was isolated form an iron mat

collected in 1996 associated with a cool (23uC), diffuse vent site at

a depth of 1325 m at Loihi Seamounts described previously [65].

For DNA preparation, PV-1 was grown microaerobically on

gradient plates. These petri plates contain 15 ml of artificial

seawater medium overlaying an agarose/FeS layer that provides

an iron source. Incubation was performed in a gas tight jar with a

BBL CampypakTM (www.bd.com) that generates a microaerobic

atmosphere [66]. Approximately 500 ml of late-log phase culture

was concentrated by centrifugation and the pellet containing cells

and Fe oxides was extracted for DNA using a MoBio PowerSoil

DNA isolation kit (Mo Bio Laboratories, Carlsbad, CA), which

yielded approximately 15 mg of good quality DNA.

Genomic sequencing
Sequencing of the PV-1 genome was carried out at the J. Craig

Venter Science Institute Joint Technology Center using conven-

tional whole-genome shotgun sequencing. Two genomic libraries

with insert sizes of 4 and 40 kb were made as described in [67],

and resulted in 23,314 reads with an average read length of

951.13 bp at 7.61X coverage. Assembly of quality reads was done

using the Celera Assembler [68]. The drafted genome sequence of

Mariprofundus ferrooxydans PV-1 is available in a total of 32 gene

scaffolds, which are available under GenBank accession numbers

NZ_AATS01000001-AATS01000032.

Sequence analysis and annotation
The DNA sequence was submitted to the JCVI Annotation

Service and processed through JCVI’s prokaryotic annotation

pipeline. Included in the pipeline is gene finding with GLIMMER,

Blast-extend-repraze (BER) searches, HMM searches, TMHMM

searches, SignalP predictions, and automatic annotations from

AutoAnnotate (www.jcvi.org/cms/research/projects/annotation-

service/overview). Functional assignment, identification of mem-

brane-spanning domains, determination of paralogous gene

families, and identification of regions of unusual nucleotide

composition were done as described [69]. Phylogenomic analysis

Figure 5. Cryo-TEM image of a M. ferrooxydans cell showing two
polyphosphate bodies. Identification of polyphosphate bodies is
based on electron density, electron dose tolerance, and shape as
previously characterized by [58], who correlated these features to P
electron spectroscopic imaging. Small dots on lacey carbon are 10 nm
gold particles added to the sample.
doi:10.1371/journal.pone.0025386.g005
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was used to aid in functional predictions and alignments;

phylogenetic trees were generated as described [69]. The

annotated genome was submitted to the National Center for

Biotechnology Information GenBank non-redundant database

(NR) and the Integrated Microbial Genomes (IMG) database [70].

Identification of genes
Genes involved in all addressed metabolic pathways were taken

from the databases of Integrated Microbial Genomes (IMG,

Version 3.3 February 2011; US Department of Energy Joint

Genome Institute, supported by the DOE Office of Science).

Manual annotation for final gene function assignments was

performed using top gene homolog hits, which are based on

pre-computed BLAST data from all IMG genomes and were

identified on the basis of unidirectional and reciprocal hits with an

e-value below 1022. Functional gene groups were identified using

cluster of orthologous group (COG) assignments and Pfam hidden

Markov models provided by IMG. Alignments and phylogenetic

determinations were performed using Geneious (Geneious Pro

4.8+; copyright � 2005–2010 Biomatters Ltd.) [71]. Universally

conserved genes listed in [72] were concatenated in random order

and aligned using the MAFFT Auto algorithm with a BLOSUM

scoring matrix [73]. The phylogenetic tree was constructed with

the PHYML algorithm using the JTT substitution model.

Characterization of orthologous neighborhoods was conducted

by searching for neighborhoods of roughly same sized orthologs

(top COG hit) in all IMG genomes.

Cryo-TEM sample preparation and analysis
M. ferrooxydans cells were cultured in petri plates for 1 day,

mounted on a lacey carbon coated grid. The sample was blotted

with filter paper, immediately plunge frozen in liquid ethane and

stored in liquid nitrogen until analysis on a JEOL–3100 electron

microscope equipped with a FEG electron source operating at

300 kV, an Omega energy filter, a Gatan 795 2Kx2K CCD

camera, and cryo-transfer stage.

Protein extraction
M. ferrooxydans cells were cultured microaerobically in liquid

medium, which provided Fe(II) oxidizing conditions, as described

in [66]. Proteins were extracted from an Fe(II) oxidizing PV-1 cell

via a sodium dodecyl sulfate-polyacrylamide gel electrophoresis

(SDS-PAGE) peptide analysis and heme staining as described in

[74,75]. The protein mentioned in this study, identified as

molybdopterin oxidoreductase Fe4-S4 region, was found to be

highly expressed under Fe(II) oxidizing conditions and yielded a

strong band on the SDS-PAGE gel.

Supporting Information

Figure S1 Maximum-likelihood phylogenetic tree showing the

evolutionary placement of various strains of Mariprofundus

ferrooxydans in the Zetaproteobacteria on the basis of 16S rDNA

(reprinted from [1] with permission of the publisher).

(TIF)

Figure S2 Prophage gene cluster consisting of 32 CDSs on

genome scaffold 21. Coloring is based on COG functionality:

red = function unknown; purple = general function prediction

only. Predicted functions of non-hypothetical genes are labeled

respectively. BLASTP search revealed most significant alignment

to gene clusters in S. lithotrophicus ES-1, Pseudomonas phage MP29,

and Bacteriophage D3112.

(TIF)

Figure S3 Protein topology prediction of molydopterin oxido-

reductase Fe4S4 region (SPV1_03948). Most of the amino acids

are predicted to be hydrophilic and therefore located outside the

membranes, possibly within the periplasm. The predicted signal

peptide may help to transport this protein across membranes.

(TIF)

Acknowledgments

The authors thank the insights and contributions from discussion with

Craig Moyer, Brad Tebo, and Jim Hemp.

Author Contributions

Conceived and designed the experiments: ES DE RAB CSC LRC SF JJ.

Performed the experiments: ES DE RAB CSC LRC SF JJ. Analyzed the

data: ES DE EAW RAB JGK WCN CSC LRC SF JJ JFH KJE.

Contributed reagents/materials/analysis tools: WCN JFH KJE. Wrote the

paper: ES DE EAW JFH KJE.

References

1. Emerson D, Rentz JA, Lilburn TG, Davis RE, Aldrich H, et al. (2007) A Novel

Lineage of Proteobacteria Involved in Formation of Marine Fe-Oxidizing

Microbial Mat Communities. PLoS ONE 8: 1–9.

2. Emerson D, Moyer CL (2010) Microbiology of Seamounts. Oceanography 23:

148–163.

3. Rassa A, McAllister S, Safran S, Moyer CL (2009) Zeta-Proteobacteria Dominate the

Colonization and Formation of Microbial Mats in Low-Temperature Hydrother-

mal Vents at Loihi Seamount, Hawaii. Geomicrobiology Journal 26: 623–638.

4. Edwards KJ, Glazer BT, Rouxel OJ, Bach W, Emerson D, et al. (2011) Ultra-

Diffuse Hydrothermal Venting Supports Fe-Oxidizing Bacteria and Massive

Umber Deposition at 5000 m Off Hawaii. The ISME Journal.

5. Forget NL, Murdock SA, Juniper SK (2010) Bacterial Diversity in Fe-Rich

Hydrothermal Sediments at Two South Tonga Arc Submarine Volcanoes.

Geobiology 8: 417–432.

6. Davis R, Carney T, Leal K, Moyer CL (2005) Spatial and Temporal Variability

in Microbial Communities from Pre-and Post-Eruption Microbial Mats

Collected from Loihi Seamount, Hawaii. AGU Fall Meeting. San Francisco.

7. Dhillon A, Teske A, Dillon J, Stahl D, Sogin ML (2003) Molecular

Characterization of Sulfate-Reducing Bacteria in the Guaymas Basin. Applied

and Environmental Microbiology 69: 2765–2772.

8. Eder W, Jahnke L, Schmidt M, Huber R (2001) Microbial Diversity of the

Brine-Seawater Interface of the Kebrit Deep, Red Sea, Studied Via 16S rRna

Gene Sequences and Cultivation Methods. Applied and Environmental

Microbiology 67: 3077–3085.

9. Jannasch HW, Mottl MJ (1985) Geomicrobiology of Deep-Sea Hydrothermal

Vents. Science 229: 717–725.

10. Kato S, Yanagawa K, Sunamura M, Takano Y, Ishibashi J, et al. (2009) Abundance

of Zetaproteobacteria within Crustal Fluids in Back-Arc Hydrothermal Fields of the

Southern Mariana Trough. Environmental Microbiology 11: 3210–3222.

11. McBeth JM, Little BJ, Ray RI, Farrar KM, Emerson D (2011) Neutrophilic

Iron-Oxidizing ‘‘Zetaproteobacteria’’ And Mild Steel Corrosion in Nearshore

Marine Environments. Applied and Environmental Microbiology 77:

1405–1412.

12. Chan CS, Fakra SC, Emerson D, Fleming EJ, Edwards KJ (2010) Lithotrophic

Iron-Oxidizing Bacteria Produce Organic Stalks to Control Mineral Growth:

Implications for Biosignature Formation. The ISME Journal. pp 1–11.

13. Kennedy C, Scott S, Ferris F (2003) Characterization of Bacteriogenic Iron

Oxide Deposits from Axial Volcano, Juan De Fuca Ridge, Northeast Pacific

Ocean. Geomicrobiology Journal 20: 199–214.

14. Staudigel H, Hart S, Pile A, Bailey B, Baker E, et al. (2006) Vailulu’u Seamount,

Samoa: Life and Death on Active Submarine Volcano. PNAS 103: 6448–6453.

15. Ehrenreich A, Widdel F (1994) Anaerobix Oxidation of Ferrous Iron by Purple

Bacteria, a New Type of Phototrophic Metabolism. Applied and Environmental

Microbiology 60: 4517–4526.

16. Emerson D, Moyer C (1997) Isolation and Characterization of Novel Iron-

Oxidizing Bacteria That Grow at Circumneutral Ph. Applied and Environ-

mental Microbiology 63: 4784–4792.

17. Guay R, Silver M, Torma A (1977) Ferrous Iron Oxidation and Uranium

Extraction by Thiobacillus Ferrooxidans. Biotechnology and Bioengineering 14:

727–740.

18. Heising S, Richter L, Ludwig W, Schink B (1999) Chlorobium Ferrooxidans sp. nov.,

a Phototrophic Green Sulfur Bacterium That Oxidizes Ferrous Iron in

Mariprofundus ferrooxydans PV-1

PLoS ONE | www.plosone.org 8 September 2011 | Volume 6 | Issue 9 | e25386



Coculture with a ‘‘Geospirillum’’ sp. Strain. Archives of Microbiology 172:

116–124.
19. Kappler A, Newman D (2004) Formation of Fe(III)-Minerals by Fe(II)-Oxidizing

Photoautotrophic Bacteria. Geochimica et Cosmochimica Acta 68: 1217–1226.

20. Lazaroff N, Sigal W, Wasserman A (1982) Iron Oxidation and Precipitation of
Ferric Hydroxysulfates by Resting Thiobacillus Ferrooxidans Cells. Applied and

Environmental Microbiology 43: 924–938.
21. Mahmoud K, Leduc L, Ferroni G (2005) Detection of Acidithiobacillus Ferrooxidans

in Acid Mine Drainage Environments Using Fluorescent in Situ Hybridization

(FISH). Journal of Microbiological Methods 61: 33–45.
22. Straub K, Benz M, Schink B (2001) Iron Metabolism in Anoxic Environments at

near Neutral pH. FEMS Microbiology Ecology.
23. Weber K, Pollock J, Cole K, O’Connor SM, Achenbach LA, et al. (2006)

Anaerobic Nitrate-Dependent Iron(II) Bio-Oxidation by a Novel Lithoauto-
trophic Betaproteobacterium, Strain 2002. Applied and Environmental Microbiol-

ogy 72: 686–694.

24. Widdel F, Schnell S, Heising S, Ehrenreich A, Assmus B, et al. (1993) Ferrous
Iron Oxidation by Anoxygenic Phototrophic Bacteria. Nature 362: 834–836.

25. Yarzabal A, Brasseur G, Bonnefoy V (2002) Cytochromes c of Acidithiobacillus

Ferrooxidans. FEMS Microbiology Letters 209: 189–195.

26. Croal L, Jiao Y, Newman D (2007) The Fox Operon from Rhodobacter Strain sw2

Promotes Phototrophic Fe(II) Oxidation in Rhodobacter Capsulatus sb1003. Journal
of Bacteriology 189: 1774–1782.

27. Jiao Y, Newman D (2007) The Pio Operon Is Essential for Phototrophic Fe(II)
Oxidation in Rhodopseudomonas Palustris TIE-1. Journal of Bacteriology 189:

1765–1773.
28. Lander ES, Waterman MS (1988) Genomic Mapping by Fingerprinting

Random Clones: A Mathematical Analysis. Genomics 2: 231–239.

29. Badger MR, Bek EJ (2008) Multiple Rubisco Forms in Proteobacteria: Their
Functional Signficiance in Relation to CO2 Acquisition by the cbb Cycle.

Journal of Experimental Botany 59: 1525–1541.
30. McFadden BA (1973) Autotrophic CO2 Assimilation and the Evolution of

Ribulose Disphosophate Carboxylase. Bacteriological Reviews 37: 289–319.

31. Tabita FR (1995) The Biochemistry and Metabolic Reguation of Carbon
Metabolism and CO2 Fixation in Purple Bacteria. In: Blankenship RE,

Madigan MT, Bauer CE, eds. Anoxygenic Photosynthetic Bacteria. Dordrecht,
The Netherlands: Kluwer Academic Publishers. pp 885–914.

32. Hernandez JM, Baker SH, Lorbach SC, Shively JM, Tabita FR (1996) Deduced
Amino Acid Sequence, Functional Expression, and Unique Enzymatic

Properties of the Form I and Form II Ribulose Bisphosphate Carboxylase/

Oxygenase from the Chemoautotrophic Bacterium Thiobacillus Denitrificans.
Journal of Bacteriology 178: 347–356.

33. Shively JM, van Keulen G, Meijer WG (1998) Something from Almost Nothing:
Carbon Dioxide Fixation in Chemoautotrophs. Annu Rev Microbiol 52:

191–230.

34. Glazer B, Rouxel O (2009) Redox Speciation and Distribution within Diverse
Iron-Dominated Microbial Habitats at Loihi Seamount. Geomicrobiology

Journal 28: 606–622.
35. Lindskog S (1997) Structure and Mechanism of Carbonic Anhydrase.

Pharmacology & Therapeutics 74: 1–20.
36. Omata T, Price GD, Badger MR, Okamura M, Gohta S, et al. (1999)

Identification of an ATP-Binding Cassette Transporter Involved in Bicarbonate

Uptake in the Cyanobacterium Synechococcus Sp. Strain Pcc 7942. PNAS 96:
13571–13576.

37. Postma P, Lengeler l, Jacobson GR (1993) Phosphoenolpyruvate:Carbohydrate
Phosphotransferase Systems of Bacteria. Microbiological Reviews 57: 543–594.

38. Gottschalk G (1986) Bacterial Metabolism. New York: Springer-Verlag.

39. Druschel G, Emerson D, Sutka R, Suchecki P, Luther G (2008) Low-Oxygen
and Chemical Kinetic Constraints on the Geochemical Niche of Neutrophilic

Iron (II) Oxidizing Microorganisms. Geochimica et Cosmochimica Acta 72:
3358–3370.
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