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Abstract

Numerous efforts have been made to elucidate the etiology and improve the treatment of lung cancer, but the overall five-
year survival rate is still only 15%. Identification of prognostic biomarkers for lung cancer using gene expression microarrays
poses a major challenge in that very few overlapping genes have been reported among different studies. To address this
issue, we have performed concurrent genome-wide analyses of copy number variation and gene expression to identify
genes reproducibly associated with tumorigenesis and survival in non-smoking female lung adenocarcinoma. The genomic
landscape of frequent copy number variable regions (CNVRs) in at least 30% of samples was revealed, and their aberration
patterns were highly similar to several studies reported previously. Further statistical analysis for genes located in the CNVRs
identified 475 genes differentially expressed between tumor and normal tissues (p,1025). We demonstrated the
reproducibility of these genes in another lung cancer study (p = 0.0034, Fisher’s exact test), and showed the concordance
between copy number variations and gene expression changes by elevated Pearson correlation coefficients. Pathway
analysis revealed two major dysregulated functions in lung tumorigenesis: survival regulation via AKT signaling and
cytoskeleton reorganization. Further validation of these enriched pathways using three independent cohorts demonstrated
effective prediction of survival. In conclusion, by integrating gene expression profiles and copy number variations, we
identified genes/pathways that may serve as prognostic biomarkers for lung tumorigenesis.
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Introduction

Lung cancer is the leading cause of cancer death in developed

countries, and non-small cell lung carcinoma (NSCLC) accounts

for the majority of lung cancers. Among NSCLCs, adenocarcino-

ma and squamous cell carcinoma are the two major histological

types, representing 60–70% of all lung cancers. In Taiwan, most

lung cancers are adenocarcinoma as well, especially among non-

smoking female patients, and lung cancer mortality rates have

become the highest in the world [1]. Even though numerous

research efforts have been devoted to the development of lung

cancer treatment over the past few decades, the overall five-year

survival rate is still about 15% [2], mainly due to late diagnosis

and/or lack of effective therapeutic methods. To better elucidate

lung cancer etiology and identify prognostic gene sets, many

studies have performed microarray analysis of gene expression

profiles. While the identified gene sets indeed show significant

associations with survival in their respective datasets, very few

genes are common to all the different studies [3]. The discrepancy

in the results of gene expression analysis may result from multiple

experimental protocols, different statistical approaches, or inho-

mogeneous cohort characteristics. One possible strategy to

increase homogeneity in these findings is to analyze gene

expression in conjunction with DNA-level changes such as copy

number variations (CNVs).

DNA copy number has played an important role in recent

cancer studies. It explains about 12% of gene expression variations

in breast cancer [4], and concordance between changes in mRNA

expression levels and copy number has been observed in several

genes located in copy number variable regions (CNVRs) in lung

cancer [5,6]. Furthermore, gene copy numbers have proven useful

in predicting patient survival in lung cancer [7,8]. For example,

the overexpression and amplification of epidermal growth factor

receptor (EGFR) [9], and the underexpression and loss of dual

specificity phosphate 4 (DUSP4), correlate strongly with each

other; where each serves as an effective prognostic biomarker in

lung cancer [6]. Therefore, better prognostic gene sets may be

identified through combined analysis of copy number and gene

expression data.

Chromosome alterations, including structural changes and

CNVs, have been extensively observed in tumorigenesis and are

speculated to drive tumor progression in multiple cancers [10].

Accordingly, exploration of CNVs might reveal the roles they

play in lung tumorigenesis. Using high resolution karyotyping

PLoS ONE | www.plosone.org 1 September 2011 | Volume 6 | Issue 9 | e24829



Integrations of CNV and GE in Lung Adenocarcinoma

PLoS ONE | www.plosone.org 2 September 2011 | Volume 6 | Issue 9 | e24829



techniques to scan the lung cancer genome, several aberrant

regions have been detected: amplifications of 3p25–27 and 5p13–

14, and deletions of 3p21 and 9q21 [11]. Further investigations of

genes in these CNVRs do implicate several key players involved in

lung tumorigenesis. For instance, loss of docking protein 2 (DOK2)

as well as overexpression of baculoviral IAP repeat-containing 2/3

(BIRC2/3) can facilitate lung cancer cell proliferation and con-

tribute to lung tumor development [12,13]. Since genes located in

these common lung cancer CNVRs are candidate oncogenes or

tumor suppressors, an integrated analysis of their copy number

and expression levels may provide more information about

tumorigenesis in the lung.

Challenges arise, however, when integrating these multiple data

sources to identify consistent and reproducible molecular signa-

tures across different datasets. Using Venn diagrams to combine

significant genes derived from different data types usually produces

very few overlaps and leads to inaccurate results with high false-

positive rates. The traditional single-gene approach does help to

dissect complex diseases, but several limitations remain, especially

the difficulties in interpretation of biological meanings when

identified genes fall into non-overlapping functional categories and

pathways [14]. Even when investigating cancers with similar

histology, it is hard to obtain reproducibly significant gene

signatures. To overcome these challenges, several studies suggested

using functionally relevant gene sets instead of single-gene

approaches for statistical analysis to better elucidate biological

mechanisms [14,15,16].

In this study, we performed concurrent genome-wide

microarray analyses of CNVs and gene expression in non-

smoking female lung adenocarcinoma patients. By integration of

these two data types, we identified 475 genes located in CNVRs

that are differentially expressed between tumor and normal

tissues. Pathway analysis of these dysregulated genes revealed

seven significantly enriched canonical pathways, which impli-

cated two major biological functions in lung tumorigenesis.

Predictions of survival using these seven identified pathways

were validated in three independent cohorts, suggesting their

clinical relevance to serve as prognostic biomarkers for lung

cancer.

Results

Frequent copy number variable regions in lung
adenocarcinoma patients

Copy number variation analysis was performed using Affyme-

trix SNP 6.0 arrays, and each tumor tissue was compared

respectively to normal tissues from the same individual. As shown

in Fig. 1A, several recurrent CNVRs were detected, such as the

amplifications on chromosomes 1p, 5p, and 7p, and deletions on

3p, 8p, and 17p. To compare these identified CNVRs with the

aberration patterns reported previously, CNV analysis was

conducted on another lung adenocarcinoma cohort with both

copy number and gene expression microarray data from the same

individual [6]. Highly similar genomic altered patterns were

observed (Fig. 1A–B), and many genes located in the CNVRs were

reported as potential proto-oncogenes or tumor suppressors in

lung adenocarcinoma patients [17]. For instance, amplifications of

ARNT, TERT, and NKX2-1 and deletions on CDKN2A, CDKN2B

and PIPRD were also demonstrated in previous studies [6,17,18].

Among these frequent CNVRs, the most common amplification,

chromosome 7p, as well as the most common deletion,

chromosome 17p, occurred in approximately 60% of samples, a

percentage much higher than seen in other studies [6,17,18]. This

may imply that using adjacent normal tissue as a reference is able

to reduce individual differences and to uncover more general

CNVRs related to lung cancer.

Identification of CNV-driven differentially expressed
genes

To reduce individual heterogeneities and explore the genes in

the frequent CNVRs, we focused on the regions with at least 30%

(13/42) of samples showing copy number changes in the

following analyses. The corresponding gene expression probes

within these CNVRs were mapped to 5,086 unique genes

according to the annotation files provided by Affymetrix. To

evaluate whether the expression levels of the 5,086 genes were

associated with CNVs, patients were divided into two groups as

described in the methods: the ‘‘copy number varied’’ group and

the ‘‘copy number neutral’’ group. Next, for each one of such

genes, an unequal variance t-test was applied to the two groups,

by which we identified 609 differentially expressed genes

(p,1025, Bonferroni correction: 0.05/5,086<1025). Among

them, 475 genes (78%) showing concordance in the same

directional change of both CNV and gene expression were

selected for further exploration. Details on these 475 genes are

listed in Supplementary Table S1, and their corresponding

genomic locations are shown in Supplementary Fig. S1. To

validate the association between CNV status and gene expression

levels of these 475 genes in tumor tissue, the gene expression data

using one-way hierarchical clustering analysis was plotted in left

column of Fig. 2A, and the corresponding CNV status was

plotted in the right column. The heatmap revealed a highly

similar co-varying pattern between gene expression and CNV

(Fig. 2A). In addition to examining the dysregulated pattern

among the genes, the quantitative relationships between copy

number and expression level in tumor tissue were measured by

using Pearson correlation coefficients (Fig. 2B). The distribution

of correlation coefficients among the genes located in the CNVRs

in our data showed no clear difference to that among the whole

genome examined in the microarray. However, the correlation

coefficients among the CNV-driven genes were substantially

larger than that among other genes (Fig. 2C), suggesting that

these genes were regulated by their corresponding copy numbers

in lung tumor tissues. Two representative genes, EGFR and

TH1L, were illustrated to demonstrate the high correlations

between copy number and gene expression in tumor tissues

(Fig. 2D–E). These results indicate that CNVs are important

elements in driving downstream gene signaling in lung tumor-

igenesis.

Comparison of identified CNV-driven genes with Chitale
et al.

To further evaluate these selected 475 genes, the analysis

procedures in Fig. 3 were applied to the same dataset [6] used for

comparing the detected CNVRs in Fig. 1. The analysis results of

Chitale et al. identified 458 differentially expressed genes

(p,1024), which were significantly overlapped with the 475 genes

Figure 1. Frequency plot of CNVs in lung adenocarcinoma patients. Red color represents amplification, and blue color represents deletion.
Y-axis shows the proportion of samples showing CNVs in the two datasets. (A) Our study, cohort of 42 adenocarcinoma patients. (B) The Chitale et al.
study [6], cohort of 193 adenocarcinoma patients.
doi:10.1371/journal.pone.0024829.g001
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identified in our lung adenocarcinoma patients (p = 0.0034,

Fisher’s exact test). Next, to examine the homogeneity of these

475 genes across these two datasets, 324 genes were correspond-

ingly mapped among the CNVRs detected in Chitale et al.

Distribution and box plots of the Pearson correlation coefficients

between copy number and expression level of the genes in tumor

tissues demonstrated obvious elevations when compared with the

total genes located in the CNVRs (Fig. S2A–B), which suggests

that our proposed method efficiently identifies reproducible

signatures in independent studies.

Dysregulated biological functions and pathways of CNV-
driven genes

To characterize the biological functions implicated by the 475

CNV-driven genes, Ingenuity Pathway Analysis was carried out to

describe gene-gene interaction networks and canonical pathways.

Fisher’s exact test identified 7 canonical pathways that were

significantly [2log (p).2.0] enriched among the 475 CNV-driven

genes (Table 1). The three pathways with the most significant p

values included IL-3 signaling, aminoacyl-tRNA biosynthesis, and

EIF2 signaling (Table 1). IL-3 is known to trigger anti-tumor

responses and retard tumor growth in NSCLC after injections

[19]. A previous study reported that a tRNA synthase, hDUS2,

participates in pulmonary carcinogenesis [20], though it is still not

clear why genes related to aminoacyl-tRNA biosynthesis were

dysregulated in lung cancer patients. EIF2 controlled mainly

protein synthesis through binding to initiator Met-tRNAMet [21],

and its upstream regulators were involved in the signal

transduction cascade from IL-3. In addition to IL-3 signaling,

these genes were also downstream members shared by the other

four significantly enriched pathways, and thus a proposed

interaction network is displayed in Fig. 4. One major function

implicated by this network was cell survival regulation via AKT

signaling, which has been extensively studied and targeted in lung

cancer therapy [22,23]. In addition, there were multiple genes

involved in regulating cell proliferation and cell migration through

cytoskeleton reorganization, which further elucidated the biolog-

ical roles these differentially expressed genes with genomic

alterations may play in lung tumorigenesis.

Validation of identified pathways in three different
datasets

To validate the seven identified canonical pathways in

prediction of survival probabilities, we considered three indepen-

dent microarray datasets [24,25,26] for further investigation. (Our

own dataset was unsatisfactory for validation purposes because

most of the patients examined in our microarray experiments are

still alive.) Detailed information about the survival evaluation

procedures is described in Methods. For each dataset, the

empirical p for testing each pathway against the null baseline is

listed in Table 2. The results indicated that all genes in their

respective pathways are significant survival predictors for all three

datasets, except those involved in aminoacyl-tRNA biosynthesis.

The two pathways with the most significant and consistent p values

were IL-3 signaling and ephrin receptor signaling, and their

corresponding survival prediction accuracy was assessed with

Figure 2. Expression profiles of CNV-driven genes. (A) Hierarchical clustering of the 475 CNV-driven genes. For gene expression (left column),
the input data of each gene was normalized to its Z-value, which was obtained through two-step calculations. First, for each gene, corresponding
copy number neutral samples were used as a normalization baseline, that is, the median probe intensity in the normal tissue was subtracted from
probe intensities in all the samples. Next, adjusted probe intensity was divided by the standard deviation of probe intensity among copy number
neutral samples to get the normalized Z-value. One-way hierarchical clustering was performed on these Z-values of gene expression. Red color
indicates up-regulated genes; green color indicates down-regulated genes. For CNV status (right column), the corresponding chromosome changes
are plotted in the same gene order as gene expression. Red color denotes amplification and green denotes deletion. (B) Distribution of Pearson
correlation coefficients among the 475 CNV-driven genes was plotted against that from the genes located within the CNVRs. (C) Box plot of
correlations among the 475 CNV-driven genes. (D–E) The Pearson correlation coefficient was utilized to describe the association between copy
number and gene expression in tumor tissues for (D) EGFR and (E) TH1L. Copy number is shown on the left y-axis; gene expression is shown on the
right y-axis in a log scale.
doi:10.1371/journal.pone.0024829.g002

Figure 3. Flowchart for identifying CNV-driven genes based on
CNV and expression data from paired tissues. Numbers in
parentheses correspond to samples of Taiwan female lung cancer.
doi:10.1371/journal.pone.0024829.g003

Table 1. Enriched canonical pathways identified by Ingenuity
Pathway Analysis among the genes with both copy number
variation and differential expression.

Canonical Pathway 2log(p-value)a
Associated
Gene Numberb

IL-3 Signaling 2.83 7

Aminoacyl-tRNA Biosynthesis 2.55 5

EIF2 Signaling 2.37 7

PTEN Signaling 2.21 7

Renal Cell Carcinoma Signaling 2.20 6

Oncostatin M Signaling 2.03 4

Ephrin Receptor Signaling 2.02 10

aThe significance level of each canonical pathway was determined by Fisher’s
exact test in Ingenuity Pathway Analysis.

bThe associated gene number represents the number of dysregulated genes
involved in the corresponding canonical pathway.

doi:10.1371/journal.pone.0024829.t001
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Kaplan-Meier survival curves (Fig. 5). The prediction perfor-

mances based on different numbers of genes in these two pathways

were also evaluated by examining all possible combinations of the

7 or 10 genes in Kaplan-Meier survival analysis. As shown in

Supplementary Fig. S3, the prediction performances improved

gradually when more genes were included for survival analysis,

and the lowest p-values were reached by using the 7 genes together

(or 10 genes in the second pathway). It is worth noting that even

though these CNV-driven genes were identified based on the pure

lung adenocarcinoma samples, these genes demonstrated effective

prediction of survival in three lung cancer datasets including

patients with squamous cell carcinoma subtypes. We conclude that

these differentially expressed genes with genomic alterations may

not only participate in lung tumorigenesis but may also represent a

prognostic signature for clinical use.

Discussion

It is well-known that there are many causative elements

contributing to cancer progression and tumorigenesis, such as

transcriptional alterations, sequence mutations, and genomic

changes. Among these complicated factors, CNVs have been

widely reported to serve as a key driver of transcriptome

dysregulation [4]. Therefore, to account for the complex relation-

ship between copy number and gene expression, we performed an

integrated analysis in paired lung adenocarcinoma tissue specimens

to identify differentially expressed genes with concordant genomic

alterations. Survival analyses demonstrated that the identified gene

sets were consistently associated with clinical outcomes in three

independent lung cancer cohorts—such consistent findings are not

easily obtained by examining mRNA expression profiles alone [3].

Figure 4. Proposed interaction network of dysregulated pathways enriched by the CNV-driven genes. Cellular response is represented
by solid boxes. Genes showing amplification and up-regulation are colored in red; genes showing deletion and down-regulation are colored in green.
The lines between proteins indicate evidence inferred from the literature. The superscript numbers correspond to the ranking of enrichment p-values.
doi:10.1371/journal.pone.0024829.g004
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CNV analysis provided general insights into genomic alterations

in lung adenocarcinoma (Fig. 1), and the identified CNVRs were

highly similar to those reported previously [6,17,18]. However, a

notable difference was that the identified CNV frequency among

our patient samples (30,60%) was much higher, which may be

attributed to the use of adjacent normal tissue, not the common

reference genome, as the reference baseline. Because copy number

polymorphisms exist commonly in the human genome [27,28],

comparison with the common reference genome may increase the

possibility of enrolling more genomic alteration hotspots with

lower degree of participation in lung tumorigenesis. Moreover,

tumor tissues are usually inhomogeneous across patients, and thus

incorporating adjacent normal tissue from the same individual into

the analysis may help to reduce variations caused by individual

heterogeneity.

To identify differentially expressed genes involved in lung

tumorigenesis, we applied statistical analyses on gene expression

data between tumor and normal tissues rather than between

tumor tissues with and without copy number variations. Similar

patterns of fold changes were illustrated in both analyses

(Fig. S4), but minor differences were observed while examining

tumor tissues only. It is possible that gene expression profiles

had already been dysregulated to adapt to proper function

in tumor tissues during carcinogenesis. Therefore, even though

adjacent normal tissues may be partly contaminated by

tumor samples, they still provide a better comparison baseline,

which resembled regular gene expression profiles in healthy

lung.

Compared to other cytogenetic reports about lung cancer, we

observed different genomic states on chromosome 5q. Several

studies reported the association between deletion of this chromo-

somal region and small cell and squamous cell lung cancer

subtypes [29,30,31], and it was also pointed out that this deletion

may be associated with smoking history [32]. Nevertheless,

amplifications of 5q have been detected in other adenocarcinoma

studies [33,34]. This controversy may come from differences in

lung cancer subtypes and/or in history of smoking. Here, in our

study, only women with non-smoking lung adenocarcinoma were

recruited and thus no comparison group is available. For further

investigation to elucidate the role this region may play, data from

smoking females may be of help.

Regarding the 5,086 genes residing in the CNVRs, signifi-

cantly different expression associated with CNVs was detected in

609 genes (12%), a proportion comparable to that of previous

studies [4,35]. Among the 609 selected genes, 475 genes (78%)

showed positive correlation between CNV and mRNA expres-

sion and 134 genes (22%) showed negative correlation. The most

positively correlated gene, C20orf11, was identified here but no

functional study is available at this time. However, the second

gene, TH1L, has been shown to play an important role in many

processes of inflammation and pulmonary fibrosis in lung [36],

and there were two other reports indicating that TH1L may be

associated with tumor development [37,38]. The knockdown of

TH1L was able to trigger several molecular and cellular changes

correlated with epithelial-mesenchymal–transitition in MCF7

cells [37], and TH1L participates in the regulation of MAPK

signaling [38], which was closely associated with lung cancer. In

addition, the elevated correlations of the 475 concordantly

changed genes further evidenced that our statistical approaches

are able to efficiently identify dysregulated genes based on

CNVs.

On the other hand, the reason why the other 134 genes

displayed discordant changes remains unclear. The occurrence of

negative correlation could result from just random chance, or,

alternatively, from the existence of other regulatory mechanisms

that inhibit genomic alterations, such as miRNA regulations, gene

mutations, and epigenetic methylations [39]. Tumor tissues may

suffer damage if essential genes for tumor development undergo

CNVs that amplify tumor suppressors or delete oncogenes. For

instance, both the most negatively correlated gene, RTN1,

involved in detoxification in lung cancer [40], and a potential

lung cancer tumor suppressor, SEMA5A [41], were significantly

down-regulated though frequently amplified in tumor tissues.

Therefore, the relevance of these discordant genes to lung cancer

deserves further investigation.

To further explore whether these 475 CNV-driven genes were

sample dependent, the same statistical approaches shown in Fig. 3

were performed only in non-smoking lung cancer women from the

Chitale et al. study [6]. After excluding those without both CNV

and gene expression data, only 28 samples were remained for

further analysis. The results showed higher similarity in the gene

list (80% vs. 68%), and lower significant levels of overlapping with

our data (p = 0.000005 versus p = 0.0034, Fisher’s exact test).

Moreover, the CNV frequency of amplifications at 5q was much

higher (,25%) in these non-smoking female patients (Fig. S5),

which agreed with previous report that smoking history was

associated with the deletion of 5q [32]. Since similar results were

observed in female non-smokers and mixed population, these

results indicated that our algorithm in integrating copy number

variation with gene expression could be applied to other types of

lung cancer.

The major cellular function implicated by the interaction

network summarized from the 7 canonical pathways was cell

survival regulation (Fig. 4). It is well-known that EGFR participates

in the development and progression of lung cancer [42], and its

amplifications and mutations correlate with effective response to

several EGFR tyrosine kinase inhibitors (TKIs) for NSCLC

therapy [43]. Better treatment outcomes of EGFR-TKIs were

shown in females, non-smokers, and patients with lung adenocar-

cinoma, and thus it is not surprising to observe frequent

amplifications (52%) and mutations (83%) of EGFR in our results.

IKBKE was indicated as a potential oncogene by phosphorylating

inhibitors of NFKB to prolong cell survival, and its amplifications

and over-expressions were seen in over 30% of breast cancer

patients and cell lines [44]. Though the deletions of ERK2 seemed

to be contradictory, recurrent loss of 22q (29%) was also detected

in another study with a similar population [33]. Minor expression

ratio changes between tumor and normal tissues were observed in

this study (0.7,1.1) and the other three lung cancer cohorts

(0.9,1.1) examining paired samples [45,46,47]. Moreover,

activation of ERK2 signaling requires phosphorylation [48], which

Table 2. Empirical p-values of the canonical pathwaysa.

Canonical Pathway GSE3141 GSE10245 GSE8894

IL-3 Signaling 0.0027 0.0311 0.0002

Aminoacyl-tRNA Biosynthesis 0.1133 0.5117 0.1503

EIF2 Signaling 0.0182 0.0491 0.0230

PTEN Signaling 0.0098 0.0234 0.0048

Renal Cell Carcinoma Signaling 0.0018 0.0372 0.0080

Oncostatin M Signaling 0.0129 0.0042 0.0721

Ephrin Receptor Signaling 0.0055 0.0001 0.0171

aThe significance levels were determined by comparison with null baselines
created by random selections.

doi:10.1371/journal.pone.0024829.t002
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is beyond the detection scope of gene expression microarrays, and

thus ongoing research efforts are warranted to further elucidate

such mechanisms. In addition to cell survival, cell migration

through regulation of integrin was another function implicated by

this interaction network. Integrin-dependent interaction with the

surrounding extracellular matrix correlates with invasive abilities

in lung cancer and other cancer types [49]. Lastly, the proposed

interaction network was similar to one identified by integrating

Figure 5. Kaplan-Meier survival curves of genes associated with IL-3 signaling or ephrin receptor signaling pathways. For each
pathway in a Cox regression model, the influence of each variable was quantified by the estimated beta coefficient value. These beta values were
multiplied by their original variables respectively to summarize the Cox regression score for each patient examined. Next, patients were divided into
two groups according to the Cox regression scores: (1) the ‘‘High Score’’ group, in which scores were higher than the median scores in all samples,
and (2) the ‘‘Low Score’’ group, in which scores were lower than the median scores in all samples. Kaplan-Meier survival analyses were performed on
patients in the ‘‘High Score’’ and ‘‘Low Score’’ groups, and the empirical p values were determined after being compared with null baselines. (A–C)
Seven genes involved in the IL-3 signaling pathway. (A) GSE3141 [24]. (B) GSE10245 [26]. (C) GSE8894 [25]. (D–F) Ten genes involved in the ephrin
receptor signaling pathway. (D) GSE3141. (E) GSE10245. (F) GSE8894. Detailed gene lists were shown in Supplementary Table S4.
doi:10.1371/journal.pone.0024829.g005
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CNVs and sequence alterations in both breast and colorectal

cancers [50], which suggests that these dysregulated genes are

highly associated not only with lung tumorigenesis, but also with

multiple cancers.

The survival predictions using these CNV-driven genes were

effective in lung adenocarcinoma and, surprisingly, in squamous

cell carcinoma patients as well (Table 2). To further explore

whether these CNV-driven genes are independent of lung cancer

subtype, the survival prediction was examined in NSCLC patients

with only squamous cell carcinoma [51]. Although less satisfactory

results were observed (Table S2), several genes involved in the

ephrin receptor signaling pathway still showed effective prediction

ability, concurring that genes participation in regulation of integrin

may become dysregulated during the tumorigenic process across

different cancer types [49]. Therefore, these dysregulated genes

with CNVs may become promising targets for further pharmaco-

logical research in cancer therapy.

Materials and Methods

Ethics Statement
Written informed consent was obtained from all subjects and/or

guardians for the use of their tissue samples. This study was

approved by National Taiwan University Hospital Research

Ethics Committee and The Institutional Review Board of

Taichung Veterans General Hospital.

Sample preparation and microarray experiments
One hundred and twenty paired lung tumor and adjacent

normal tissues were collected from patients admitted to National

Taiwan University Hospital or Taichung Veterans General

Hospital. Fourty-two pairs of lung tumor and normal specimens

from non-smoking adenocarcinoma female patients were analyzed

by using Affymetrix SNP 6.0 and Affymetrix U133plus2.0

microarrays, after extraction of DNA and RNA according to the

manufacturers’ instructions. The mean 6 SD age of these samples

was 62610 years, and 71% (30/42) of the patients were in stage I

or II. Summary patient characterisitics are shown in Table S3.

The microarray data have been submitted to the Gene Expression

Omnibus database (accession number GSE19804).

Identification of CNV-driven differentially expressed
genes

To investigate genomic alternations, we used an Affymetrix

Genome-Wide Human SNP 6.0 array containing 1.8 million SNP

and CNV probes in total. The microarray data were imported into

the Partek Genomic Suite to perform CNV analysis. Since both

tumor and normal tissues from the same individual were

examined, each tumor tissue could be compared with its

counterpart, the normal tissue, respectively. A genomic segment

was defined if the following criteria were all satisfied: minimum

consecutive genomic markers $100, p-value#0.001, and signal-to-

noise ratio (SNR)$0.3. These identified segments were indicated

as copy number variated if their copy number changes were at

least 0.3; that is the copy number of an amplified region was

higher than 2.3, and the copy number of a deleted region was

Table 3. Sample characteristics of the three microarray
datasets used for survival evaluation.

Characteristics GSE3141 GSE10245 GSE8894a,b

Sample number 111 58 136

Microarray platform Affymetrix
U133plus2.0

Affymetrix
U133plus2.0

Affymetrix
U133plus2.0

Age NA 64.569.3 60.869.6

Tumor types

Adenocarcinoma 58 (52%) 40 (69%) 60 (44%)

Squamous 53 (48%) 18 (31%) 76 (56%)

Gender NA

Male 44 (76%) 103 (24%)

Female 14 (24%) 33 (76%)

aTwo samples were removed due to lack of age information.
bRecurrence-free survival was used here.
doi:10.1371/journal.pone.0024829.t003

Figure 6. Flowchart for clinical validation of CNV-driven genes. Three independent lung cancer datasets retrieved from Gene Expression
Omnibus [53] were examined: GSE3141 [24], GSE8894 [25], and GSE10245 [26].
doi:10.1371/journal.pone.0024829.g006

Integrations of CNV and GE in Lung Adenocarcinoma

PLoS ONE | www.plosone.org 9 September 2011 | Volume 6 | Issue 9 | e24829



lower than 1.7, respectively. Next, to identify CNVs common to all

lung adenocarcinomas, only regions showing changes in at least

30% (13/42) of the samples were analyzed further (step 1 in Fig. 3).

The overlapping genes within these identified CNVRs were

obtained after searching through the Affymetrix annotation file

version 30 (step 2: 5,086 genes). To evaluate whether expression of

these genes was related to CNV, patients were classified into two

groups according to their CNV status: one group is for copy

number variated (gain/loss), and the other group for copy number

neutral. For each one of the 5,086 genes, an unequal variance t-

test was applied to the gene expression variation between copy

number variated tumor tissues and copy number neutral normal

tissues (step 3: 609 genes). To identify CNV-driven genes, only

genes with concordant changes in copy number and gene

expression were collected for further analyses (step 4: 475 genes).

Visualization of the identified genes, including CNV statuses and

expression levels in tumor tissues, was illustrated by hierarchical

clustering in the Genesis program [52] in Fig. 2.

Comparison of identified CNV-driven genes with Chitale
et al.

To further demonstrate the usefulness of the procedures in the

flowchart for identifying CNV-driven genes (Fig. 3), another lung

cancer dataset with copy number and gene expression data from the

same individual was investigated [6]. The same analysis procedures

were applied, except that the comparision of differentially expressed

genes in step 3 was conducted on only tumor tissues. In other words,

gene expression variables were examined on tumor tissues between

copy number variated and neutral samples since no adjacent

normal tissues were studied in this cohort.

Validation of CNV-driven genes and pathways with three
different datasets

To characterize which biological functions and canonical

pathways the significantly differentially expressed genes are part

of, Ingenuity Pathway Analysis was carried out. After identifying the

pathways enriched by the CNV-driven genes, their performance in

prediction of survival probabilities was evaluated. Here, we

considered three microarray datasets (summary statistics are given

in Table 3) with published survival outcomes [24,25,26], which

were retrieved from Gene Expression Omnibus [53], to conduct the

following validation procedures (Fig. 6). Since intensity distributions

were usually inconsistent in different studies, the probe intensities

were first standardized across all the patients respectively by the Z-

score method. For the genes involved in a specifc canonical

pathway, the Cox regression model was used to evaluate the

association between expression of these CNV-driven genes and

survival outcomes with the available clinical data. In a Cox

regression model, the influence of each variable was quantified by

the estimated beta coefficient value. These beta values were

multiplied by their original variables respectively to summarize

the Cox regression score for each patient examined. Next, patients

were divided into two groups according to the Cox regression

scores: (1) the ‘‘High Score’’ group, in which scores were higher than

the median scores in all samples, and (2) the ‘‘Low Score’’ group, in

which scores were lower than the median scores in all samples.

Kaplan-Meier survival analyses were performed on patients in the

‘‘High Score’’ and ‘‘Low Score’’ groups to evaluate the association

between CNV-driven genes and survival outcomes.

Furthermore, to establish a null baseline for comparison, Cox

regression and Kaplan-Meier survival analyses were conducted

again but with genes randomly selected from the original pool,

where the number of genes was kept the same as the pathway under

study. To incorporate the heterogeneity of the genes selected,

100,000 iterations were performed for each pathway. Empirical p

values of the identified pathways were then determined by

comparing the Kaplan-Meier survival prediction probability with

the null baselines; that is, the ranking of the Kaplan-Meier p-values.

Supporting Information

Figure S1 Genomic locations of the CNV-driven genes.
Y-axis shows the proportion of samples showing CNVs.

(TIF)

Figure S2 Pearson correlation coefficients of the 324
overlapped CNV-driven genes in the Chitale et al. study.
(A) Distribution of correlations among the CNV-driven genes was

plotted against that from the genes located within the CNVRs. (B)

Box plot of correlations among the 324 CNV-driven genes.

(TIF)

Figure S3 Prediction performances based on different
numbers of genes in the IL-3 signaling and ephrin
receptor signaling pathways. Kaplan-Meier survival curves

were used to evaluate the prediction performances using all

possible combinations of the 7 or 10 genes within the two

pathways. X axis denotes the number of genes used in survival

analysis, and Y axis represents the corresponding average Kaplan-

Meier 2log p-values.

(TIF)

Figure S4 Fold changes of expression relative to normal
or tumor tissues. Relative expression level is shown on the x-

axis in a log scale; frequency of genes is shown in the y-axis.

(TIF)

Figure S5 Frequency plot of CNVs in the non-smoking
lung adenocarcinoma women from the Chitale et al.
study. Red color represents amplification, and blue color

represents deletion. Y-axis shows the proportion of samples

showing CNVs in the dataset.

(TIF)

Table S1 Statistics of the 475 CNV-driven genes.
(PDF)

Table S2 Empirical p-values of the canonical pathways
in GSE4573a

(PDF)

Table S3 Sample characteristics of lung cancer patients
examined by both Affymetrix SNP6.0 and Affymetrix
U133plus 2.0 arrays.
(PDF)

Table S4 Genes involved in the IL-3 signaling and
ephrin receptor signaling pathways.
(PDF)
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