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Abstract

Estimates of age-specific fertility rates based on survey data are known to suffer down-bias associated with incomplete
reporting. Previously, William Brass (1964, 1965, 1968) proposed a series of adjustments of such data to reflect more
appropriate levels of fertility through comparison with data on children-ever-born by age, a measure of cohort-specific
cumulative fertility. His now widely-used Parity/Fertility or PF ratio method makes a number of strong assumptions, which
have been the focus of an extended discussion in the literature on indirect estimation. However, while it is clear that the
measures used in making adjusted age-specific fertility estimates with this method are captured with statistical uncertainty,
little discussion of the nature of this uncertainty around PF-ratio based estimates of fertility has been entertained in the
literature. Since both age-specific risk of childbearing and cumulative parity (children ever born) are measured with
statistical uncertainty, an unknown credibility interval must surround every PF ratio-based estimate. Using the standard
approach, this is unknown, limiting the ability to make statistical comparisons of fertility between groups or to understand
stochasticity in population dynamics. This paper makes use of approaches applied to similar problems in engineering, the
natural sciences, and decision analysis—often discussed under the title of uncertainty analysis or stochastic modeling—to
characterize this uncertainty and to present a new method for making PF ratio-based fertility estimates with 95 percent
uncertainty intervals. The implications for demographic analysis, between-group comparisons of fertility, and the field of
statistical demography are explored.
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Introduction

Population dynamics are driven by the often complex interplay

of demographic components of change including births, deaths,

immigration, and emigration [1,2,3]. Obviously, modeling popu-

lation change for purposes of either basic research or applied

demography (population estimation or projection) requires

adequate measures of these components [4,5,6]; however, their

estimation can be highly challenging in developing settings where

administrative infrastructures for capturing these data may be

lacking [7,8,10]. Given the importance of such models for both

public policy and basic scientific research on population, a strong

motivation exists to either improve administrative data capture or

develop methods for modeling population change with incomplete

data [1,8] In spite of its shortcomings, development of models is

much less problematic than reforming administrative data capture

and this reality has led to the development of numerous methods

for modeling population change with incomplete or missing data

[8,10,11,12]. Given its importance to both public policy as well as

short-term changes in population growth rates and age-structure

[1,12,13] methods for estimating age-specific and total fertility

rates (see glossary—Figure S1—for terms used in this paper) using

incomplete and clearly under-reported survey data have enjoyed

particular prominence in the literature on indirect estimation

[1,4,8,11,14,15,16,17].

As early as 1964, William Brass suggested the possibility that

given an assumption that underreporting is equivalent across age

groups, period measures of age-specific fertility could be adjusted

by leveraging information on cohort parity such as the average

number of children ever born to a woman of a given age [7]. Since

that time, Brass and others have developed a number of methods

for accomplishing such adjustments [10,15,16]. The proposed

procedure is straightforward and summarized in Figure 1. First,

alternative estimates of parity (cumulative fertility) by age are

made from two data sources: (1) data on the average number of

children ever born by age and (2) partial sums of survey-reported

age-specific fertility rates (made using reported births from the

previous year). These are represented in steps 1a. and 2a.–2b. in

Figure 1. Age-specific fertility rates are summed up to each age-

group of interest to estimate cumulative fertility up to each age

group (step 3), while data on children ever born represent direct

estimates of the cumulative fertility of cohorts up to that age (step

1b). The first estimate represents a period measure of fertility,

while the latter estimate is a measure of cohort-specific fertility

experience of the population and a direct measure of the expected

level of fertility achieved by a specific age [8,14,15,16,18]. If fertility

reporting is complete in survey data and no temporal trend (cohort

effect) in fertility is observed [10] then the two measures should be

approximately equal and sum to an equivalent total fertility rate.

Where not, underreporting is suggested when the observed
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cumulative fertility in the period data is less than the average

cohort parity in the age group of interest. Armed with these two

sources of information on cumulative fertility, parity/fertility ratios

(children ever born/survey-based estimate of parity by age) are

computed for each age-group (step 4 in Figure 1), one of which is

chosen to adjust observed estimates of age-specific fertility (Step 5).

The adjusted estimates are then made (Step 6), which have an

identical age-specific patterning of fertility (from the period data)

but a higher overall level of achieved fertility captured in the cohort

measures [1,8,14]. The method is presumed to remediate the

down-bias in the magnitude of fertility measures obtained in

survey data, given the assumption that children ever born data are

more reliably recalled in general [8].

While there is no set algorithm for determining which PF ratio

to use [12,18], most demographers have suggested that using the

PF ratio for younger age groups might tend to produce unreliable

estimates since a greater proportion of women will not have

experienced childbirth [1,8,18]. Likewise, since parity measures

include the cumulation of complete fertility histories, it has also

been suggested that use of later ratios might be biased by

incomplete recall of birth histories among older women [8]. The

United Nations’ Manual X [8] suggests the use of P2/F2 (20–24),

but a general guideline of choosing the P3/F3 (25–29) ratio as a

viable alternative has also been repeatedly entertained [1,8,9,14].

In practice, demographers often depend on review of the data to

choose a reasonable alternative when the ratio of adjustments

shows an age-specific patterning [10,18]. In spite of the lack of a

clear decision criteria, demographic intuition is often thought to

provide a reliable indicator upon which to choose an appropriate

PF ratio [1,18].

Table 1 provides an example of this procedure for the Bihar

Province of India, using a combination of data on age-specific

fertility risk from the Sample Registration System of India (1996–

1998 vintage) in conjunction with data on children-ever-born by

age from the Demographic and Health Survey conducted in the

province in 1998. The method corresponds to variant B3, reported

in the UN Manual X [8], which involves use of survey data from

two separate sources: one estimating age-specific fertility and the

other estimating children-ever-born (see p. 30). Column 1 reports

the SRS-based estimate of age-specific fertility, which corresponds

to step 2b. in Figure 1. Column 2 presents cumulative fertility by

age—an estimate of parity that corresponds to step 3 in Figure 1.

Column 3 presents the DHS-based estimate of children-ever-born

by age (Step 1b in Figure 1). Column 4 provides the PF ratio

estimates for each five-year age interval from 15–19 to 45–49 [8],

which are simply the ratios of column 2 values to column 3 values.

These correspond to step 4 in Figure 1. Column 5 presents each

ASFR from column 2, multiplied against the P3/F3 ratio (for ages

25–29) in column 4 to arrive at the PF-ratio adjusted estimate (step

6 in Figure 1) of age-specific fertility in Bihar (1996–1998). Figure 2

presents the PF ratios by age, which suggest that the P3/F3 ratio is

reasonable and stable across the remaining age-intervals. These

ratios suggest likely underreporting in the SRS-based fertility

estimates, especially in younger age-intervals. The adjusted total

fertility rate measure is very close to the children ever born

measure reported in column 4 for women 45–49, reflecting the

mechanics of the PF ratio procedure and suggesting its plausibility.

While the overall age-specific patterning of fertility is retained in

the adjusted estimates, the overall estimated level of childbearing

between the two schedules is marked (Figure 3). A reasonable

Figure 1. The Brass Parity/Fertility ratio method uses data on the risk of births in the 12 months prior (2a in the Figure) and
children-ever-born by age (1a) to arrive at adjusted fertility estimates in light of underreporting in survey data.
doi:10.1371/journal.pone.0023222.g001

Table 1. Example of Brass PF Ratio Method.

Bihar (1996–1998)

Age SRS ASFR
Estimated
Cumulative Fertility

DHS Children
Ever Born (Parity) PF Ratio

Adjusted
ASFR (P3/F3)

15 to 19 0.275 0.275 1.470 5.345 0.407

20 to 24 1.210 1.485 3.500 2.357 1.792

25 to 29 1.155 2.640 3.910 1.481 1.711

30 to 34 0.890 3.530 5.040 1.428 1.318

35 to 39 0.495 4.025 5.590 1.389 0.733

40 to 44 0.260 4.285 6.210 1.449 0.385

45 to 49 0.075 4.360 6.450 1.479 0.111

TFR 4.360 * TFR 6.457

doi:10.1371/journal.pone.0023222.t001

Stochastic Brass PF Ratios
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conclusion is that the PF ratio procedure improved estimates of

age-specific fertility and total fertility rates, as argued in previous

research [14,15,16,10,9,1,12,19,20].

The simplicity and ease with which the Brass PF ratio method is

implemented, its apparent ability to produce much more

reasonable estimates of age-specific fertility rate and total fertility

rate than unadjusted ones, and its promotion by the leading

demographic research units involved in training demographers

around the world [1,8,10] has led to its widespread use. The

method, however, does depend upon a number of rather strong

and important assumptions. The assumptions related to use of the

PF Ratio method are discussed at length in the UN Manual X [8]

and include the notions that mortality has little effect on the

measurement of children ever born (no survivorship bias), that

migration effects may be ignored, and that no temporal trend in

fertility exists within the study population [10,18] While the first

effect may be minor [8] it is likely that ignoring migration effects

may constitute a much stronger assumption, since in the short-

term migrants may often display very different fertility patterns

than long-time residents of a region. This effect, however, may

decay over time [21,22] as migrants adjust fertility to more closely

match ‘‘native’’ conspecifics. An assumption of trivial migration

effects is likely to be problematic in smaller populations, those

experiencing significant recent migration, or those measured at the

subnational level where large population sizes cannot drown out

such effects [1,8,10,21,22]. The assumption of constant fertility is

also strong in light of the ongoing demographic transition and it is

worth noting that variants and reconceptualizations of the PF ratio

procedure have been proposed that do not impose an assumption

of constant fertility [10]. While recognizing that these strong

assumptions are important considerations for demographers

applying the Brass PF ratio method, this paper focuses on a

largely unexplored challenge associated with applications of the

method: an evaluation of the previously unconsidered statistical

uncertainty associated with adjusted age-specific fertility estimates

in the traditional application of the Brass method, especially the

B3 variant provided in the influential Manual X [8].

Unacknowledged Statistical Uncertainty in the Brass PF
Ratio Method and a Potential Solution

This issue of statistical uncertainty in estimation of fertility using

the PF ratio method has received little attention in the

demographic literature. Given the data sources used in its

construction, however, it seems an unavoidable fact that such

statistical uncertainty is associated with the ratio. Estimates of age-

specific fertility risk and children ever born by age are both

measured through survey data in the case of variant B3, and

sampling variability is contained in both. If we think of both

Figure 2. The Brass PF ratios are larger in earlier age intervals, but tend to stabilize in later age-intervals. Previous demographers have
suggested the use of later ratios in light of such trends.
doi:10.1371/journal.pone.0023222.g002

Figure 3. The Brass PF ratio adjustment scales up achieved fertility at each age level while preserving the age-specific patterning of
fertility.
doi:10.1371/journal.pone.0023222.g003

Stochastic Brass PF Ratios
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estimates as inputs to the PF ratio estimate, then the adjusted age-

specific fertility schedules represent an output into which the

uncertainty associated with each input is propagated. This

uncertainty has not received an adequate amount of attention

within the demographic literature, perhaps because demographers

remain unfamiliar with potential solutions to the challenge and often

make little use of statistical theory in their work [23]. Analogous

problems, however, arise in engineering and applications of dynamic

modeling and a number of approaches have been developed to deal

with them under the label of uncertainty analysis or stochastic modeling

[24,25,26,27,28,29]. As is the case with the PF-ratio adjusted

estimates of fertility, often the challenge revolves around an

evaluation of how model inputs formulated with uncertainty affect

uncertainty in an output of interest [30]. This input/output

framework permits applications of monte carlo simulation in which

the probability distributions associated with inputs can be directly

related to the level and distribution of uncertainty associated with

output estimates [31,32,33,34,35,36,37,38]. This type of monte

carlo-based analysis of uncertainty has been undertaken in the

literature on animal demography [39,40,41,42,43], but to our

knowledge has not been previously applied to human demographic

studies. Here, monte-carlo resampling algorithms are employed to

estimate the uncertainty associated with estimates of age-specific

fertility rates made using PF-ratio (variant 3) adjustments and to

compute uncertainty intervals about the estimates.

The conceptual application of uncertainty analysis to the

estimation of PF ratios with uncertainty intervals is illustrated in

Figure 4. In the stochastic case, data on births by age for the

previous year are used to estimate the binomial distribution of

birth risk within each age interval from 15–19 to 45–49, as in step

2b. Here, the normal approximation is used. Likewise, the normal

distribution of children-ever-born is estimated using survey data in

step 1b. These steps contrast to those presented in the deter-

ministic case illustrated in Figure 1 and Table 1, in which a single

estimate is made for use in adjustments. Step 4 involves the

computation of the mean and variance of the probability density

function for the P3/F3 ratio to be used to adjust the survey-based

estimates of age-specific fertility. This estimate is simulation based,

conditioned on the inputs of two independent monte-carlo simula-

tions involving resampling of 10,000 resamples of the estimated

pdf of each input estimate (steps 1c and 2c): the survey-based

estimate of age-specific fertility and the survey-based estimates of

children-ever-born by age for the 25–29 year age group. This

algorithm directly incorporates the uncertainty associated with

each measure into the estimated statistical distribution associated

with the P3/F3 ratio, represented in step 4 in Figure 4. The result

in step 5 is a simulated estimate of the normal distribution of the

P3/F3 ratio which is utilized in step 6 to estimate the point

estimate of each age-specific fertility rate, as well as an estimate of the

95% upper and lower confidence bounds for the estimate. The end result of

the procedure is a stochastic estimate of age-specific fertility that

both adjusts for under-reporting while incorporating statistical

information on uncertainty into the estimates. It provides a

statistical distribution of ASFR to assess quality as well as to

incorporate into stochastic projection models if desired

[13,39,40,44].

The purpose of this paper is to illustrate this novel approach for

producing stochastic estimates of ASFR within the Brass PF ratio

framework. The paper utilizes data from 5 randomly-selected

Indian provinces and models age-specific fertility using data on

children-ever-born from the Demographic and Health Surveys

(www.measuredhs.com) and survey-based estimates of age-specific

fertility from the Sample Registration System (SRS) of India (www.

census.in). These data are utilized to illustrate the stochastic

approach to the Brass method and provide point estimates and

95% upper and lower uncertainty bounds on these estimates using

the exact process described in Figure 4. The results suggest the

utility of further applications of this method and the implications of

these findings for the practice of demography are reviewed.

Materials and Methods

A random sample of five Indian provinces was taken to include

Bihar, Uttar Pradesh, Tamil Nadu, Madhya Pradesh, and Goa

(Figure 5). Reported age-specific fertility estimates for 1997 were

obtained from a series of reports made available by the Sample

Registration System of India at (http://censusindia.gov.in). Data

on children ever-born was obtained for each province using

microdata from the associated Demographic and Health Surveys

(www.measuredhs.com) for 1998. The one year gap between these

datasets was considered trivial and unlikely to be of sufficient

temporal duration to introduce bias into these estimates. Average

children ever born by age were computed from the DHS data by

the authors, including estimation of variance associated with each

these estimates. The uncertainty associated with the SRS estimates

is not publicly-reported, presenting a challenge for evaluating the

uncertainty in PF ratio estimates associated with these data. As a

reasonable substitute, we estimated variances associated with the

binomial proportion of births in the last twelve months captured in

the Demographic and Health Surveys, using the normal

approximation [45]. Such surrogate evaluation of statistical

properties of distributions has been previously utilized in a large

number of uncertainty analyses [29,39,40,41,42,46] and the

binomial distribution has been argued to suitably reflect risk of

birth in a number of previous studies [13,43,47,48].

Using these data, PF ratios were computed, first using the

standard procedure (Figure 1), then the stochastic algorithm

Figure 4. A stochastic version of the Brass PF ratio includes monte carlo simulation of the reported distributions of age-specific
fertility risk and age-specific parity. This simulation allows consideration of statistical uncertainty and the construction of 95% upper and lower
bounds of uncertainty around PF-ratio adjusted estimates of age-specific fertility.
doi:10.1371/journal.pone.0023222.g004

Stochastic Brass PF Ratios
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(Figure 4). The trends of PF ratio by age were assessed graphically,

using bar-charts (as in Figure 2). In all cases, significant graphical

evidence of an age-trend in underreporting of fertility was

observed, suggesting use of a later PF ratio in the adjustment. In

this paper, the P3/F3 ratio was utilized in all analyses for

consistency, in accordance with the recommendation of a number

of previous published analyses [17,18,19] and its plausibility in

light of graphical observations [1,10,18]. The associated adjusted

age-specific fertility rate estimates, without uncertainty, were

graphed and analyzed visually. Monte carlo simulations based on

the normal distribution were employed to model the statistical

distributions of age-specific and cohort-specific measures of parity.

The normal approximation was used in simulating the binomial

distribution of age-specific fertility risk [45,49]. Tests of normality

(Kolmogorov-Smirnov) were employed for each province’s age-

specific children-ever-born distributions, none of which rejected

the null hypothesis of a normal distribution [49,50]. As

summarized in Figure 4 (steps 1c and 2c), monte carlo resampling

Figure 5. Five randomly-selected Indian provinces constitute the study area for this research.
doi:10.1371/journal.pone.0023222.g005

Stochastic Brass PF Ratios
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was employed, involving 10,000 draws from the estimated ASFR

distribution for ages 15–19, 20–24, and 25–29, then summation of

these rates as the period measure of cumulative fertility by 25–29

years, followed by monte carlo resampling from the distribution of

children ever born in the 25–29 age group. The associated

distribution of the P3/F3 ratio was estimated using these inputs,

recalculated at each round of the simulation, to 10 K draws. The

resulting PF ratios were then used to adjust the SRS ASFR

estimates and characterize the distribution of age-specific fertility

distributions in each age-group with a point estimate and 95

percent upper and lower bounds of the uncertainty interval. All

simulations were accomplished through original code written in

the R statistical package. An annotated sample of this code is

provided in Figure S2.

Results

The base results suggest that fertility underreporting is greater in

younger age intervals and varies across provinces (Table 2). A

consistent pattern across all provinces (Figure 6) is the rapid

decline in suggested under-reporting from the 25 to 29 year age

group forward, after which the PF ratios clearly stabilize. The level

of incomplete reporting in the younger age intervals varies. In

Goa, a very large PF ratio of 56 for the 15 to 19 year age group is

likely related to small sample size in the DHS data with only 10

women interviewed. PF ratios for the youngest interval vary

between 3.56 in Madhya Pradesh and 9.37 in Tamil Nadu. The

clear convergence of PF ratios is apparent beyond the 20 to 24

age-group as in Figure 6 (see Tables 3, 4, 5, 6 also), which settle

around reasonable levels at less than 2.0 [8,18] for 4/5 provinces

(the province of Goa was exceptional with a P3/F3 ratio of 2.834).

The PF ratio-adjusted estimates lead to total fertility rates that are

similar to the parity reported for the 45 to 49 year age group in the

DHS question on children ever born in each case, reflecting both

the mechanics of the method and the reasonability of the adjusted

values in light of available data. Tables 3, 4, 5, 6 report results for

all provinces except Bihar, which formed the example analysis and

is reported in Table 1.

Tables 7, 8, 9, 10, 11 report the SRS-based ASFR estimates, the

point estimates and standard deviations for the P3/F3 (25–29

years) ratios, and the adjusted ASFRs with 95 percent upper and

lower bounds to these estimates based on the uncertainty analysis.

While these adjusted estimates appear to appropriately remediate

the suggested underreporting of fertility observed in the SRS data,

they do not appear to artificially erase variation in observed

fertility experience either across age-groups or between provinces.

The standard PF ratio procedure produced an expected higher

schedule of age-specific fertility than observed in the SRS (1997)

data; however, the estimates based on uncertainty analysis led to

even higher estimates of the overall level of fertility than were

observed in the traditional application of the Brass method.

Table 12 presents the observed differences in TFR for each

province in the original PF ratio adjusted TFR estimates and those

produced using the stochastic procedure supported here. These

Figure 6. Parity/Fertility ratios vary across each of the Indian provinces included in this study; however, in all cases, they stabilize
beyond the 25 to 29 year age interval.
doi:10.1371/journal.pone.0023222.g006

Table 2. Age-specific Parity/Fertility Ratios by Province.

Age Bihar Uttar Pradesh Goa Madha Pradesh Tamil Nadu

15 to 19 5.345 8.055 56.000 3.557 9.374

20 to 24 2.357 1.894 6.981 1.556 1.882

25 to 29 1.481 1.442 2.834 1.416 1.557

30 to 34 1.428 1.415 2.213 1.430 1.587

35 to 39 1.389 1.379 2.378 1.505 1.808

40 to 44 1.449 1.435 2.873 1.547 2.162

45 to 49 1.479 1.432 3.137 1.659 2.485

doi:10.1371/journal.pone.0023222.t002

Stochastic Brass PF Ratios
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differences are pronounced; on average, the adjusted schedules

using the original PF ratio procedure introduced a 1.915 child

increase in TFR. The final adjusted TFRs made using the

procedure implemented in this paper introduced an estimated

average difference of 2.550 children. These are large differences

suggesting either bias in the procedure as implemented here or

even greater than anticipated incomplete reporting in the SRS

data. In 3/5 cases the final adjusted uncertainty interval about the

TFR estimate using the stochastic procedure did not encompass

the age-specific children ever born measure from the DHS survey.

Table 3. PF Ratio-Based Estimates of Age-Specific Fertility.

Uttar Pradesh (1996–1998)

Age
SRS
ASFR

Estimated
Cumulative Fertility

DHS Children
Ever Born (Parity)

PF
Ratio

Adjusted
ASFR (P3/F3)

15 to 19 0.200 0.200 1.611 8.055 0.288

20 to 24 1.240 1.440 2.728 1.894 1.788

25 to 29 1.355 2.795 4.030 1.442 1.954

30 to 34 0.990 3.785 5.355 1.415 1.427

35 to 39 0.575 4.360 6.012 1.379 0.829

40 to 44 0.310 4.670 6.702 1.435 0.447

45 to 49 0.115 4.785 6.854 1.432 0.166

TFR 4.785 * TFR 6.899

doi:10.1371/journal.pone.0023222.t003

Table 4. PF Ratio-Based Estimates of Age-Specific Fertility.

Goa (1996–1998)

Age
SRS
ASFR

Estimated Cumulative
Fertility

DHS Children Ever
Born (Parity)

PF
Ratio

Adjusted
ASFR (P3/F3)

15 to 19 0.025 0.025 1.400 56.000 0.071

20 to 24 0.295 0.320 2.234 6.981 0.836

25 to 29 0.550 0.870 2.466 2.834 1.559

30 to 34 0.370 1.240 2.744 2.213 1.049

35 to 39 0.140 1.380 3.282 2.378 0.397

40 to 44 0.035 1.415 4.066 2.873 0.099

45 to 49 0.005 1.420 4.455 3.137 0.014

TFR 1.420 * TFR 4.025

doi:10.1371/journal.pone.0023222.t004

Table 5. PF Ratio-Based Estimates of Age-Specific Fertility.

Madhya Pradesh (1996–1998)

Age
SRS
ASFR

Estimated
Cumulative Fertility

DHS Children
Ever Born (Parity)

PF
Ratio

Adjusted ASFR
(P3/F3)

15 to 19 0.440 0.440 1.565 3.557 0.623

20 to 24 1.375 1.815 2.825 1.556 1.947

25 to 29 1.070 2.885 4.086 1.416 1.515

30 to 34 0.630 3.515 5.025 1.430 0.892

35 to 39 0.315 3.830 5.763 1.505 0.446

40 to 44 0.140 3.970 6.141 1.547 0.198

45 to 49 0.025 3.995 6.626 1.659 0.035

TFR 3.995 * TFR 5.658

doi:10.1371/journal.pone.0023222.t005

Stochastic Brass PF Ratios
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In one case the interval did contain the DHS estimate and in one

case (Tamil Nadu), the estimate was actually lower than observed

in the DHS data.

The 95 percent uncertainty intervals presented in Tables 7, 8, 9,

10, 11 are remarkably precise due to both the fairly large sample

sizes associated with variance estimates using the DHS data and

Table 6. PF Ratio-Based Estimates of Age-Specific Fertility.

Tamil Nadu (1996–1998)

Age
SRS
ASFR

Estimated
Cumulative Fertility

DHS Children
Ever Born (Parity)

PF
Ratio

Adjusted ASFR
(P3/F3)

15 to 19 0.155 0.155 1.453 9.374 0.241

20 to 24 0.895 1.050 1.976 1.882 1.394

25 to 29 0.620 1.670 2.601 1.557 0.966

30 to 34 0.225 1.895 3.007 1.587 0.350

35 to 39 0.055 1.950 3.525 1.808 0.086

40 to 44 0.015 1.965 4.249 2.162 0.023

45 to 49 0.005 1.970 4.896 2.485 0.008

TFR 1.970 * TFR 3.068

doi:10.1371/journal.pone.0023222.t006

Table 7. PF Ratio-Based Estimates of Age-Specific Fertility with Uncertainty Intervals.

Bihar (1996–1998)

Age SRS ASFR

Estimated
Cumulative
Fertility

DHS Children
Ever Born
(Parity) P3/F3 s.d. Adjusted ASFR

95 Percent
Lower Bound

95 Percent
Upper Bound

15 to 19 0.275 0.275 1.470 1.771 0.439 0.487 0.460 0.496

20 to 24 1.210 1.485 3.500 2.143 2.134 2.152

25 to 29 1.155 2.640 3.910 2.046 2.037 2.054

30 to 34 0.890 3.530 5.040 1.576 1.568 1.585

35 to 39 0.495 4.025 5.590 0.877 0.868 0.885

40 to 44 0.260 4.285 6.210 0.460 0.452 0.469

45 to 49 0.075 4.360 6.450 0.133 0.124 0.141

TFR 4.360 * TFR 7.722 7.643 7.782

doi:10.1371/journal.pone.0023222.t007

Table 8. PF Ratio-Based Estimates of Age-Specific Fertility with Uncertainty Intervals.

Uttar Pradesh (1996–1998)

Age SRS ASFR

Estimated
Cumulative
Fertility

DHS Children
Ever Born
(Parity) P3/F3 s.d. Adjusted ASFR

95 Percent
Lower Bound

95 Percent
Upper Bound

15 to 19 0.200 0.200 1.611 1.776 0.419 0.355 0.347 0.363

20 to 24 1.240 1.440 2.728 2.202 2.194 2.210

25 to 29 1.355 2.795 4.030 2.406 2.398 2.415

30 to 34 0.990 3.785 5.355 1.758 1.750 1.766

35 to 39 0.575 4.360 6.012 1.021 1.013 1.029

40 to 44 0.310 4.670 6.702 0.551 0.542 0.559

45 to 49 0.115 4.785 6.854 0.204 0.196 0.212

TFR 4.785 * TFR 8.498 8.441 8.556

doi:10.1371/journal.pone.0023222.t008
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the large number of random samples drawn in the Monte Carlo

simulation (see materials and methods section). However, this

precision does not appear to have artificially erased the natural

variation in fertility experience observed across the provinces.

Figure 7 compares age-specific fertility curves for Bihar and Tamil

Nadu. The estimates for Bihar still indicate much higher fertility

Table 9. PF Ratio-Based Estimates of Age-Specific Fertility with Uncertainty Intervals.

Goa (1996–1998)

Age
SRS
ASFR

Estimated
Cumulative
Fertility

DHS Children
Ever Born
(Parity) P3/F3 s.d.

Adjusted
ASFR

95 Percent
Lower Bound

95 Percent
Upper
Bound

15 to 19 0.025 0.025 1.400 2.834 0.405 0.071 0.063 0.079

20 to 24 0.295 0.320 2.234 0.836 0.828 0.844

25 to 29 0.550 0.870 2.466 1.559 1.551 1.567

30 to 34 0.370 1.240 2.744 1.049 1.041 1.057

35 to 39 0.140 1.380 3.282 0.397 0.389 0.405

40 to 44 0.035 1.415 4.066 0.099 0.091 0.107

45 to 49 0.005 1.420 4.455 0.014 0.006 0.022

TFR 1.420 * TFR 4.024 3.969 4.080

doi:10.1371/journal.pone.0023222.t009

Table 10. PF Ratio-Based Estimates of Age-Specific Fertility with Uncertainty Intervals.

Mahya Pradesh (1996–1998)

Age
SRS
ASFR

Estimated
Cumulative
Fertility

DHS Children
Ever Born
(Parity) P3/F3 s.d.

Adjusted
ASFR

95 Percent
Lower Bound

95 Percent
Upper
Bound

15 to 19 0.440 0.440 1.565 1.752 0.446 0.771 0.762 0.780

20 to 24 1.375 1.815 2.825 2.409 2.400 2.418

25 to 29 1.070 2.885 4.086 1.875 1.866 1.883

30 to 34 0.630 3.515 5.025 1.104 1.095 1.113

35 to 39 0.315 3.830 5.763 0.552 0.543 0.561

40 to 44 0.140 3.970 6.141 0.245 0.237 0.254

45 to 49 0.025 3.995 6.626 0.044 0.035 0.053

TFR 3.995 * TFR 6.999 6.938 7.060

doi:10.1371/journal.pone.0023222.t010

Table 11. PF Ratio-Based Estimates of Age-Specific Fertility with Uncertainty Intervals.

Tamil Nadu (1996–1998)

Age
SRS
ASFR

Estimated
Cumulative
Fertility

DHS Children
Ever Born
(Parity) P3/F3 s.d.

Adjusted
ASFR

95 Percent
Lower Bound

95 Percent
Upper
Bound

15 to 19 0.155 0.155 1.453 2.287 0.796 0.354 0.339 0.370

20 to 24 0.895 1.050 1.976 2.047 2.031 2.062

25 to 29 0.620 1.670 2.601 1.418 1.402 1.434

30 to 34 0.225 1.895 3.007 0.515 0.499 0.530

35 to 39 0.055 1.950 3.525 0.126 0.110 0.141

40 to 44 0.015 1.965 4.249 0.034 0.019 0.050

45 to 49 0.005 1.970 4.896 0.011 20.004 0.027

TFR 1.970 * TFR 4.505 4.396 4.615

doi:10.1371/journal.pone.0023222.t011
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than that observed in Tamil Nadu, just as in the original data

where Bihar was reported with a TFR of 4.36 and Tamil Nadu

with a TFR of 1.97. In the adjusted estimates, we observe TFRs of

7.69 and 4.51, respectively. These estimates vary in precision, in a

way that appears natural as well. The range of estimates for Bihar

is extremely tight, while in Tamil Nadu these ranges, and the

shape of the ASFR curves in general, are more variable. These

fluctuations in precision are a natural consequence of sample size

differences rather than a systematic artifact of the monte carlo

simulation.

Discussion

The main contribution of this research has been to illustrate

how the Brass PF ratio method may be extended to incorporate

statistical uncertainty associated with data inputs using simple

methods from stochastic modeling and uncertainty analysis. The

results of the procedure provide point estimates and 95%

uncertainty intervals for age-specific fertility that adjust survey-

based estimates for underreporting of births. The approach

represents a potentially significant improvement in stochastic

demographic modeling, suitable for use in making between-group

fertility comparisons as well as in demographic estimation or

projection models for which a desire to incorporate statistical

uncertainty exists. In the latter vein, there are natural links

between this work and recent developments within the field of

stochastic population forecasting [13,44]. Curiously, most demo-

graphic modeling occurs without consideration of statistical

uncertainty. In population forecasting, such uncertainty is often

treated in an ad-hoc manner with low, high, and ‘‘most-likely’’

scenarios presented without uniform or robust description of what

the proposed range of variation means in statistical terms [13]. In

indirect estimation models, statistical uncertainty is more often

than not simply ignored, as has historically been the case with the

Brass PF ratio. It is curious that such little dialogue between

statisticians and demographers has been undertaken [23] in spite

of a clear common interest in the impact of missing data on the

validity of estimates [8,51] In statistical modeling, established

methods for dealing with missing or incomplete data are standard

fair [51,52], as are indirect estimation methods such as the Brass

PF ratio in demography [1,8]. This research provides one

potential example of an appropriate way to conduct such a

dialogue between statisticians and demographers, bridging the two

approaches within a common conceptual framework found within

uncertainty analysis and stochastic modeling. This approach

has a history in demographic studies of animal populations

[12,43,47,48] and clear potential for application to human

demography as well.

From a practical point of view, it is clear that the results of the

stochastic Brass PF ratio method differ in important ways from

those found using the traditional procedure. First and foremost,

the stochastic PF ratio-based estimates of age-specific fertility

suggest much higher total fertility rates than those calculated using

the deterministic procedure (Table 12). On average, the stochastic

estimates suggest TFRs 1.128 children higher than the traditional

Brass procedure and in all cases the 95% uncertainty interval

associated with these estimates did not overlap the DHS-reported

children-ever-born levels for women 45–49. These differences beg

the question of whether the stochastic method overestimates

fertility, or if the traditional Brass algorithm does not adjust it

Table 12. Comparison of Total Fertility Rate Across Estimates.

Province SRS TFR
Original
Adjusted TFR

Stochastic PF Ratio
Adjusted TFR

95% Lower
Bound

95% Upper
Bound

DHS Children Ever-Born
45–49

Bihar 4.360 6.457 7.722 7.661 7.782 6.45

Uttar Pradesh 4.785 6.899 8.498 8.441 8.556 6.85

Goa 1.420 4.025 4.024 3.969 4.080 4.46

Madhya Pradesh 3.995 5.658 6.999 6.938 7.060 6.63

Tamil Nadu 1.970 3.068 4.505 4.396 4.615 4.90

doi:10.1371/journal.pone.0023222.t012

Figure 7. The stochastic procedure preserves diversity in age-specific fertility between the Provinces.
doi:10.1371/journal.pone.0023222.g007
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enough. Either eventuality is possible, but the higher TFRs

implied by the stochastic procedure in comparison to the DHS

data do raise the suspicion that this method might overstate

fertility in general. To assess the sensitivity of population growth to

these differences, we reviewed changes in asymptotic growth rates

(Euler-Lotka R) [2,3] associated with the observed range of fertility

inputs while holding mortality levels constant at the National level

and assuming net-migration of zero. This simple sensitivity

analysis indicates the impact of these higher fertility estimates on

models of population dynamics. Table 13 reports the results of this

analysis, which suggests that the percent point difference between

the highest (95% upper bound) TFR estimates and the lowest

SRS-based TFR estimates constitutes a 0.446 percent point

difference in annual estimated population growth rates. These

differences range between a low of 0.21 and a high of 0.73

percentage points (Figure 8). These are clearly not trivial

differences and will certainly have an impact upon population

dynamic models.

No gold-standard reference fertility levels exist against which we

may benchmark the performance of the stochastic method—or the

traditional application for that matter. A number of possibilities

exist with respect to the accuracy of the proposed method. First, it

is possible that the traditional PF ratio based estimates of age-

specific and total fertility are accurate and that the stochastic

variants do represent over-estimates of fertility levels. A closer

correspondence between the DHS-reported parity of women 45–

49 and the traditional Brass-based estimates is supportive of this

proposition, but this is likely a mechanistic artifact because it is the

DHS data itself which drives the P3/F3 ratio used in the

deterministic version of Brass’ model. It seems more likely that

some aspect of the error propagation associated with the

simulation of the distribution of the P3/F3 ratio is responsible

for the increased values. Along these lines, inflated values of the

P3/F3 ratio could occur if the distributions associated with ASFR

estimate are mis-specified. One way this could have occurred in

the current analysis is associated with an assumption that the DHS

distributions of fertility during the past 12 months would be

reflective of the variation associated with the SRS-based

estimates—introduced by a lack of available data from the Indian

Census on standard deviations of these measurements. In this case,

wider than estimated margins of error associated with mis-

specified standard deviations could produce the higher than

expected stochastic Brass PF ratio-based estimates reported here.

While possible, this shortcoming does not invalidate the thrust

of this paper. The focus of here has been illustrative: it provides a

clear example with readily-available data of the proposed

application. In practical application, any appropriate distribution

might be applied to estimating the first-step inputs driving the

procedure. Moreover, direct estimates of standard deviations with

appropriate sample sizes—rather than surrogate inputs to

approximate them—should produce less-inflated estimates of

age-specific and total fertility rates. It remains possible that

incomplete reporting in the DHS could result in mis-estimation of

the surrogate standard deviations utilized in this study—just as

easily as the case with the SRS-based estimates. In that case, the

inflation could result from the same systematic incompleteness

associated with this dataset. Systematic underreporting of fertility

can lead to mis-estimation of variance just as easily as the

Table 13. Annualized Euler-Lotka R by Fertility Estimate.

Fertility Measure Bihar Uttar Pradesh Goa Madhya Pradesh Tamil Nadu

SRS 1.06 1.11 0.24 1.34 0.54

Brass PF Original 1.34 1.38 0.99 1.42 1.17

Brass PF Point 1.5 1.54 0.31 1.52 1.21

Brass PF Lower Bound 1.48 1.52 0.12 1.50 1.16

Brass PF Upper Bound 1.52 1.55 0.63 1.55 1.27

Percent Point Difference, SRS vs Upper Bound 0.46 0.44 0.39 0.21 0.73

doi:10.1371/journal.pone.0023222.t013

Figure 8. The stochastic procedure appears to make much higher estimates of age-specific and total fertility rates than observed in
the standad Brass method. Thes have significant implications for population growth estimates.
doi:10.1371/journal.pone.0023222.g008
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proportion, suggesting that this inflation could as easily be real as

artifactual. Without a gold-standard for comparison, this issue will

remain unresolved in the current research.

It is clear that the potential inflation of these estimates, however,

is not a basic shortcoming related to the use of monte carlo

simulation for fitting distributions, which has a long history in

statistics, uncertainty analysis, and decision modeling. It is

intimately associated with many forms of hypothesis testing in

these disciplines [46,53,54,55,56]. The exercise presented here is

largely one of distribution-fitting and monte carlo simulation has

been seen as an acceptable alternative to procedures such as jack-

knifing or boot-strapping, which involve resampling of an observed

distribution of values, when there is strong justification for

assuming a particular probability model [13,43,53]. These

procedures may be used to obtain valid hypothesis tests under

these conditions [54,57]. In the current study, Kolmogorov-

Smirnov tests of normality [49,50] for children-ever-born

distributions in each age interval indicated the appropriateness

of this distribution for the reported analysis. Given the lack of

available data on standard deviations for the age-specific fertility

data employed here, no goodness of fit tests could be utilized to

verify that the binomial distribution accurately reflects them;

however, no known distribution exists with greater conceptual

plausibility for capturing the risk of birth than the binomial.

Moreover, this distribution has been assumed in a number of other

previously-published studies of fertility probability in non-human

populations [13,43,47,48]. In spite of the possibility of some

inflation of estimates in the current study, there is every indication

that the method presented here should produce valid, robust, and

accurate estimates of age-specific and total fertility.

The approach presented in this research appears to be a fruitful

direction for further development of a stochastic methods for

indirect estimation in demography. The paper presents a valid

method for estimating the uncertainty associated with Brass PF

ratio-based age-specific and total fertility rates. Future evaluations

should explore the properties of this method across a larger variety

of settings and attempt, where possible, to investigate further

whether the method is prone to upward-biasing of these estimates

or, in fact, produces more accurate ones. In either case,

demographers in need of incorporation of statistical uncertainty

into indirect estimation procedures may find the described method

here to be a fruitful avenue for application.
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