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Abstract

With the existence of large publicly available plant gene expression data sets, many groups have undertaken data analyses to
construct gene coexpression networks and functionally annotate genes. Often, a large compendium of unrelated or condition-
independent expression data is used to construct gene networks. Condition-dependent expression experiments consisting of
well-defined conditions/treatments have also been used to create coexpression networks to help examine particular biological
processes. Gene networks derived from either condition-dependent or condition-independent data can be difficult to
interpret if a large number of genes and connections are present. However, algorithms exist to identify modules of highly
connected and biologically relevant genes within coexpression networks. In this study, we have used publicly available rice
(Oryza sativa) gene expression data to create gene coexpression networks using both condition-dependent and condition-
independent data and have identified gene modules within these networks using the Weighted Gene Coexpression Network
Analysis method. We compared the number of genes assigned to modules and the biological interpretability of gene
coexpression modules to assess the utility of condition-dependent and condition-independent gene coexpression networks.
For the purpose of providing functional annotation to rice genes, we found that gene modules identified by coexpression
analysis of condition-dependent gene expression experiments to be more useful than gene modules identified by analysis of a
condition-independent data set. We have incorporated our results into the MSU Rice Genome Annotation Project database as
additional expression-based annotation for 13,537 genes, 2,980 of which lack a functional annotation description. These
results provide two new types of functional annotation for our database. Genes in modules are now associated with groups of
genes that constitute a collective functional annotation of those modules. Additionally, the expression patterns of genes
across the treatments/conditions of an expression experiment comprise a second form of useful annotation.
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Introduction

The importance of large-scale gene expression analysis in

understanding gene function became apparent with the first report

of genome-wide transcript expression profiling with DNA micro-

arrays [1]. This led to the use of coexpression analyses to measure

not only the physiological state of cells but also to characterize genes

with no known function [2]. As more gene expression data sets

became available, data from multiple experiments were combined

into single analyses to functionally annotate genes based on the

conditions under which they are expressed and their correlation to

genes with similar expression patterns [3,4]. In plants, numerous

projects perform large-scale gene expression analyses in which

coexpression networks are created. Several of these combine results

from individual experiments and utilize Pearson correlation

coefficients between all gene pairs [5,6,7,8,9,10,11] while others

incorporate multiple types of data including gene transcript levels,

protein-protein interactions, metabolite profiles, and predicted

conserved gene interactions [6,12,13,14].

A number of publicly available gene coexpression network

databases have been constructed that allow researchers to query

pre-constructed gene networks with a target gene(s). These

databases permit the identification of correlated gene partners

and visualization of a graphical display of coexpression networks

with user-specified cutoff criteria including specific experiments or

conditions upon which the correlation calculation is performed

[5,6,7,8,11]. One confounding problem with current analysis and

display methods is that coexpression networks can be very

complex thereby making interpretation difficult. Although the

selection of a correlation value cutoff can simplify a network by

reducing the number of edges, the understanding of gene networks

is still problematic [15,16]. Due to the complexity of gene

coexpression networks, various methods have been used to find the

most informative relationships within correlation networks

[17,18,19,20,21,22,23,24].

Several research groups have identified subsets of highly

correlated genes within large gene coexpression networks in

Arabidopsis thaliana and rice (Oryza sativa) [14,17,18,19,21,22,25,26].

Using various algorithms, these reports examine gene coexpression

networks to identify subsets of genes that are more highly connected

and highly correlated to each other than they are to other genes in

the network. These subnetworks of genes are referred to as modules.

Genes within such modules have been shown to be enriched for

particular Gene Ontology (GO) categories [17,18,19,22], and

relationships depicted by gene modules are congruent with expected

gene pathways [18,19,22]. Additionally, hypotheses formulated
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from gene coexpression modules for particular genetic pathways

related to seed embyro development, chlorophyll degradation,

organ development and lectin receptor kinase inhibition of seed

germination have been substantiated by downstream laboratory

experiments [18,27,28,29].

Methods for analyzing genome-wide expression data are either

condition-dependent or condition-independent depending on the

selection of input data. Condition-dependent data consist of

planned treatments/conditions that are designed to record

transcript responses to specific physiological states. In contrast,

condition-independent data are a compilation of unrelated

treatments/conditions that are not designed to provide insight to

a particular biological response. Most large-scale plant gene

coexpression resources utilize condition-independent analyses that

rely upon large compendia of gene expression data sets from

independent sources [6,7,8,9,10,13,15,17,18,19,21,22,25,26].

Such analyses are convenient because they make use of the

maximal available data. However, there are potential problems

with condition-independent analyses as it has been demonstrated

that gene coexpression analysis with too many microarray samples

can result in the loss of information [30]. Difficulty in interpreting

the biological meaning of correlations in complex condition-

independent data sets is a second problem with this analysis

strategy. In contrast, condition-dependent analyses typically utilize

a smaller, defined set of treatments or conditions that have been

chosen to test a particular hypothesis or offer insight into a specific

physiological condition [15,16]. Nonetheless, both condition-

independent and condition-dependent gene coexpression studies

have utility. Analyses from large condition-independent data sets

are likely to identify highly conserved core gene networks while

smaller condition-dependent experiments offer the opportunity to

recognize more narrowly defined correlations.

In this study, we have adopted a condition-dependent approach

and have separately analyzed fifteen rice gene expression data sets

based on the Affymetrix Gene-Chip Rice Genome Array using

Weighted Gene Correlation Network Analysis (WGCNA), a

network analysis method that has been widely used to identify

biologically meaningful gene modules in a variety of organisms

[24,31,32,33,34,35,36]. Additionally, we created a condition-

independent data set from the same fifteen rice gene expression

experiments and identified gene modules from the combined data.

A comparison of the results from the two analyses suggests that

while both have utility, the data analysis from individual

experiments facilitates biological interpretation and is less likely

to obscure uncommon but potentially informative gene coexpres-

sion modules than the combined data set. Using the condition-

dependent results, we have supplemented the annotation of rice

genes as 17,298 of the 40,829 protein coding genes in the MSU

Rice Genome Annotation Project lack assigned functional

annotation [37]. These results provide two important types of

annotation. Genes included in these analyses are now associated

with expression patterns across defined treatments/conditions.

Additionally, genes that have been assigned to coexpression

modules can be considered in the context of all other genes that

are found within the same module. Both module membership and

individual gene expression patterns have been incorporated as part

of the annotation in the MSU Rice Genome Annotation Project

database (http://rice.plantbiology.msu.edu) [37].

Results

Datasets Used in This Study
Publicly available rice gene expression data were downloaded

from the National Center for Biotechnology Information Gene

Expression Omnibus (NCBI GEO) and European Bioinformatics

Institute (EBI) ArrayExpress [38,39] in February 2010. Only data

that had been generated using the Affymetrix Rice GeneChip

were considered for analysis. In total, fifteen data sets were chosen

for analysis in this study representing 440 arrays (Tables 1, S1, S2).

The experimental conditions used to generate the data sets

included biotic and abiotic stresses, cytokinin treatment, gibber-

ellin signalling pathway mutant analysis, an extensive tissue atlas,

seed germination time courses, an inflorescence and seed

developmental series, and photoperiod/thermoperiod time courses

[40,41,42,43,44,45,46,47,48,49,50]. Not all samples or treat-

ments/conditions for each data set were included in the analyses.

In a few experiments, some treatments/conditions were excluded

in order to simplify the interpretation of the results. For example,

only expression data for a single rice cultivar, Minghui 63, were

included in the analysis of the GSE19024 tissue atlas. Also, root

and leaf samples were not essential for the GSE6893 inflorescence

and seed developmental series, and root and leaf samples were

removed from the dataset. Some individual chips were also

excluded after quality analysis (see Materials and Methods), and in

two cases, this resulted in all replicates for a single treatment being

discarded: shoot 2Fe+P from GSE17245 and LL LDHC 124 hrs

from E-MEXP-2506. Descriptions of the chips that were analyzed

for each experiment in this study as well as the number of arrays

and samples/treatments per experiment are provided in Tables S1

and S2.

Data from each experiment were analyzed individually or as a

single combined data set using the WGCNA method [24]. The

goals of the analyses were to identify modules of highly

coexpressed genes using both methods (condition-dependent and

condition-independent) and then to select the method with the

most informative results for supplemental rice gene annotation.

For both methods, normalized trend plots were generated for all

gene modules. WGCNA analyses were assessed by the number of

modules identified, the similarity of expression values for the genes

within a module, and the biological interpretability of the

expression patterns of the genes within modules. Although

relaxation of WGCNA-required parameters would have resulted

in additional genes being assigned to modules, this would have

reduced the overall correlation of the genes in each module (see

Materials and Methods, Table 1).

Coexpression analyses from individual, condition-
dependent experiments

Following coefficient of variation (CV) filtering of the condition-

dependent experiments, a total of 13,537 genes were retained for

gene coexpression analysis in at least one experiment (range 672 to

7,478; Table S3). From all 15 experiments, 71 coexpression

modules were identified containing 12,328 non-redundant genes

(Table 2, Figures 1, 2, S1, S2, S3, S4, S5, S6, S7, S8, S9, S10, S11,

S12, S13). The remaining 1,209 genes that passed CV filtering

were not assigned to any coexpression module. The number of

modules identified within an experiment varied from two to nine,

and the number of genes assigned to all modules within a single

experiment ranged from 567 to 4,566. Modules contained

between 40 and 3,574 genes with an average module size of 405

genes. The majority of genes assigned to coexpression modules

have functional annotation, but nearly one fifth (2,908) of all genes

assigned to modules lack functional annotation. Transposable

element (TE) related loci were included in the gene sets for these

analyses, but overall, only 406 of the genes assigned to modules

were TE-related (Table 2), consistent with their reduced levels of

expression. While a gene can be present in only one module from

a single experiment, many genes were found in multiple modules

Rice Gene Annotation by Network Analysis
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from different experiments (Table 3). In fact, most genes that had

been assigned to modules were found in modules from two or

more experiments, and one gene, LOC_Os11g31540, a BRASSI-

NOSTEROID INSENSITIVE 1-associated receptor kinase 1

precursor, was found in modules from 12 different experiments

(Table 3).

The gene coexpression modules identified from the panicle and

seed developmental series (GSE6893, [42]) are illustrative of the

results that can be obtained using WGCNA analysis with

coexpression data. Expression values from a total of 4,231 genes

were analyzed from this experiment (Table S3). Eight modules

were identified, and the number of genes per module ranged from

104 to 725 with 1,223 genes not assigned to any module. The

expression patterns for each module are distinctive (Figure 1).

Some modules coincide with very specific periods of growth such

as anthesis (Figure 1H), middle seed development (Figure 1D) or

late panicle maturation (Figure 1E). Two modules show gene

expression levels that are elevated during both panicle and seed

development (Figures 1A, 1C). Three modules contain genes that

are both positively and negatively correlated and that have

expression levels that are alternately high and low in panicles and

seeds (Figures 1B, 1F, 1G).

Gene modules obtained by analysis of expression data from a

pathogen response experiment (GSE10373) are shown in Figure 2

[43]. This time course experiment was performed on two rice

genotypes, Nipponbare and IAC165, after two treatment condi-

tions, mock inoculation and infection with the parasitic weed Striga

hermonthica. Because the samples were all derived from the same

tissue type (roots), fewer genes (672) passed the CV filter relative to

the developmental time course that contained a variety of tissue

types (Figure 1). The genes were split into three modules ranging

in size from 52 to 351 (Table S3) that display either genotype by

treatment responses (Figures 2A and 2B) or genotype specific

expression (Figure 2C).

Enrichment analysis was performed to identify genes containing

particular Pfam domains that are over-represented in these

coexpression modules (Tables 4, S4). Statistically significant

enrichment was observed in modules from all 15 experiments

analyzed. A total of 61 modules were found to have enrichment of

genes with at least one Pfam domain, and 114 Pfam domains were

enriched in at least one module. A number of modules had

enrichment of Pfam domains consistent with the assayed biology.

For example, the GSE6893-blue module contains genes that are

expressed during late seed development (Figure 1B) and

enrichment of genes with seed-related cupin, protease inhibitor/

seed storage/LTP family and starch synthase catalytic Pfam

domains was evident (Table S4) [51,52,53]. Also, the GSE10373-

blue, GSE16793-blue and GSE18361-blue modules have higher

than expected numbers of genes with terpene synthase, WRKY

DNA binding and chitinase domains, all domains that are found in

genes that are known to be responsive to biotic stresses (Tables S4,

S5) [54,55,56,57].

Coexpression analyses from combined, condition-
independent experiments

A condition-independent data set was constructed by combining

all data from the 15 condition-dependent experiments used above

and performing coexpression analysis with WGCNA. After CV

filtering 17,320 genes were used for gene module identification

using WGCNA. Only 15 modules containing 10,077 genes were

Table 1. Rice gene expression data sets and analysis parameters used in this study.

Data Set1 Description CV Cutoff2 Beta Parameter3 Tree Cut Parameter3

GSE4471 Arsenate response in roots of cultivars Azucena and Bala [40] 0.6 15 0.6

GSE6719 Cytokinin response in roots and leaves [41] 0.8 15 0.9

GSE68934 Inflorescence and seed developmental series [42] 0.8 22 0.9

GSE6901 Seedlings treated with abiotic stresses [42] 0.8 15 0.8

GSE10373 Striga hermonthica infection time course from roots of cultivars IAC165
and Nipponbare [43]

0.6 10 0.8

GSE11025 Rice stripe virus infection of seedlings of cultivars WuYun3 and KT95 0.6 15 0.7

GSE15046 Analysis of shoots of gibberellin signalling mutants [44] 0.6 15 0.9

GSE16793 Infection by Xanthomonas oryzae pv. oryzae or by X. oryzae pv. oryzicola 0.6 15 0.9

GSE172455 Iron and phosphorus interactions in shoots and roots [45] 0.6 15 0.9

GSE18361 Time course of root infection with Magnaporthe oryzae Guy11 [46] 0.6 30 0.9

GSE190246 Tissue atlas from cultivar Minghui 63 [47] 0.8 11 0.8

GSE19239 Response of transgenic rice with maize Rxo1 gene to infection by
Xanthomonas oryzae pv. oryzicola [48]

0.6 15 0.7

E-MEXP-1766 Time course from aerobic germination of seeds [49] 0.7 15 0.7

E-MEXP-2267 Time course from anaerobic/aerobic germination of seeds [50] 0.7 15 0.9

E-MEXP-25067 Thermoperiod/photoperiod time courses 0.6 7 0.9

Combined data set Combined chips from all 15 individual experiments 0.9 4 0.95

1Identifiers for data are from either NCBI GEO or EBI ArrayExpress.
2Coefficient of variation cutoff used to filter averaged and normalized gene expression data.
3Beta and tree cut parameters used during WGCNA analysis of expression data.
4Only shoot apical meristem, developing panicle and developing seed samples were used for this analysis.
5Shoot 2Fe+P samples were removed after chip QC analysis.
6Only data from Minghui 63 were analyzed. Expression data from Zhenshan 97 were excluded from analysis. Callus tissue samples were not included in the analysis.
7The LL-LDHC-124 hrs sample was excluded from analysis after chip QC analysis.
doi:10.1371/journal.pone.0022196.t001
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identified from the combined data set (Tables 2, S6). Those

modules varied in size from 40 to 3,740 genes and had an average

size of 671 genes. There were 7,481 non-TE related genes with

functional annotation and 2,403 genes with no functional

annotation assigned to modules. Enrichment analysis was also

performed to identify Pfam domains that were over-represented in

genes from the condition-independent coexpression modules. A

total of 14 modules had enrichment of a total of 209 Pfam domains

(Table S7).

In combination, the condition-dependent and condition-inde-

pendent analyses included 18,598 genes, of which 15,336 were

assigned to at least one module from at least one analysis. Of the

12,259 genes common to both types of analysis, 11,204 were

assigned to modules from the condition-dependent experiments,

but only 7,480 were found in condition-independent modules.

Modules from both the condition-dependent and condition-

independent analyses contained a common subset of 7,069 genes.

There were 5,259 genes found in at least one condition-dependent

module that were not assigned to any modules from the condition-

independent analysis and 3,008 genes found in a condition-

independent module that were not found in any condition-

dependent modules (Figure 3).

Fewer genes were assigned to gene coexpression modules from

condition-independent compared to condition-dependent analy-

ses, and there were fewer modules identified from the condition-

independent analysis (Table 2). An examination of the trend plots

of the condition-independent gene modules shows that some of the

patterns observed in condition-dependent gene modules can be

observed in condition-independent modules (e.g., Figure S9B vs.

Figure S14A; Figure S9B vs. Figure S14B; Figure S13F vs. Figure

S14C). Additionally, some condition-independent modules have

similar gene expression patterns across a subset of conditions.

Figures S14A and S14B show gene expression patterns from the

green-yellow and pink modules from the condition-independent

analysis, and these modules have similar patterns of gene

expression across numerous samples. However, some striking

expression patterns from condition-dependent modules are not

easily identified in any condition-independent modules such as the

anti-correlated circadian cycles in Figures S13E and S13I or the

infection response expression in Figure S6A; these expression

patterns may be obscured within a densely populated condition-

independent module. A figure containing all gene expression trend

plots for each condition-independent gene module can be

downloaded from the MSU Rice Genome Annotation FTP site

(ftp://ftp.plantbiology.msu.edu/pub/data/rice_gene_assoc/Figure

_condition_independent_modules.pdf).

A comparison was made to identify the overlap in genes

between modules from the two strategies (Table S8). Often, a high

proportion of genes from individual experiment modules were

assigned to a gene coexpression module from the condition-

independent analysis. This is not absolute as fewer than half of the

genes from some condition-dependent modules were present in the

condition-independent modules. In a few cases, the majority of

genes from a condition-dependent module were almost entirely

contained within a single condition-independent module. Howev-

er, the more common occurrence was for genes from a single

Table 2. Numbers of genes and annotation status of genes assigned to modules by two analysis methods.

Number of Genes
Analyzed1

Number of
Modules

Genes with
Functional
Annotation

Genes without
Functional
Annotation

TE-related
Genes2

Total Genes
Assigned to
Modules

Experiment ID3

GSE4471 2,613 6 1,777 672 83 2,532

GSE6719 2,802 5 2,268 478 40 2,786

GSE6893 4,231 8 2,340 600 68 3,008

GSE6901 739 3 565 131 14 710

GSE10373 672 3 395 144 28 567

GSE11025 835 4 535 176 18 729

GSE15046 1,197 6 976 190 20 1,186

GSE16793 678 2 469 93 7 569

GSE17245 4,747 5 3,679 823 64 4,566

GSE18361 1,162 3 741 227 41 1,009

GSE19024 7,478 5 1,453 435 45 1,933

GSE19239 1,990 5 1,363 499 82 1,944

E-MEXP-1766 3,704 3 2,986 605 68 3,659

E-MEXP-2267 2,421 4 1,835 441 49 2,325

E-MEXP-2506 1,816 9 844 266 97 1,207

Non-redundant totals from individual experiments

13,537 71 9,014 2,908 406 12,328

Combined condition-independent data set4

17,320 15 7,481 2,403 193 10,077

1Number of genes that had passed the CV filter and that were subsequently analyzed by the WGCNA method.
2Transposable element-related genes.
3Identifiers for data from either NCBI GEO or EBI ArrayExpress.
4The condition-independent data set contained all gene chips used in the analyses of each of the 15 individual experiments.
doi:10.1371/journal.pone.0022196.t002
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condition-dependent module to be distributed between a subset of

condition-independent modules, and this was the case for the

modules described above in Figures S9B, S14A, S14B, which

represent the GSE19024-brown module and the condition-

independent green yellow and pink modules (Table S8).

Improvement of rice gene annotation via coexpression
analyses

We incorporated the results from the analyses of individual

condition-dependent experiments into the MSU Rice Genome

Annotation Project [37]. An overview page (http://rice.plantbio

logy.msu.edu/annotation_association_analysis.shtml) provides a

brief description of the procedure for identifying gene coexpression

modules and contains links to pages that show trend plots for the

coexpression modules for each data set analyzed. Researchers can

find large-scale images of the trend plots for all modules, lists of

genes from each module, and files with correlation values for all

genes analyzed from each data set. Search pages allow users to

query the database to explore the expression patterns of genes

within a single module, within a single data set or between data

sets. To enhance the functional annotation of rice genes, trend

Figure 1. Normalized expression values of modules of genes identified from a panicle/seed developmental series. Gene expression
values from a panicle and seed developmental series were processed using Weighted Gene Coexpression Network Analysis to identify modules of
highly correlated genes [36,42]. Tissues analyzed were shoot apical meristems (SAM), panicles between 0 and 3 cm long (inflorescence P1), panicles
between 3 and 5 cm long (inflorescence P2), panicles between 5 and 10 cm long (inflorescence P3), panicles between 10 and 15 cm long
(inflorescence P4), panicles between 15 and 20 cm long (inflorescence P5), between 22 and 30 cm long - mature pollen stage (P6), developing seed 0
to 2 days after pollination (dap; seed S1), developing seed 3 to 4 dap (seed S2), developing seed 5 to 10 dap (seed S3), developing seed 11 to 20 dap
(seed S4), developing seed 21 to 29 dap (seed S5). Expression data are represented here as normalized values (Z-scores). Modules names: (A)
GSE6893-black, (B) GSE6893-blue, (C) GSE6893-red, (D) GSE6893-pink, (E) GSE6893-yellow, (F) GSE6893-brown, (G) GSE6893-turquoise, (H) GSE6893-
green.
doi:10.1371/journal.pone.0022196.g001
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plots for all genes covered in this study are now included on the

gene annotation pages. For genes assigned to a module, the trend

plot for the entire module is displayed. For genes not assigned to a

module, the trend plot represents only the normalized expression

values for that single gene across the treatments from the relevant

experiment. In both cases, links to additional information about

the module and/or parent data set are also provided.

Discussion

Gene expression data have expanded the resources available for

functional annotation on a gene as well as a genomic scale. In the

simplest cases, such data can help to define the tissues and

conditions under which a gene is expressed. Several projects have

performed correlation analyses on plant gene expression data in

order to identify gene associations that may imply common

functions or even regulatory relationships [6,7,8,9,10,13,17,18,

19,21,22,25,26]. Many of these efforts use combined expression

data sets from numerous independent experiments, and the results

are typically presented in terms of complex gene association

networks. In some cases, these networks are further analyzed in

order to identify modules of highly correlated and connected

genes.

In this study, we have performed analyses on publicly available

gene expression data from a diverse collection of experiments to

identify gene coexpression modules. Unlike previous studies that

use combined data sets from multiple rice expression experiments

[7,14,17,26], here we performed gene coexpression module

analysis on expression data from individual experiments and

compared it with results from a combined condition-independent

data set. Our motivation in performing the condition-dependent

analyses was to ensure that strong correlations apparent in select

conditions were not lost when multiple diverse experiments are

combined. The observation that of the genes common to both

analyses, over 91% were assigned to at least one gene module from

the condition-dependent analyses but only 61% were found in the

condition-independent gene modules supports our reasoning

(Figure 3). Certainly, a slight change in analysis parameters could

alter the numbers of genes in modules and thus shift the

percentage of genes found in modules in the two analysis

approaches. However, the large number of genes in many of the

condition-independent modules present challenges in biological

interpretation. More importantly, the common splitting of genes

within a single condition-dependent module into multiple modules

in the condition-independent analysis indicates that important

functional associations between genes are lost through condition-

independent analysis (Table S6, Figure 3). The likely explanation

for this last observation is that genes are correlated with different

groups of genes within different tissues or under different

physiological states. A well-defined experiment would permit the

observation of one gene coexpression module, but when data from

that experiment are combined with expression data from many

other experiments, the correlations between the genes from that

single coexpression module will be weakened and the genes in that

module may be split into numerous new gene modules. Condition-

Figure 2. Normalized expression values of modules of genes
identified from a Striga root infection study. Gene expression
values from Striga hermonthica root infection time course of rice
cultivars IAC165 and Nipponbare were processed using Weighted Gene
Coexpression Network Analysis to identify modules of highly correlated
genes [36,43]. Expression data are represented here as normalized
values (Z-scores). Two gene modules, (A) GSE10373-blue and (B)
GSE10373-brown, display differential responses between genes in the
two cultivars in response to infection by S. hermonthica. Genes from
one module, (C) GSE10373-turquoise, are differentially expressed
between the two rice cultivars but are not responsive to infection by
S. hermonthica. Plots for genes that are positively correlated with each
other within a module are shown in the same color. Genes within a
module that are displayed in different colors are anti-correlated.
doi:10.1371/journal.pone.0022196.g002

Table 3. Number of genes assigned to modules from
different experiments.

Number of experiments Number of genes

1 5,170

2 2,768

3 1,860

4 1,212

5 698

6 374

7 149

8 64

9 25

10 7

11 0

12 1

The numbers listed only include those genes that passed the coefficient of
variation filtering and were assigned to a module of highly correlated genes.
Genes that passed the coefficient of variation filtering but that were unassigned
to a module were excluded from this analysis.
doi:10.1371/journal.pone.0022196.t003

Rice Gene Annotation by Network Analysis

PLoS ONE | www.plosone.org 6 July 2011 | Volume 6 | Issue 7 | e22196



independent analyses are more likely to result in gene modules

with strong coexpression correlations which can obscure weaker

gene coexpression relationships that occur under a subset of

conditions/treatments. The obscuring effect of condition-indepen-

dent expression analyses is likely to hold regardless of the

algorithm or parameters used to identify gene modules. Therefore,

given that our goal was to provide functional annotation to the rice

gene set by identifying as many gene modules as possible, we find

that the condition-dependent gene coexpression analyses are more

informative.

The condition-dependent coexpression modules have been

incorporated into the MSU Rice Genome Annotation Project

database as an additional form of functional annotation. Of the

40,829 non-TE-related genes in the rice genome, 11,922 were

assigned to at least one gene coexpression module, and 2,908

(17%) of the 17,298 rice genes that currently lack a functional

description were found in at least one module. Membership in a

gene module provides two distinct types of annotation to a gene.

The first is association with other genes that are similarly expressed

under specific conditions, and these genes may be functionally

related. The second type of annotation is simply the relative

pattern of expression of the gene across experimental treatments

or conditions. In fact, 5,832 genes that may have been assigned to

one or more coexpression modules were also found to be

unassociated with any module in at least one other experiment

(Table S3). The expression patterns of all genes not assigned to

modules are informative as well and have been incorporated into

the MSU Rice Genome Annotation Project database.

The 71 gene coexpression modules from individual experiments

are diverse and will be of interest to rice researchers as these

modules define sets of genes that are expressed in specific tissues or

in response to various pathogen infection, abiotic stress, hormone

treatments or environmental conditions (Figures 1, 2, S1, S2, S3,

S4, S5, S6, S7, S8, S9, S10, S11, S12, S13). Other modules

represent cultivar-specific expression differences that are appar-

ently unrelated to experimental treatment (Figures 2C, S1D, S4A).

A statistical analysis of Pfam domain enrichment of module genes

also showed that many modules have higher numbers of genes

with Pfam domains related to the expected physiological state of

the module, suggesting functional support for those modules

(Tables 4, S4). In addition to providing annotation for genes that

have been assigned to coexpression modules, the modules will be

useful for formulating or supporting biological hypotheses. For

example, WRKY transcription factors are often associated with

regulating responses to pathogen infection [58]. A number of

modules identified from biotic stress experiments contain WRKY

genes, and it might be hypothesized that those transcription factors

regulate the expression of other genes within those modules. Also,

Table 4. Number of gene coexpression modules and number of enriched Pfam domains associated with different experiments.

Experiment Number of Modules Analyzed
Number Modules with Pfam
Enrichment

Number Unique Pfam Domains
Enriched within Experiment

E-MEXP-1766 3 3 24

E-MEXP-2267 4 3 19

E-MEXP-2506 9 9 31

GSE10373 3 3 8

GSE11025 4 3 4

GSE15046 6 3 14

GSE16793 2 2 9

GSE17245 5 5 25

GSE18361 3 3 26

GSE19024 5 4 21

GSE19239 5 4 11

GSE4471 6 5 13

GSE6719 5 4 14

GSE6893 8 7 35

GSE6901 3 3 7

doi:10.1371/journal.pone.0022196.t004

Figure 3. A Venn diagram showing the intersections of genes
used in condition-dependent and condition-independent co-
expression analyses. The blue circles on the left represent the
combined results from the condition-dependent coexpression analyses.
The green circles on the right represent the results from the condition-
independent analysis. The inner and outer circles respectively represent
the genes that were assigned to modules and those that were not
assigned to modules in each of the analyses, respectively.
doi:10.1371/journal.pone.0022196.g003
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a set of four terpene synthases and one cytochrome P450 are

coexpressed in a single module from each of the Xanthomonas,

Magnaporthe oryzae and S. hermonthica infection studies (Table S5),

suggesting that these genes may be commonly expressed in

response to a variety of biotic stresses. In contrast, numerous other

chitinases, cytochrome P450s and terpene synthases were found in

only one or two of these same gene modules suggesting that these

genes are elicited by specific biotic stresses.

When performing coexpression analysis, the choice of using a

combined condition-independent data set or individual condition-

dependent data depends on the goal. Additionally, the choice of

parameter values will affect the numbers of modules identified and

the number of genes found within those modules. The coexpres-

sion modules obtained from both condition-dependent and

condition-independent data analysis are likely to be biologically

relevant given that Pfam domain enrichment was observed

(Tables 4, S4, S7). However, for the purposes of providing

annotation to rice genes, we found that the coexpression modules

identified from condition-dependent data are easier to interpret as

their expression patterns are generally related to a set of treatments

or tissues that are functionally related. As our goal was to provide

annotation that would be intuitive to interpret, we used the

normalized trend plots to guide our selection of parameters. We

attempted to include as many genes as possible while obtaining

gene modules with trend plots that were interpretable in a

biological context. With condition-dependent analyses, we ob-

served that genes can be assigned to multiple coexpression

modules in different experiments providing numerous fine-scaled

annotations that are more informative than assignment of a gene

to a single module in the condition-independent method.

Moreover, the multiple distinct coexpression correlations that a

gene has under different physiological states can be lost or difficult

to observe in condition-independent gene modules. Importantly,

for an annotation project, performing gene module analysis on

data from individual experiments is extensible. When new

expression data become available, the results can be analyzed

and added to the existing annotation. With condition-independent

analysis, current coexpression results would have to be discarded

and replaced with the newest analysis. Some correlations could be

lost in this process, and users will find such losses to be

disconcerting.

We elected to use the WGCNA method to identify coexpression

modules, but the general observations from our condition-

dependent versus condition-independent comparison are not

expected to be different if other methods are employed. This is

due in large part to the fact that most coexpression network

analyses rely upon gene correlation measures, and it is the

combination of expression data in a condition-independent

fashion that obscures relationships that are more easily observed

when condition-dependent data sets are used.

Materials and Methods

CEL files for publicly available rice expression data sets based

on the Affymetrix Rice GeneChip were downloaded from either

the NCBI GEO or EBI ArrayExpress [38,39] (Table S1). Arrays

from individual experiments were normalized using the liwong

method as implemented in the R affy package [59,60]. Quality

tests were performed on the normalized array data using the

Bioconductor arrayQualityMetrics package [61,62], and by

examining chip trees generated by the R WGCNA package

[36]. Chips that were of questionable quality were discarded. A list

of all CEL files that were retained from each data set is provided in

Table S1.

Probe sets from the Affymetrix Rice GeneChip were mapped to

the MSU Rice Genome Annotation Project gene set (release 6.1)

[37]. Individual probes were aligned to representative gene models

using the vmatch alignment tool (http://www.vmatch.de). Probe

sets were assigned to genes if nine or more probes from the set

perfectly aligned to a single gene. Probe sets that mapped to

multiple genes were discarded. If two or more probe sets mapped

to a single gene, the expression value for that gene was determined

by averaging the signals across the probe sets. Expression values

were log2-transformed before being processed further. Normalized

and log2-transformed expression values were averaged across

replicate chips to generate an averaged expression value for each

gene from each treatment/sample. With experiment GSE19024,

biological and technical replicates were available for a subset of

samples, and these were treated as simple replicates for purposes of

averaging.

To reduce the number of genes for the final processing, a CV

(CV = m/s) filter was applied to the averaged expression values for

a single gene across a single set of conditions/treatments

(condition-dependent data) or across all combined conditions/

treatments (condition-independent data) using a custom Perl

script. The effect of CV filtering is to remove genes that are

constitutively expressed, unexpressed or vary only modestly across

experimental treatments or conditions. The CV cutoff values were

determined in an ad hoc fashion with smaller CV values resulting in

more genes passing the filter. Final CV values were chosen based

on the number and quality of coexpression modules that were

generated by WGCNA analysis (Table 1).

The WGCNA package for R was used to identify gene

coexpression modules from the normalized, log2 transformed,

CV filtered gene expression values [36]. Briefly, the WGCNA

procedure calculates an unsigned expression Pearson’s correlation

matrix for all genes, transforms the correlation matrix by raising

all values to a power ß, calculates a topological overlap matrix

from the transformed correlation matrix, converts the topological

overlap matrix into a dissimilarity matrix, creates a hierarchical

cluster tree based on the dissimilarity matrix, and identifies gene

coexpression modules from the hierarchical cluster tree using a

dynamic tree cut procedure [24]. Unsigned correlations were used

so that positively and negatively correlated genes could be grouped

into the same cluster. The effect of transforming correlation values

with the exponent ß is a form of soft thresholding that serves to

strengthen strong correlation values while lessening but not

discarding weak correlations. The use of soft thresholding is

important for the topological overlap matrix calculation which

measures the strength of two genes’ correlation based on not just

their direct correlation value but also the weighted correlations of

all of their common neighbors [24,63]. The pickSoftThreshold

function in the WGCNA package was used to determine suggested

ß values. However, for most of the condition-dependent analyses,

an obvious ß was not identified by this method, and in all cases,

several values were tested. Higher ß values result in fewer genes

with strong transformed correlation values, but with smaller ß

values more genes have stronger transformed correlation values

[24]. Therefore, larger ß values result in fewer genes being placed

in fewer modules. Smaller ß values resulted in more genes in more

modules, but with smaller the ß values, more inconsistent

expression patterns of genes within individual modules were

observed. The condition-independent data set used a ß value that

was indicated by the WGCNA pickSoftThreshold function. A

range of treecut values was also tested for module detection with

larger treecut values resulting in more genes being assigned to

more modules. As with the CV filter value, final ß and treecut

values were chosen based on the number and quality of
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coexpression modules identified. All other WGCNA parameters

remained at their default settings. Assessment of module quality

was assisted by examining trend plots of Z-score normalized

expression values for all genes in a given module (Figures 1, 2, S1

to S13). Custom Perl scripts were written to identify genes that

were common to modules from both condition-independent and

condition-dependent analyses.

Gene coexpression modules were tested for enrichment of genes

containing Pfam domains that have been annotated within rice

genes [37,64]. Statistical significance for enrichment of genes

containing a particular Pfam domain was assessed using the

hypergeometric distribution. A Bonferroni correction was applied

to an a= 0.01 when determining statistical significance of observed

Pfam domain enrichment.

Supporting Information

Figure S1 Normalized expression values of modules of
genes identified from an arsenate stress study. Gene

expression values from roots of rice cultivars Azucena and Bala

grown in 0 ppm or 1 ppm AsO4 were processed using Weighted

Gene Coexpression Network Analysis to identify modules of highly

correlated genes [36,40]. Expression data are represented here as

normalized values (Z-scores). Genes up- or down-regulated in

response to AsO4 in both Azucena and Bala rice: (A) GSE4471-

blue and (B) GSE4471-brown modules. Genes differentially

regulated in Azucena and Bala and responsive to AsO4: (C)

GSE4471-green and (D) GSE4471-red modules. Genes differen-

tially regulated in Azucena and Bala but not strongly responsive to

AsO4: (E) GSE4471-turquoise module. Genes responsive to AsO4

in Azucena but not strongly responsive in Bala: (F) GSE4471-

yellow module.

(EPS)

Figure S2 Normalized expression values of modules of
genes from roots and leaves in response to zeatin. Gene

expression values from roots and leaves 30 and 120 min after

zeatin application were processed using Weighted Gene Coex-

pression Network Analysis to identify modules of highly correlated

genes [36,41]. Expression data are represented here as normalized

values (Z-scores). Genes responsive to zeatin treatment in roots, (A)

GSE6719-blue module. Genes responsive to zeatin treatment in

both roots and leaves, (B) GSE6719-brown module. Genes from

leaves responsive to zeatin treatement, (C) GSE6719-green

module. Genes differentially regulated in roots and leaves and

also possibly regulated by zeatin, (D) GSE6719-turquoise module.

Genes more strongly responsive to zeatin in roots compared to

leaves, (E) GSE6719-yellow module.

(EPS)

Figure S3 Normalized expression values of modules of
genes from seedlings in response to abiotic stresses.
Gene expression values from seedlings 3 hours after stress

treatments were processed using Weighted Gene Coexpression

Network Analysis to identify modules of highly correlated genes

[36,42]. Expression data are represented here as normalized

values (Z-scores). Genes responsive to salt stress, (A) GSE6901-blue

module. Genes responsive to cold treatment, (B) GSE6901-brown

module. Genes differentially regulated by drought and salt

treatments, (C) GSE6901-turquoise module.

(EPS)

Figure S4 Normalized expression values of modules of
genes identified after rice stripe virus infection. Gene

expression values after infection with rice stripe virus (RSV) of rice

cultivars WuYun3 and KT95 were processed using Weighted

Gene Coexpression Network Analysis to identify modules of highly

correlated genes [36]. Expression data are represented here as

normalized values (Z-scores). Genes differentially expressed in

WuYun3 and KT95 but not strongly regulated by RSV infection,

(A) GSE11025-blue module. Genes differentially responsive to

RSV infection, (B) GSE11025-brown and (C) GSE11025-tur-

quoise modules. Genes differentially regulated by RSV infection in

cultivar KT95 but not affected in cultivar WuYun3, (D)

GSE11025-yellow module.

(EPS)

Figure S5 Normalized expression values of modules of
genes expressed in gibberellin signalling mutants. Gene

expression values from shoots from wild type (Taichung 65) and

three gibberellin signalling mutants (gid1-3, gid2-1, slr1) were

processed using Weighted Gene Coexpression Network Analysis to

identify modules of highly correlated genes [36,44]. Expression

data are represented here as normalized values (Z-scores). Genes

differetially regulated in gibberellin signalling mutants compared

to wild type rice, (A) GSE15046-blue module. Genes differentially

regulated in gid1-3 mutant only, (B) GSE15046-brown module.

Genes differentially expressed in gid1-3 and gid2-1 mutants (C)

GSE15046-green module. Genes differentially expressed in

mutant plants compared to wild type rice, (D) GSE15046-red

module. Genes differentially expressed in wild type and gid1-3

plants compared to gid2-1 and slr1 mutants, (E) GSE15046-

turquoise module. Genes differentially expressed in mutant plants

compared to wild type rice, (F) GSE15046-yellow module.

(EPS)

Figure S6 Normalized expression values of modules of
genes identified after bacterial infection. Time course of

gene expression values after infection with Xanthomonas oryzae pv.

oryzae, Xanthomonas oryzae pv. oryzicola or mock infection were

processed using Weighted Gene Coexpression Network Analysis to

identify modules of highly correlated genes [36]. Expression data

are represented here as normalized values (Z-scores). Genes

differentially expressed after infection with peak response after

96 hours, (A) GSE16793-blue module. Genes differentially

expressed after infection with major response after 8 hours, (B)

GSE16793-turquoise module.

(EPS)

Figure S7 Normalized expression values of modules of
genes from roots and shoots after Fe and P treatments.
Gene expression values from 10 day old seedlings grown with or

without Fe and/or P were processed using Weighted Gene

Coexpression Network Analysis to identify modules of highly

correlated genes [36,45]. Expression data are represented here as

normalized values (Z-scores). Genes differentially expressed in

roots in response to 2Fe and +P, (A) GSE17245-blue module.

Genes differentially expressed in shoots in response to +F and +P,

(B) GSE17245-brown module. Genes differentially expressed in

response to the presence/absence of P, (C) GSE17245-green

module. Genes differentially regulated in roots and shoots, (D)

GSE17245-turquoise module. Genes differentially regulated in

roots in response to Fe or P depravation, (E) GSE17245-yellow

module.

(EPS)

Figure S8 Normalized expression values of modules of
genes identified after fungal infection. Time course of gene

expression values after infection with Magnaporthe oryzae strain

Guy11 or mock infection were processed using Weighted Gene

Coexpression Network Analysis to identify modules of highly

correlated genes [36,46]. Expression data are represented here as
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normalized values (Z-scores). Genes differentially expressed in

response to pathogen and mock infections, (A) GSE18361-blue

module. Genes differentially expressed 2 days after mock infection,

(B) GSE18361-brown module. Genes differentially expressed 2

days after pathogen infection, (C) GSE18361-turquoise module.

(EPS)

Figure S9 Normalized expression values of modules of
genes from a rice tissue survey. Gene expression values from

various tissues were processed using Weighted Gene Coexpression

Network Analysis to identify modules of highly correlated genes

[36,47]. Tissues sampled: germinating seed harvested 72 hour post

imbibition (germinating seed); light and dark grown plumules

harvested 48 h after germination (plumule 1, plumule 2); light and

dark grown radicles harvested 48 h after germination (radicle 1,

radicle 2); 3 day old seedling (seedling 1); trefoil stage seedling

(seedling 2); less than 1 mm panicle (panicle 1); 3 to 5 mm panicle

(panicle 2); 10 to 15 mm panicle (panicle 3); 40 to 50 mm panicle

(panicle 4); heading panicle (panicle 5); palea/lemma 1 day before

flowering (palea/lemma); stamen 1 day before flowering (stamen

1); spikelet 3 days post anthesis (spikelet); endosperm 7 days post

anthesis (endosperm 1); endosperm 14 days post anthesis

(endosperm 2); endosperm 21 days post anthesis (endosperm 3);

shoot of seedling with three tillers (shoot); roots of seedling with

three tillers (root); sheath tissues from plants with panicles less than

1 mm (sheath 1); sheath tissues from plants with panicles between

40 and 50 mm (sheath 2); leaf tissues from plants with panicles less

than 1 mm (leaf 1); leaf tissues from plants with panicles between

40 and 50 mm (leaf 2); leaf tissues 5 days before heading (leaf 3);

leaf tissues 14 days post anthesis (leaf 4); stem tissue 5 days before

flowering (stem 1); stem tissue 14 days post anthesis (stem 2).

Expression data are represented here as normalized values (Z-

scores). Genes expressed in shoots, mature panicles, leaf sheaths

and leaf blades, (A) GSE19024-blue module. Genes expressed in

spikelets and seed tissues, (B) GSE19024-brown module. Genes

expressed in young and mature root tissues, (C) GSE19024-green

module. Genes expressed in mature panicles and stamens, (D)

GSE19024-turquoise module. Genes expressed in germinating

seedling tissues, developing panicles, spikelets, shoots, roots and

mature stems, (E) GSE19024-yellow module.

(EPS)

Figure S10 Normalized expression values of modules of
genes from Rxo1 transgenic rice after bacterial infec-
tion. Gene expression values from wild type and transgenic rice

containing the maize Rxo1 resistance gene after infection with

Xanthomonas oryzae pv. oryzicola or mock infection were processed

using Weighted Gene Coexpression Network Analysis to identify

modules of highly correlated genes [36,48]. Expression data are

represented here as normalized values (Z-scores). Genes differen-

tially expressed in wild type rice in response to X. oryzae pv. oryzicola

(XOO) infection, (A) GSE19239-blue module. Genes differentially

expressed in mock-infected wild type rice compared to XOO

infected wild type or Rxo1 transgenic rice, (B) GSE19239-brown

module. Genes responsive to XOO infection in Rxo1 transgenic

rice, (C) GSE19239-green module. Genes differentially expressed

in XOO infected or mock-infected wild type rice compared to

Rxo1 transgenic rice, (D) GSE19239-turquoise module. Genes

responsive to XOO infection in Rxo1 transgenic rice but not

differentially regulated in wild type rice in response to infection, (E)

GSE19239-yellow module.

(EPS)

Figure S11 Normalized expression values of modules of
genes during aerobic germination. Time course of gene

expression values during aerobic germination were processed

using Weighted Gene Coexpression Network Analysis to identify

modules of highly correlated genes [36,49]. Expression data are

represented here as normalized values (Z-scores). Genes with

expression peaking between 1 and 3 hours after imbibition, (A) E-

MEXP-1766-blue module. Genes with expression peaking after

3 hours of imbibition, (B) E-MEXP-1766-brown module. Genes

differentially expressed early or late during aerobic germination,

(C) E-MEXP-1766-turquoise module.

(EPS)

Figure S12 Normalized expression values of modules of
genes during anaerobic and aerobic germination. Time

course of gene expression values during anaerobic and aerobic

germination were processed using Weighted Gene Coexpression

Network Analysis to identify modules of highly correlated genes

[36,50]. Rice seed was germinated aerobically, anaerobically,

aerobically for 24 hours followed by anaerobic conditions or

anaerobically for 24 hours followed by aerobic conditions.

Expression data are represented here as normalized values (Z-

scores). Genes differentially expressed in aerobic and anaerobic

conditions, (A) E-MEXP-2267-blue and (B) E-MEXP-2267-brown

modules. Genes differentially expressed during early anaerobic

germination, (C) E-MEXP-2267-turquoise and (D) E-MEXP-

2267-yellow modules.

(EPS)

Figure S13 Normalized expression values of modules of
genes during photo- and thermo-periods. Time course of

gene expression values in rice shoots during photo- and thermo-

periods were processed using Weighted Gene Coexpression

Network Analysis to identify modules of highly correlated genes

[36]. Shoots of rice plants were harvested every four hours.

Treatments consisted of photo- and thermo-periods or constant

light or temperature conditions: photocycles (LDHH), 12 hours

light (L)/12 hours dark (D) at a constant temperature (31C; HH);

photo/thermocycles (LDHC): 12 hours light (L) /12 hours dark

(D) with a high day temperature (31C) and a low night

temperature (20C); thermocycles (LLHC): continuous light (LL)

with 12 hours high/12 hours low temperature (31C, day; 20C,

night); and an initial 48 hours of continuous light followed by

cycling photo- and/or thermo-periods (LL LDHC, LL LDHH, LL

LLHC). Expression data are represented here as normalized

values (Z-scores). Genes without distinct oscillation patterns under

any conditions, (A) E-MEXP-2506-black. Genes differentially

expressed in response to LL LDHH treatment, (B) E-MEXP-2506-

blue module. Genes that cycle after an initial constant light

entrainment (LL LDHC, LL LDHH, LL LLHC), (C) E-MEXP-

2506-brown module. Genes that cycle the most strongly after an

initial constant light entrainment (LL LDHC, LL LDHH, LL

LLHC), (D) E-MEXP-2506-green, Genes that cycle during the

first 48 hours of a photo- or thermo-period, (E) E-MEXP-2506-

magenta module. Genes that are that require a constant light or

temperature conditions, (F) E-MEXP-2506-pink and (G) E-

MEXP-2506-red modules. Genes without distinct oscillation

patterns under any conditions, (H) E-MEXP-2506- turquoise.

Genes that cycle during the first 48 hours of a photo- or thermo-

period, (I) E-MEXP-2506-yellow module.

(EPS)

Figure S14 Normalized expression values of gene
modules identified by coexpression analysis of 15
combined expression experiments. The combined data set

used the fifteen expression experiments described in the Materials

and Methods section. The experimental conditions/treatments are

described in the legends for Figures 1, 2 and S1 to S13. Trend
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plots for only three of fifteen modules are shown here. Modules

designations: green-yellow (A), pink (B) and midnight-blue (C).

(EPS)

Table S1 Descriptions of CEL files used for coexpres-
sion analyses.
(XLS)

Table S2 Description of numbers of arrays used for
each sample from each expression data set analyzed for
coexpression analysis.
(XLS)

Table S3 List of module names, member genes and
gene functional annotations from condition-dependent
network analyses.
(XLS)

Table S4 Pfam domain enrichment within condition-
dependent gene coexpression modules.
(XLS)

Table S5 Membership of genes in three coexpression
modules enriched in Pfam domains for cytochrome
P450, chitinase and terpene synthases.
(XLS)

Table S6 List of module names, member genes and
gene functional annotations from condition-independent
network analysis.

(XLS)

Table S7 Pfam domain enrichment within condition-
independent gene coexpression modules.

(XLS)

Table S8 Overlap of genes between condition-depen-
dent gene modules and condition-independent gene
modules.

(XLS)
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