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Abstract

Brain is a common site of breast cancer metastasis associated with significant neurologic morbidity, decreased quality of life,
and greatly shortened survival. However, the molecular and cellular mechanisms underpinning brain colonization by breast
carcinoma cells are poorly understood. Here, we used 2D-DIGE (Difference in Gel Electrophoresis) proteomic analysis
followed by LC-tandem mass spectrometry to identify the proteins differentially expressed in brain-targeting breast
carcinoma cells (MB231-Br) compared with parental MDA-MB-231 cell line. Between the two cell lines, we identified 12
proteins consistently exhibiting greater than 2-fold (p,0.05) difference in expression, which were associated by the
Ingenuity Pathway Analysis (IPA) with two major signaling networks involving TNFa/TGFb-, NFkB-, HSP-70-, TP53-, and IFNc-
associated pathways. Remarkably, highly related networks were revealed by the IPA analysis of a list of 19 brain-metastasis-
associated proteins identified recently by the group of Dr. A. Sierra using MDA-MB-435-based experimental system (Martin
et al., J Proteome Res 2008 7:908–20), or a 17-gene classifier associated with breast cancer brain relapse reported by the
group of Dr. J. Massague based on a microarray analysis of clinically annotated breast tumors from 368 patients (Bos et al.,
Nature 2009 459: 1005–9). These findings, showing that different experimental systems and approaches (2D-DIGE
proteomics used on brain targeting cell lines or gene expression analysis of patient samples with documented brain relapse)
yield highly related signaling networks, suggest strongly that these signaling networks could be essential for a successful
colonization of the brain by metastatic breast carcinoma cells.
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Introduction

Brain metastasis is one of the most feared cancer complications

affecting an estimated 10% of patients with disseminated

malignant neoplastic disease in the United States [1,2]. Even

small brain lesions can cause neurological disability, and the

median survival time for patients with brain metastasis ranges

from 3 to 6 months regardless of the type of primary cancer [3].

Approximately 15% to 20% of patients with metastatic breast

cancer will be diagnosed eventually with brain metastasis during

the course of their disease, making breast cancer the main source

of metastatic brain tumors in women [3,4]. Therefore, there is a

pressing need to gain a better understanding of the nature and

functionality of the brain colonization by metastatic breast

carcinoma cells.

It has been proposed that both the establishment and the

growth of metastases at distant sites depend on the interactions

between tumor cells and target organ microenvironment [5,6].

Consequently, a time course of metastasis at different secondary

sites may vary dramatically depending on both the type of cancer

and the characteristics of the target organ milieu. For example,

metastases from lung adenocarcinoma develop within months of

diagnosis and affect various organs including the brain [7]. In

breast cancer, however, a long period of remission often precedes

distant relapse [8,9], suggesting that breast cancer cells may

initially lack the full competence necessary for a successful

outgrowth in distant organs such as brain [2,10]. However,

because of their intrinsic robustness and plasticity, metastatic

breast carcinoma cells eventually adapt to a selective pressure of

the target organ microenvironment and activate signaling

PLoS ONE | www.plosone.org 1 July 2011 | Volume 6 | Issue 7 | e21977



networks enabling them to thrive in the new milieu and develop

clinically relevant secondary tumors. Identifying such networks

could be of paramount importance for gaining a proper

understanding of the process of organ-specific cancer metastasis.

In this study, we sought to identify signaling networks that could

be potentially involved in breast carcinoma metastasis to the brain

using 2D-DIGE (two dimensional difference gel electrophoresis)

proteomics, a high throughout technology allowing for a

comparison of several samples on the same gel using spectrally

resolvable CyDyes to monitor the changes of thousands of proteins

at the same time [11,12]. We have used an experimental system

based on a comparative analysis of the parental MDA-MB-231

cell line (MB-231-Pa) and its brain-targeting variant MB-231-Br

[13] to identify the proteins differentially expressed between the

two cell lines. The relative abundance or differentially expressed

proteins was determined by 2D-DIGE analysis, a quantification

technique providing a great advantage of directly comparing two

samples pre-labeled with spectrally resolvable Cy3 and Cy5 dyes

and run simultaneously on the same 2D gel while normalizing

them to a third sample labeled with Cy2 and serving as an internal

standard allowing for gel-to-gel comparison. This powerful

technique was used to screen out the spots (proteins) differentially

expressed between brain seeking (MB-231-Br) and parental (MB-

231-Pa) cells and consistently exhibiting this behavior in 4

independent experiments. The subsequent mass spectrometry

(MS) analysis was used to identify the peptides digested from these

spots individually picked up from 2D gels. The additional

advantage of this experimental approach is that 2D separation

greatly reduces the complexity of the samples undergoing

subsequent MS analysis and diminishes a possibility of the

suppression of MS identification of low abundance peptides by

highly abundant proteins. We followed by the Ingenuity Pathway

Analysis (IPA) to ascertain major signaling networks associated

with these proteins and hence potentially involved in breast cancer

metastasis to the brain as well as to compare them with signaling

networks associated with a list of 19 brain metastasis associated

proteins differentially expressed in brain-targeting 435-Br1 cells

compared with parental MDA-MB-435 cells identified recently by

the group of Dr. Angels Sierra using a similar approach [14], or a

17-gene classifier associated with breast cancer brain relapse

published recently by the group of Dr. Joan Massague based on a

microarray analysis of clinically annotated breast tumors from 368

patients [2]. Our results demonstrated that, even though only 2

out of 31 proteins were in common between the MDA-MB-231-

based set identified by our group in this study and MB-435-based

set [14], and none of these proteins were present in a 17-gene

breast cancer brain relapse signature [2], they all converged on the

major signaling networks involving TNFa/TGFb-, NFkB-,

HSP70-, TP53-, and IFNa/c-related pathways. These findings,

showing that different experimental systems and approaches

Figure 1. 2D-DIGE analysis of total cellular proteins extracted from MB-231-Br brain targeting and parental MB-231-Pa cells. A and
B, 2D-DIGE analysis was carried out using 50 mg of total protein from MB-231-Pa and MB-231-Br cells labeled with Cy3 (green) and Cy5 (red),
respectively, and resolved on the same gel. Pulled sample containing equal amounts total cellular proteins from both cell lines labeled with Cy2 was
used as an internal standard (image not shown). C, Number of spots consistently exhibiting differential expression between MB-231-Pa and MB-231-
Br cells in 4 independent experiments depending on DeCyder 7.0 settings (average fold difference). D, An example of a DeCyder 7.0 2D-DIGE gel
master image. Spots consistently exhibiting average fold difference $2.00 (p,0.05 with FDR correction) between MB-231-Pa and MB-231-Br cells are
marked with red and corresponding spot numbers are indicated on the left.
doi:10.1371/journal.pone.0021977.g001
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(2D-DIGE proteomics used on brain targeting cell lines or gene

expression analysis of patient samples with documented brain

relapse) yield highly related signaling networks associated with the

differentially expressed proteins and/or genes, suggest strongly

that these signaling networks could be essential for a successful

colonization of the brain by metastatic breast carcinoma cells.

Figure 2. A detailed analysis of 7 spots consistently exhibiting average fold difference $2.00 (p,0.05 with FDR correction) between
MB-231-Pa and MB-231-Br cells. For each indicated spot, a zoomed in image (top panel) from MB-231-Pa (left) and MB-231-Br (right) is shown
together with 3D view (middle panel) and a histogram from 4 independent gels (bottom panel).
doi:10.1371/journal.pone.0021977.g002

Table 1. List of proteins identified from the spots exhibiting $2.0-fold difference in expression between MB-231-Br and MB-231-Pa
cells.

Spot No Protein ID* Protein Name pI MW (KDa) Average Ratio P Value (FDR) MOWSE Score

848 gi|5031877 lamin B1 5.11 66.7 22.65 0.00087 1285

gi|5729877 heat shock 70 kDa protein 8 isoform 1 (HSPA8) 5.37 71.1 22.65 0.00087 913

gi|4529892 HSP70-2 5.48 70.3 22.65 0.00087 452

gi|4503841 ATP-dependent DNA helicase II, 70 kDa subunit 6.23 70.1 22.65 0.00087 176

878 gi|27262628 nuclear autoantigenic sperm protein isoform 2 (NASP) 4.26 85.5 2.02 0.0048 790

1094 gi|47115317 vimentin 5.09 53.6 2.24 0.00065 1402

1154 gi|340021 alpha-tubulin 4.94 50.8 2.02 0.00065 815

1062 gi|340021 alpha-tubulin 4.94 50.8 2.32 0.025 815

1945 gi|7765076 S3 ribosomal protein 9.7 26.9 2.76 0.0091 627

gi|4504447 heterogeneous nuclear ribonucleoprotein A2/B1
"isoform A2 (hnRNPA2/B1)

8.67 36 2.76 0.0091 136

gi|4502599 carbonyl reductase 1 8.55 30.6 2.76 0.0091 113

2577 gi|5031851 stathmin 1 isoform a 5.76 17.3 2.03 0.0094 575

gi|4506679 ribosomal protein S10 10.15 18.9 2.03 0.0094 253

*Each Protein ID contains a hyperlink to MASCOT search results and MS/MS data.
doi:10.1371/journal.pone.0021977.t001
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Materials and Methods

Cell culture
MDA-MB-231 parental (MB-231-Pa) and MDA-MB-231 brain

seeking (MB-231-Br) cell lines [13] were kindly provided by Dr.

Toshiyuki Yoneda (University of Texas Health Science Center at

San Antonio, San Antonio, TX, USA). Cells were routinely

maintained in monolayer cultures using RPMI 1640 media

(Invitrogen, Carlsbad, CA) supplemented with 10% fetal bovine

serum (Hyclone Laboratories, Logan,. Utah), 2 mM L-glutamine

(Invitrogen), and 10 mg/ml Gentamicin (Abraxis Pharmaceutical

Products, Schaumburg, IL).

Protein isolation and labeling
The MB-231-Pa and MB-231-Br cells were washed twice with cell

wash solution (10 mM Tris-HCl, pH 8.0, 5 mM magnesium acetate).

Approximately 107 cells were extracted in 200 mL of the lysis buffer

(7 M urea, 2 M thiourea, 4% CHAPS, 30 mM Tris, pH 8.5). The

crude cell homogenate was ground using disposable pellet pestles in

microtubes for 5 min and sonicated three times for 5 seconds on ice.

The protein extracts were clarified by centrifugation for 60 min at

12000 g and protein concentration was measured using 2-D Quant

Kit (GE Healthcare, Salt Lake City, Utah).

Quadruplicate samples (independent biological replicates derived

from individual cultures) were labeled with CyDye Fluor minimal dyes

(GE Healthcare) according to the manufacturer’s instructions. Equal

amounts of protein from each sample were combined to create an

internal standard, which was used throughout the entire series of

experiments. The pH of the samples was adjusted to pH 8.5. Protein

extracts (50 mg) were labeled with 400 pmol of CyDye on ice in dark

(Cy3 or Cy5 for MB-231-Pa and MB-231-Br samples, Cy2 for the

internal standard). The reaction was quenched for 10 min with 1 mL of

10 mM L-lysine on ice in dark. The MB-231-Pa and MB-231-Br

samples were randomized between Cy3 and Cy5 to avoid any dye

biases.

2D-DIGE and Decyder analysis
An equal volume of 26 IEF buffer (7 M Urea, 2 M Thiourea,

4% CHAPS, 130 mM DTT, 2% IPG buffer 3–11 NL) was added

to each labeled sample. Cy3 sample, Cy5 sample, and Cy2

internal standard sample were pooled and brought up to a final

volume of 350 mL with rehydration buffer (7 M Urea, 2 M

Thiourea, 4% CHAPS, 18 mM DTT, 2% IPG buffer 3–11 NL).

The first-dimension IEF was performed in an IPGphor IEF unit

(GE Healthcare) on 18 cm IPG strips pH 3–11 (GE Healthcare).

IEF was carried as followed: 30 V rehydration step for 12 h,

followed by 500 V for 1 h, 1,000 V for 1 h, 3 h linear increase to

8,000 V, and a 12,000 Vh hold at 8,000 V. The cysteine

sulfhydryls were reduced with 1.0% DTT and carbamidomethy-

lated with 2.5% iodoacetamide in equilibration buffer (6 M Urea,

75 mM Tris, 30% glycerol, and 2% SDS, pH 8.8). Second-

dimension SDS-PAGE was performed on 6–12% gradient gels

casted using Ettan DALTsix gradient maker (GE Healthcare) and

low fluorescence glass plates. Electrophoresis was carried out at

1 W/gel (10 mA/gel) for 1 h followed by 10 W/gel (40 mA/gel)

until completion using Ettan DALTsix electrophoresis unit (GE

Healthcare). Gels were scanned using an Ettan DIGE Imager (GE

Healthcare). The image and statistical analyses were performed

using DeCyder 7.0 (GE Healthcare) with the FDR mode for

multiple testing corrections.

Peptide extraction
A parallel preparative gel was stained with modified colloidal

Coomassie Blue G-250 [15]. The differentially expressed spots

designated by DeCyder analysis were identified on the preparative

gel and picked up by hand. The gel pieces were washed twice in

200 mL 200 mM NH4HCO3 with 30 min incubation at 37uC, then

dehydrated with 100% acetonitrile (ACN) for 5 min and dried in a

SpeedVac (LABCONCO, Kansas City, MO) for 10–15 min. The

gel pieces were preincubated with 15 mL of 20 mg/mL mass

spectrometry grade trypsin gold (Promega, Madison, WI) solution at

room temperature for 1 h, then 40 mL digestion buffer (40 mM

NH4HCO3/10% ACN) was added and incubated overnight at

37uC. Peptides were extracted from the gel pieces by incubation in

50 mL 50% ACN/5% formic acid for 1 h at 37uC. The liquid phase

was extracted and evaporated using SpeedVac.

Figure 3. Western blot analysis of the proteins differentially
expressed between MB-231-Pa and MB-231-Br cells. Whole-cell
lysates containing 50 mg of total cellular protein from MB-231-Pa and
MB-231-Br were loaded, separated by PAGE, and blotted onto
nitrocellulose membranes. The indicated proteins were probed using
commercially available primary antibodies (see Materials and Methods
for detail) and visualized using corresponding HRP conjugated
secondary antibodies and ECL detection.
doi:10.1371/journal.pone.0021977.g003
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Mass spectrometry analysis
The peptides were resolved in 5% ACN/1% formic acid. An

aliquot (5–10 ml) of each digest was loaded onto a 5 mm6100 mm

i.d. C18 reverse-phase cartridge at 2 ml/min using a PAL robot

(Leap Technologies, Carrboro, NC). After washing the cartridge

for 5 min with 0.1% formic acid in ddH2O, the bound peptides

were flushed onto a 22 cm6100 mm i.d. C18 reverse-phase pulled

tip analytical column with a 25 min linear 5–50% ACN gradient

in 0.1% formic acid at 500 nl/min using an Eksigent nanopump

(Eksigent Technologies, Dublin, CA). The column was washed

with 90% ACN-0.1% formic acid for 15 min and then re-

equilibrated with 5% ACN-0.1% formic acid for 24 min. The

eluted peptides were passed directly from the tip into a modified

MicroIonSpray interface of an Applied Biosystems-MDS-Sciex

(Concorde, Ontario, Canada) 4000 Qtrap mass spectrometer. The

interface has been rebuilt in order to apply the electrospray voltage

through a liquid-liquid junction at the top of the column rather

than at the end of the column. This arrangement resulted in very

high chromatographic resolution by elimination of the post-

column dead volume. The IonSpray voltage was 2500 V and the

Figure 4. Major signaling network 1 associated with the proteins differentially expressed in MB-231-Br compared with MB-231-Pa
cells identified by the Ingenuity pathway analysis. The network consists of 35 nodes and includes 11 out of 12 differentially expressed proteins
(shaded green). Note the interactions of NASP, RPS10, HSPA8, and HSPA1B with TRAF6 (TNF receptor-associated factor 6), a key factor acting upon
the TNFa/TGFb signaling axis, as well as the involvement of NFKB-, HSP-70-, TP53-, and IFNc-associated pathways.
doi:10.1371/journal.pone.0021977.g004
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declustering potential was 60 V. Ionspray and curtain gases were

set at 12 psi and 5 psi, respectively. The interface heater

temperature was 160uC. Eluted peptides were subjected to a

survey MS scan to determine the top three most intense ions. A

second scan (the enhanced resolution scan) determined the charge

state of the selected ions. Finally, enhanced product ion scans were

carried out to obtain the tandem mass spectrum of the selected

parent ions (with the declustering potential raised to 100 V) over

the range from m/z 400–1500. Spectra were centroided and

de-isotoped by Analyst Software, version 1.42 (Applied Biosys-

tems, Foster City, CA). These tandem mass spectrometry data

were processed to provide protein identifications using an in-house

MASCOT search engine version 4.2 (Matrix Science, Boston,

MA) using the Human NCBInr protein database and one missed

protease cleavage site. Variable modifications were allowed for

oxidized methionines and a fixed modification for carbamido-

methylated cysteines. Significant proteins hits were any protein(s)

that had at least one individual peptide sequence score of .40.

Figure 5. Major signaling network 2 associated with the proteins differentially expressed in MB-231-Br compared with MB-231-Pa
cells. The network consists of 35 nodes and includes 10 out of 12 differentially expressed proteins (shaded green). Similarly to network 1, interactions
of NASP, RPS10, HSPA8, and HSPA1B with TRAF6 bring about the association with the TNFa/TGFb signaling axis. In addition, NFKB-, HSP-70-, and
IFNc-associated major signaling pathways are also involved with the network.
doi:10.1371/journal.pone.0021977.g005
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Western blot analysis
Cells from exponential cultures (16106) were lysed in 100 mL of

CelLyticTM M buffer with protein inhibitor cocktail (Sigma-

Aldrich, St. Louis, MO). Protein concentrations were determined

using Protein Assay kit (Bio-Rad). Equal amounts of the protein

from each sample (50 mg) were resolved on a NuPAGE mini gel

(Invitrogen), and transferred to a nitrocellulose membrane

(Invitrogen). The following antibodies (Ab) were used to detect

the proteins of interest: Vimentin (R28) (Cell Signaling Technol-

ogy, Boston, MA) at 1:1000 dilution, alpha-tubulin (Cell Signaling

Technology) at 1:1000 dilution, stathmin (Cell Signaling Tech-

nology) at 1:1000 dilution, hnRNPA2/B1 (Cell Signaling

Technology) at 1:1000 dilution; HSPA8 (sc-137239, Santa Cruz

Biotechnology, Santa Cruz, CA) at 1:500 dilution; carbonyl

reductase 1 (Santa Cruz Biotechnology) at 1:500 dilution; nuclear

autoantigenic sperm protein (Abcam Ltd., Cambridge, CA) at

1:2000 dilution, and lamin B 1 (Abcam Ltd., Cambridge, CA) at

0.1 mg/ml in conjunction with corresponding HRP-conjugated

secondary antibodies and enhanced chemiluminescent (ECL)

detection.

Pathway analysis
The accession numbers of the identified proteins were uploaded

into the Ingenuity Pathway Analysis software version 7.6 (http://

www.ingenuity.com), protein-protein interaction networks were

generated and schematic displays elaborated to illustrate docu-

mented protein-protein interactions. Similarly, the accession

numbers of the proteins differentially expressed in 435-Br1 cells

Figure 6. Major signaling network 1 associated with the proteins differentially expressed in brain-targeting 435-Br1 cells compared
with parental MDA-MB-435 cells reported by the group of Dr. Sierra (Ref. [14]). The network consists of 35 nodes, includes 12 out of 19
differentially expressed proteins (shaded red), and involves TNFa/TGFb-, NFKB-, HSP-70-, and MAPK-associated major signaling pathways.
doi:10.1371/journal.pone.0021977.g006
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previously reported by the group of Dr. Sierra [14] and/or genes

associated with brain relapse in breast cancer patients identified by

the group of Dr. Massague [2] were also uploaded into Ingenuity

Pathway Analysis software, and signaling networks associated with

these two sets of genes/proteins were generated. Subsequently,

signaling networks derived from these three sources and

potentially involved in breast cancer brain metastasis were

compared and merged using Ingenuity Pathway Analysis software.

In the process of IPA analysis, each network was assigned a P-score

[P-score = 2log10 (P-value)] reflecting the probability of this network

being generated at random, whereby P-value was calculated as the

right-tailed sum of the hypergeometric distribution (Fisher’s exact

test). That is, if the network has a P-score of 10, the odds of this

network being generated at random are less than 1 out of 1010.

Results and Discussion

2D-DIGE analysis of MB-231-Br and MB-231-Pa cell lines
To identify proteins differentially expressed in breast cancer

MB-231-Br compared with MB-231-Pa cell line, we performed

2D-DIGE analysis using cyanine dye (CyDye) protein labeling.

This technology, based on differential labeling of proteins with

Figure 7. Major signaling network 2 associated with the proteins differentially expressed in brain-targeting 435-Br1 cells compared
with parental MDA-MB-435 cells (Ref. [14]). The network consists of 35 nodes, includes 5 out of 19 differentially expressed proteins (shaded
red), and involves TP53- and TNFa/TGFb-associated major signaling pathways.
doi:10.1371/journal.pone.0021977.g007
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fluorescent CyDyes, allows for sample multiplexing and low

variations. In our experiments, 4 individual protein samples from

MB-231-Pa as well as from MB-231-Br cells were prepared. The

samples were labeled with Cy3 or Cy5 dyes randomizing MB-231-

Pa and MB-231-Br samples between Cy3 and Cy5 to avoid any

dye biases. The pooled sample prepared by mixing equal amounts

of protein from each individual sample and labeled with Cy2 was

used as an internal standard throughout the series of experiments.

After 2D-DIGE separation, images of MB-231-Br and MB-231-Pa

expressed proteins were acquired from the same gel under

different wavelengths (Fig. 1, A and B). DeCyder 7.0 analysis

identified 2274–2607 protein spots by a volume of filter exclusion

of 30000 and matched 1843 spots between all 4 gels. Statistical

analysis using DeCyder 7.0 (Fig. 1, C) revealed 161 protein spots

consistently expressing $1.25-fold difference between MB-231-Br

and MB-231-Pa cells (p,0.05, t-test with FDR correction), 7 spots

consistently expressing $2.0-fold difference between MB-231-Br

and MB-231-Pa cells (p,0.05, t-test with FDR correction), and

only 2 spots consistently expressing $2.5-fold difference between

MB-231-Br and MB-231-Pa cells (p,0.05, t-test with FDR

correction). The seven spots exhibiting $2.0-fold difference

between the two cell lines were used for further analysis in this

study (Fig. 1, D). Compared with MB-231-Pa, 6 of these spots

were consistently up-regulated and 1 spot was consistently down-

regulated in MB-231-Br cells (Fig. 2).

Identification of differentially expressed proteins
To identify the protein spots, a pooled sample containing equal

amounts of total cellular proteins from MB-231-Br and MB-231-

Figure 8. Major signaling network 1 associated with the 17-gene breast carcinoma brain metastasis signature (Ref. [2]). The network
consists of 37 nodes, includes 10 out of 17 genes (shaded blue), and involves TNFa/TGFb-, NFKB-, MAPK-, PI3K/Akt-, and IFNa-associated major
signaling pathways.
doi:10.1371/journal.pone.0021977.g008

Breast Cancer Brain Metastasis Networks

PLoS ONE | www.plosone.org 9 July 2011 | Volume 6 | Issue 7 | e21977



Pa cells was resolved on a 2D gel and stained with modified

colloidal Coomassie Blue G-250. The 7 differentially expressed

spots, identified as expressing $2.0-fold difference between MB-

231-Br and MB-231-Pa cells, were picked up by hand from this gel

and subjected to LC-MS/MS analysis as described in Materials and

Methods. After searching the NCBInr Human database using

Mascot software, tryptic peptides from these spots were matched

to 12 proteins with high MOWSE scores. The identified proteins

are listed in Table 1 together with their ID, name, calculated Mr,

calculated pI, average expression ratio, p-value (t-test with FDR

correction), and MOWSE scores. Some of the spots contained

more than one protein. In spot 848, four proteins were identified,

including lamin B1 (LMNB1), heat shock 70 kDa protein 8

isoform 1 (HSPA8), HSP70-2 (HSPA1B), ATP-dependent DNA

helicase II, 70 kDa subunit (XRCC6). In spot 1945, three proteins

were identified including S3 ribosomal protein (RPS3), heteroge-

neous nuclear ribonucleoprotein A2/B1 isoform A2

(hnRNPA2B1), and carbonyl reductase 1 (CBR1). In spot 2577,

two proteins were identified including stathmin 1 isoform A

(STMN1), and ribosomal protein S10 (RPS10). In addition, two

spots, 1062 and 1154, contained the same protein, alpha-tubulin

(TUBA1B), suggesting the existence of post-translational modifi-

Figure 9. Major signaling network 2 associated with the 17-gene breast carcinoma brain metastasis signature (Ref. [2]). The network
consists of 35 nodes, includes 6 out of 17 genes (shaded blue), and is mostly associated with TNFa/TGFb signaling axis.
doi:10.1371/journal.pone.0021977.g009
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cations of this protein affecting both the pI and the SDS-PAGE

motility. The MOWSE scores for all identified proteins were

markedly higher than the default Mascot threshold ranging from

113 to 1402 (Table 1).

It is interesting that 3 out of 12 differentially expressed proteins

represent different compartments of the cytoskeleton such as

nuclear matrix (lamin B1), microtubules (alpha-tubulin), and

intermediate filaments (vimentin); and 1 more protein (stathmin

1) is an important regulator of microtubule assembly suggesting

the potential importance of enhanced cytoskeletal dynamics

associated with tumor cell plasticity and motility for the process

of metastatic brain colonization. At the same time, the presence of

two heat shock proteins (HSPA8 and HSPA1B) may highlight the

importance of metastatic cell ability to manage environmental

stress.

Western blot analysis of differentially expressed proteins
To cross validate the differentially expressed proteins and assess

their specificity in MB-231-Pa and MB-231-Br, we performed

Western blot analysis for 8 out of 12 identified proteins, for which

suitable antibodies were available (Fig. 3). Western blot confirmed

marked overexpression of stathmin 1 (STMN1) and nuclear

autoantigenic sperm protein isoform 2 (NASP) in MB-231-Br

compared with MB-231-Pa. Other proteins, excluding

hnRNPA2/B1, showed the same expression trends revealed by

2D-DIGE analysis, although the differences in their expression

levels between MB-231-Br and MB-231-Pa on Western blots were

not as pronounced (Fig. 3). In the case of hnRNPA2/B1, Western

blot analysis showed results opposite to those revealed by 2D-

DIGE (Fig. 3). We speculate that some inconsistencies between

2D-DIGE and immunoblotting results could be due at least in part

because many proteins exist in several charge isoforms, which are

resolved on 2D gels, but appear as single bands on Western blots.

In addition, the immunoblotting results could be affected

significantly by the specificities and sensitivities of the antibodies.

Signaling networks associated with the proteins
differentially expressed in MB-231-Br cells

To reveal signal transduction pathways and/or signaling

networks associated with the proteins differentially expressed in

MB-231-Br cells, the identified 12 proteins were imported into the

Ingenuity pathway analysis (IPA) software. According to the IPA

knowledge base, 3 signaling networks, 2 major ones comprised of

35 nodes each and 1 minor comprised of 12 nodes, were associated

with this set of proteins. Network 1 (Fig. 4) included 11 out of the

12 differentially expressed proteins (P-score = 30) and involved

TNFa/TGFb-, NFKB-, HSP-70-, TP53-, and IFNc-associated

major signaling pathways. Network 2 (Fig. 5) included 10 out of

the 12 differentially expressed proteins (P-score = 28) and involved

TNFa/TGFb-, NFKB-, HSP-70-,and IFNc-associated major

signaling pathways. The minor network 3 (Fig. S1, A) included

only 2 out of the 12 differentially expressed proteins (P-score = 5)

and was associated mostly with lamin/vimentin interactions.

Comparison with biological pathways associated with
breast carcinoma brain metastasis protein/gene
signatures reported in the literature

Recently, using a similar approach (2D-DIGE followed by MS

analysis), the group of Dr. Angels Sierra identified a set of 19

proteins differentially expressed in brain-targeting 435-Br1 cells

compared with parental MDA-MB-435 cells [14]. Between the

two sets of brain-metastasis-associated proteins (MB-231-based

identified by our group in this study and MB-435-based reported

by the group of Dr. Sierra [14]) only 2 out of 31 proteins, HSPA8

and vimentin, were the same. Thus, to estimate the likelihood of

the occurrence of this overlap by chance, we carried out the

hypergeometric distribution test [16]. The results of this analysis

demonstrated that it is highly unlikely (probability .95%) that the

2-protein overlap found between the two sets occurred by chance

(p,0.05). Next, to reveal the key signaling pathways or networks

related to the set of brain metastasis-associated proteins identified

by the group of Dr. Sierra using MDA-MB-435-based experi-

mental system, we imported the list of these 19 proteins into the

IPA software. The IPA analysis revealed 3 signaling networks (2

major and 1 minor) associated with this set of proteins. Network 1

(Fig. 6) included 12 out of 19 differentially expressed proteins (P-

score = 28) and involved TNFa/TGFb-, NFKB-, HSP-70-, and

MAPK-associated major signaling pathways. Network 2 (Fig. 7)

included 5 out of 19 differentially expressed proteins (P-score = 10)

and involved TP53-, and TNFa/TGFb-associated major signaling

pathways. The minor network 3 included only 1 out of 19

differentially expressed proteins, RIN3 (Fig. S1, B).

Recently, in a series of reports, the group of Dr. Joan Massague

identified genes and proteins involved in breast cancer metastasis

to lung [17,18], bones [17,19], and brain [2]. In the latter paper,

they reported a 17-gene signature associated with breast

carcinoma brain metastasis, which was developed based on gene

expression microarray analysis of 368 clinically annotated breast

tumors with documented brain relapse [2]. Analyzing this 17-gene

signature using the IPA software also retrieved 3 signaling

networks (2 major and 1 minor). Ten out of 17 genes were

present in network 1 (Fig. 8) involving TNFa/TGFb-, NFKB-,

MAPK-, PI3K/Akt-, and IFNa-associated major signal transduc-

tion pathways (P-score = 28). Network 2 (Fig. 9) included 6 out of

Table 2. Major signal transduction pathways involved with signaling networks associated with three breast carcinoma brain
metastasis signatures.

Major Pathways Involved

Major Network HSP-70 NFKB TP53 TNFa/TGFb MAPK Akt IFNa/c

MB-231-Br Network 1 + + + + +

MB-231-Br Network 2 + + + +

435-Br1 Network 1 + + + +

435-Br1 Network 2 + +

17-Gene Classifier Network 1 + + + + +

17-Gene Classifier Network 2 +

doi:10.1371/journal.pone.0021977.t002
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17 genes (P-score = 12) and was mostly associated with TNFa/

TGFb signaling axis. The minor network 3 (Fig. S1, C) comprised

of only 3 nodes included 1 out of 17 genes, COL13A1.

Remarkably, even though only 2 out of 31 proteins were in

common between the MDA-MB-231-based set of brain metastasis-

associated proteins identified in the present study and MB-435-based

set reported by the group of Dr. Sierra [14], and none of these

proteins were present in a 17-gene breast cancer brain relapse

signature published by the group of Dr. Massague [2], nonetheless

they all converged on signaling networks involving similar major

signal transduction pathways (Table 2). Of these signaling pathways,

those related to the TNFa/TGFb axis and NFkB were associated

Figure 10. Merged network combining major signaling networks associated with the proteins differentially expressed in MB-231-Br
compared with MB-231-Pa cells (shaded green) and brain-targeting 435-Br1 cells compared with parental MDA-MB-435 cells
(shaded red).
doi:10.1371/journal.pone.0021977.g010
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with all three signatures (Table 2 and Figs. 4, 5, 6, 7, 8, 9). HSP-70-

and TP53-related pathways were involved with signaling networks

associated with MDA-MB-231-, and MB-435-based signatures

(Table 2 and Figs. 4, 5, 6, 7). MAPK-related pathways were involved

with networks associated with MB-435-based and 17-gene brain

metastasis signatures (Table 2 and Figs. 6 and 8). IFNa- or IFNc-

related pathways were involved with networks associated with MDA-

MB-231-based and 17-gene brain metastasis signatures (Table 2 and

Figs. 4, 5, and 8). And PI3K/Akt-related signaling was involved with

the 17-gene brain metastasis signature associated network 1 only

(Table 2 and Fig. 8).

Because the same principal signal transduction pathways such as

TNFa/TGFb, NFKB, HSP-70, TP53, and MAPK are associated

with the major signaling networks generated based on all 3

signatures, these networks are highly related and actually could be

merged with each-other (Figures 10 and 11). The fact that

integrated network analysis of the brain metastasis associated

signatures retrieved using different experimental systems and

approaches (2D-DIGE proteomics used on brain targeting cell

lines, or gene expression analysis of patient samples with

documented brain relapse) yields highly related signaling networks

associated with the differentially expressed proteins and/or genes,

suggests strongly that the involvement of these signaling networks

could be essential for a successful colonization of the brain by

metastatic breast carcinoma cells.

It is interesting, though, that within the networks associated with

three different signatures; the connection to the same major signal

transduction pathways is evoked by distinct differentially expressed

proteins or genes. For example, in MDA-MB-231-based networks

1 and 2 (Figs. 4 and 5 respectively), the association with the

TNFa/TGFb-related pathways is brought about through the

interactions of NASP, RPS10, HSPA8, and HSPA1B with TRAF6

(TNF receptor-associated factor 6), a key factor acting upon the

TNFa/TGFb signaling axis. In the MB-435-based network 2

(Fig. 7), the involvement of the TNFa/TGFb signaling axis is

associated with RPSA, GLO1, and CTSD interactions with TNF

as well as CTSD and KRT1 interactions with TGFB1. Finally, in

the 17-gene brain metastasis signature associated networks 1 and 2

(Figs. 8 and 9 respectively), the involvement of the TNFa/TGFb
signaling axis is evoked via the interactions of 2 proteins (LTBP1,

MMP1) with TGFb as well as by interactions between PTGS2,

HBEGF, and TNFSF10 in network 1 (Fig. 8); whereas interactions

Figure 11. Merged network combining major signaling networks associated with the proteins differentially expressed in brain-
targeting 435-Br1 cells compared with parental MDA-MB-435 cells (shaded red) and 17-gene breast carcinoma brain metastasis
signature (shaded blue).
doi:10.1371/journal.pone.0021977.g011
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of PLOD2 and ANGPTL4 with TGFB1 as well as LAMA4,

B4GALT6, and SEPP1 with TNF bring up TNFa/TGFb
signaling axis in network 2 (Fig. 9).

Likewise, the involvement of the NFKB pathway is brought

about by the interactions of HSPA8 and XRCC6 with NFKBIA in

MB-231-based networks 1 and 2 (Figs. 4 and 5 respectively),

whereas in MB-435-based network 1 and 17-gene brain metastasis

signature associated network 1 (Figs. 6 and 8 respectively), the

NFKB pathway involvement is evoked by PRDX4 and VIM (MB-

435-based network 1), or PELI1 and RARRES3 (17-gene brain

metastasis signature associated networks 1) interactions with NFKB

complex.

Similarly, the TP53 pathway in MB-231-based network 1 (Fig. 4)

is brought about by HSPA8, HNRNPA2B1, and XRCC6

interactions with TP53, while in MB-435-based network 2

(Fig. 7) it is associated with TP53 interactions with RAD50,

RPSA, and CTSD.

All these examples demonstrate that, whereas highly related

signaling networks involving similar major signal transduction

pathways are associated with brain colonization by cancer cell

lines and primary tumors, different cancer cells may exploit

distinct avenues to achieve the same goal, i.e. engage signaling

pathways and networks essential for a successful organ-specific

colonization of the brain by metastatic breast carcinoma cells. The

availability of multiple alternative routes for activating these

pathways means that, when a single protein or gene is targeted

therapeutically to block a certain metastasis-associated pathway,

the success (as is often the case) is likely to be transient. Due to

their robustness and plasticity, metastatic cancer cells will adapt to

changing conditions and use available alternative routes to

circumvent the roadblocks imposed by therapeutic interventions

and activate signaling network required for them to continue

thriving in distant organ milieu. Thus, creating new treatment

paradigms targeting these networks in their entirety, rather than

single proteins, could be necessary for controlling and treating

efficiently breast carcinoma brain metastases.

Supporting Information

Figure S1 Minor signaling networks associated with
three breast cancer brain metastasis signatures. A,

Minor signaling network 1 associated with the proteins differen-

tially expressed in MB-231-Br compared with MB-231-Pa cells

(shaded green). B, Minor signaling network 1 associated with the

proteins differentially expressed in brain-targeting 435-Br1 cells

compared with parental MDA-MB-435 cells (shaded red). C,

Minor signaling network 1 associated with the 17-gene breast

carcinoma brain metastasis signature (shaded blue).

(TIF)
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