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Abstract

A statistically principled way of conducting brain network analysis is still lacking. Comparison of different populations of
brain networks is hard because topology is inherently dependent on wiring cost, where cost is defined as the number of
edges in an unweighted graph. In this paper, we evaluate the benefits and limitations associated with using cost-integrated
topological metrics. Our focus is on comparing populations of weighted undirected graphs that differ in mean association
weight, using global efficiency. Our key result shows that integrating over cost is equivalent to controlling for any
monotonic transformation of the weight set of a weighted graph. That is, when integrating over cost, we eliminate the
differences in topology that may be due to a monotonic transformation of the weight set. Our result holds for any
unweighted topological measure, and for any choice of distribution over cost levels. Cost-integration is therefore helpful in
disentangling differences in cost from differences in topology. By contrast, we show that the use of the weighted version of
a topological metric is generally not a valid approach to this problem. Indeed, we prove that, under weak conditions, the
use of the weighted version of global efficiency is equivalent to simply comparing weighted costs. Thus, we recommend the
reporting of (i) differences in weighted costs and (ii) differences in cost-integrated topological measures with respect to
different distributions over the cost domain. We demonstrate the application of these techniques in a re-analysis of an fMRI
working memory task. We also provide a Monte Carlo method for approximating cost-integrated topological measures.
Finally, we discuss the limitations of integrating topology over cost, which may pose problems when some weights are zero,
when multiplicities exist in the ranks of the weights, and when one expects subtle cost-dependent topological differences,
which could be masked by cost-integration.
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Introduction

In the last decade, the biological and physical sciences have

witnessed a proliferation of publications adopting a network

approach to a wide range of questions. This interest in networks

was originally stimulated by the seminal works of Watts et al. [1]

and Barabasi et al. [2], who introduced the concepts of small-

world and scale-free networks, respectively. Some of these ideas

have been adopted in neuroscience at both a theoretical [3,4] and

experimental level [5]. Most of the research in this area has

attempted to classify the topology of brain networks based on

anatomical or functional data [6–8].

A question that naturally arises from such applications of graph

theory is whether or not the topological properties of these brain

networks are stable across different populations of subjects or

across different cognitive and behavioral tasks. A common

hypothesis that neuroscientists may wish to test is whether the

small-world properties of a given brain network are conserved

when comparing patients and healthy controls. Bassett et al. [9],

for example, have studied differences in anatomical brain networks

between healthy controls and patients with schizophrenia. Other

authors have evaluated whether the topological properties of

functional networks vary with different behavioral tasks [10–13].

The properties of brain network topology have also been studied at

different spatial scales [14] and using different modalities, such as

EEG [15,16], and fMRI [6,7]. There is therefore considerable

interest in comparing populations of networks –which may

represent different groups of subjects, several conditions of an

experiment, or the use of different levels of spatial or temporal

resolution. We note that such research questions are more likely to

arise when subject-specific networks can be directly constructed.

This has been done in the context of both functional and structural

MRI [17,18].

The possibility of conducting rigorous statistical comparison of

several populations of networks, however, has been hindered by a

series of methodological issues, which have not been hitherto

satisfactorily resolved. When considering the question of compar-

ing several populations of networks, two main problems arise.

Firstly, we are faced with the inherent intertwining of connectivity

strength (i.e. wiring cost) with network topology. Most topological
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metrics used to compare networks are sensitive to differences in

these graphs’ number of edges. Drawing comparisons on the sole

basis of topology therefore requires some level of control of cost

discrepancies between these network populations. Secondly, this

issue is compounded by the fundamental division between

weighted and unweighted graphs. The problem of disentangling

differences in connectivity strength from topological differences

therefore needs to be resolved in a distinct manner depending on

whether weighted or unweighted graphs are being considered.

The focus, in this paper, will be on weighted networks since these

are more likely to be found in the biomedical sciences than their

unweighted counterparts.

Historically, however, network analyses have concentrated on

unweighted graphs. The application of graph theory to biological

and artificial networks was originally motivated by the discrete

nature of the problems of interest. Both Watts et al. [1] and

Barabasi et al. [2] mainly considered binary relations between sets

of elements, which readily produced adjacency matrices that could

then be used to construct unweighted graphs. Watts et al. [1]

matched some networks of interest with their random and regular

equivalents. In their case, the matching procedure ensured that

both random and regular networks possessed the same total

number of nodes and edges as the original graph. Current practice

in MRI-based neuroscience and other biomedical applications,

however, tends to produce weighted connectivity networks. This is

because MRI data take values on a continuous scale, which lends

itself to the application of real-valued measures of association, such

as the correlation coefficient or the synchronization likelihood

among others. While different populations of unweighted networks

can readily be compared by matching each network with a

random network possessing an identical number of edges; there is,

as yet, no consensus on how to compare populations of weighted

networks in a systematic manner.

This problem can be illustrated with a straightforward example.

In panel (a) of Figure 1, a pair of weighted networks are

represented by their correlation matrices. We are interested in

comparing the topology of the corresponding weighted graphs.

Since these networks differ in their mean correlation coefficients, a

simple thresholding of these matrices will produce graphs of

different wiring costs, i.e. different number of edges. Naturally, this

thresholding is only one of the possible thresholding approaches

that could be adopted. This non-uniqueness is due to the fact that

graph topology is expressed in the language of discrete

mathematics, whereas correlation coefficients are real-valued

functions. That is, one cannot directly adopt concepts originally

developed for unweighted graphs for the analysis of weighted

graphs.

In this paper, we consider two main approaches to the

problem of weighted network comparison. Firstly, following

other authors, we evaluate the use of weighted topological

metrics, which are weighted equivalents of graph-theoretical

metrics for unweighted networks [19,20]. Secondly, we consider

the utilization of cost-integrated measures of topology, where all

the possible wiring costs of a network are taken into account.

When unweighted, a graph’s wiring cost is defined as its number

of edges. Integrating over wiring cost can here be interpreted in

statistical terms, as an analog to the Bayesian integration of

nuisance parameters. Doing so, we are averaging out the

‘uncertainty’ in the choice of a particular level of cost. Cost-

integrated topological measures have been popular in the

neuroscientific literature [6,21]. However, different authors have

chosen different integration intervals. We therefore explore the

consequences of integrating a topological metric with respect to

different subsets of the cost interval.

Note that our approach substantially differs from the one

adopted by Wijk et al. [22], who proposed several formulas

relating cost levels and topological measures, such as the

characteristic path length or the clustering coefficient. Instead, in

this paper, we are concerned with formally deriving what is the

effect of integrating a particular topological measures over cost

levels, in order to assess whether this is a successful manner of

disentangling differences in cost from differences in topology. In

particular, although Wijk et al. [22] reviews several ways of

controlling for differences in cost, they do not consider cost-

integration, per se. This paper can therefore be seen as a

contribution to the literature on weighted network analysis, where

we formally clarify the utilization of cost-integration when

comparing topological metrics.

The concept of topology in the context of this paper will be

defined in a quantitative manner. This should be contrasted with

the qualitative definition adopted by previous authors. Wijk et al.

[22], for instance, assume that networks that represent different

realizations of the same ‘generative model’ should be regarded as

topologically identical. Indeed, several realizations of an Erdös-

Rényi model with fixed edge probability share a common

generative model and therefore can be said to have an identical

topology. In practice, however, such a generative model is

unknown. Thus, we will refer to this type of classification as a

topological taxon. A taxonony of commonly encountered networks

may include the random topology of the Erdös-Rényi model, the

regular lattice and the small-world topology among others. Such a

nomenclature is qualitative because it relies on discrete categories.

By contrast, we wish to adopt a quantitative perspective on this

problem, whereby topology is operationalized in terms of specific

topological properties such as the clustering coefficient (CC), for

instance. In this perspective, two Erdös-Rényi models with

identical edge probability may display different levels of global

and local efficiencies and will therefore be considered to have

distinct topological properties. Therefore, we distinguish between

a qualitative approach based on topological taxonony and a

quantitative approach based on topological properties. Given that

generative models are latent, our quantitative definition of

topology appears better suited to the empirical study and

comparison of complex networks.

The above definition of network topology, however, assumes

that the networks under comparison have identical numbers of

vertices and edges. When this is not the case, or when one is

comparing two populations of weighted networks, the question of

whether or not these networks have similar topological properties

becomes arduous. Our main aim, in this paper, is therefore to

identify the situations within which one can safely conclude that

different weighted networks share the same topological properties.

In particular, we explore whether cost-integration answers this

problem. Specifically, we consider whether cost-integration is a

useful way of disentangling weighted cost from topology.

The paper is organized as follows. We first introduce some

of the notation and basic concepts that will be used throughout

the paper. We then describe the two general families of

topological measures for weighted networks, which are the (i)

weighted and (ii) cost-integrated metrics. For the latter, we

consider different types of distribution over the cost levels.

The main contribution of this paper is then reported, where

different approaches to weighted network comparison are

outlined, using theoretical results and simple examples. An

application of these techniques to a repeated measures fMRI

task investigating working memory is also described, which

allows us to illustrate a Monte Carlo (MC) sampling scheme to

approximate the different measures of interest. Finally, we
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discuss the findings of this paper in light of the current

utilization of networks in the biomedical sciences. Finally, we

close with a set of recommendations on how to conduct

weighted network analysis in practice and how to report the

findings arising from this type of research. An R package

entitled NetworkAnalysis (http://CRAN.R-project.org/package

= NetworkAnalysis) has been developed that makes available the

methods discussed in this paper.

Results

Network Types and Topologies
Unweighted, Weighted and Fully Weighted Networks. For

clarity of exposition and consistency with the previous literature, we

will here employ the notation used by Kolaczyk [23]. A

comprehensive introduction to the theory of complex networks

can be found in Newman [24]. In the following, the terms metrics

and measures will be used interchangeably to refer to a function

quantifying the topological structure of a network. Our use of the

terms metric and measure is unrelated to the mathematical

definitions of these concepts in topology and measure theory,

respectively. Similarly, we here utilize the graph-theoretical

definition of the term cost, which is not related to its use in a

probabilistic setting.

An unweighted undirected graph or network G is formally

defined as an ordered pair (V,E), where V is a set of vertices, points

or nodes, and E is a set of edges or connections linking pairs of

nodes. Therefore E(V6V, where 6 is the Cartesian product.

The cardinality –i.e. the number of elements– of V and E will be

referred to as NV : ~jVj and NE : ~jEj, respectively, where j:j
denotes the number of elements in a set, and : ~ that the left-

hand-side is defined as the right-hand-side. Moreover, the terms

network and graph will be used interchangeably. A graph with the

maximal number of edges is referred to as a complete or saturated

graph. For a given network G, we denote the corresponding

saturated graph as GSat. The cardinality of the edge set of GSat is

denoted by NI to distinguish it from NE . Here, the set I (G), for

any graph G is the set of indices of all possible edges in G. That is,

I (G) : ~f(i,j) : 1ƒivjƒNVg: ð1Þ

This notation for the set of indices of all possible edges in G will be

useful when describing the topology of G based on its shortest

paths.

Figure 1. How can one disentangle differences in connectivity strength from differences in topology? In panel (a), two correlation
matrices for two weighted networks differ in their average correlation strengths. In panel (b), the same correlation matrices have been thresholded at
the same value, producing graphs with different cost levels. In all matrices, black indicates null values, and white denotes entries equal to unity.
doi:10.1371/journal.pone.0021570.g001
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Weighted undirected graphs will be denoted by the triple

G : ~(V,E,W), where W(G) is a set of weights, whose elements

are indexed by the entries in E(G), such that

wei
~wvjvh

, ð2Þ

for some edge ei : ~vjvh. Thus, every weighted undirected graph

will necessarily satisfy

NE~NW ƒNI , ð3Þ

where NW : ~jW(G)j. The weight set populates a symmetric

matrix W, whose diagonal elements are null. Graphs that satisfy

NW ~NI will be referred to as fully weighted graphs. Note that, in

general, we will not draw an explicit difference between a weighted

and an unweighted network through our notation. However,

which one we are referring to should be understandable from the

context.

There are a wide range of different weighted measures of

internodal association. Our methodological development, in this

paper, applies to any choice of association metric. This includes

correlation coefficients, partial correlations, synchronization

likelihoods and others. For simplicity, we will assume that the

association weights, wij ’s, lie in the unit interval, ½0,1�. Roughly,

these standardized weights, wij , can be interpreted as the strength

of the association between nodes i and j, with larger values

indicating a greater level of association. Such standardization can

be obtained straightforwardly, in practice. For the case of the

Pearson’s correlation coefficient rij , for example, the standardized

weights can be defined as,

wij : ~1{
1{rij

2

� �
: ð4Þ

Note that the use of standardized correlation coefficients suffers

from two potential pitfalls. Firstly, since negative correlations are

transformed into positive measures of association, it follows that

we are amalgamating different subsets of edges, which may play

very different roles. That is, while subnetworks of negatively

correlated vertices may reflect inhibitory processes, subnetworks

of positively correlated vertices may reflect excitatory processes.

Secondly, since pairs of vertices linked by a small amount of

correlation, either positive or negative, will be transformed to

take a value close to 0:5; it follows that we may be introducing a

spurious amount of random noise in such a weighted network

analysis, as correlation coefficients close to zero are likely to be

non-significant. Our approach to weighted network analysis in

this paper, however, centres on thresholding the weighted

networks of interest and therefore does not explicitly take into

account the direction of the association. Moreover, our focus

will be on fully weighted networks, such as a standardized

correlation matrix, where all entries are greater than 0.

Therefore, in the sequel, G will refer to a fully weighted graph,

except when specified otherwise. We will discuss the use and

limitations of cost-integration for non-fully weighted graphs in

the discussion.

Classical Measures of Network Topology. A wide range

of network topological metrics have been proposed in the

literature [20]. Two types of measures are generally of interest,

which are sometimes referred to as (i) integration metrics and (ii)

specialization metrics. The former category of topological

measures quantifies a network’s capacity to transfer information

globally, whereas the latter reflects a network’s capacity to transfer

information locally. This distinction originated with the work of

Watts et al. [1], who considered the characteristic path length

(CPL), on one hand, and the clustering coefficient (CC), on the

other hand, as measures of global and local information transfer,

respectively. Although these metrics have been successfully used in

a wide range of settings, Latora et al. [19] have introduced two

analog metrics: the global and local efficiencies, which will be

more useful in our context. These two measures retain the

interpretation of the CPL and CC, while being applicable to a

wider range of networks. Specifically, the global efficiency metric

can be computed for any network, irrespective of its level of

sparsity, which is not true for CPL. That is, the CPL becomes

infinite when a graph is disconnected [25]. By contrast, the global

efficiency is well-defined for any networks. For consistency, we will

therefore use the global and local efficiencies to characterize global

and local transfer of information in brain networks, respectively.

Note, however, that analogously to the CC, the local efficiency is

undefined for networks that contain isolated nodes. Thus, we set

the efficiency of an isolated node to zero, which allows to integrate

local efficiency over the full range of costs.

One of the remarkable aspects of global and local efficiencies is

that they can both be subsumed under the general concept of

information transfer efficiency, which is defined for any unweight-

ed graph G~(V,E) –connected or disconnected– as [19],

E(G) : ~
1

NV (NV {1)

XNV

i~1

XNV

j=i

d{1
ij ~

1

NI

X
I (G)

d{1
ij , ð5Þ

where the summation over the set I (G) is over all the pairs of

indices (i, j) as in equation (1), and dij denotes the length of the

shortest path between vertices i and j in the adjacency matrix of G,

with dij : ~? when these two nodes are not connected. The

summation over j=i includes all indices between 1 and NV

different from i. The global and local efficiencies of network G are

then readily derived from equation (5), such that

EGlo(G) : ~E(G), and ELoc(G) : ~
1

NV

XNV

i~1

E(Gi), ð6Þ

where Gi is the subgraph of G that includes all the neighbors of the

ith node. That is, V(Gi) : ~fvj[Gjvj*vig, where vj*vi signifies

that nodes i and j are connected. By convention, we have

vi=[V(Gi) [19,26]. Note that both global and local efficiencies are

normalized quantities with values in the unit interval –that is

E(G)[½0,1�. The global efficiency of a graph G can be interpreted

as the average ‘speed’ of information transfer between any pair of

nodes in G, with a high value of EGlo(G) indicating a high average

‘speed’, and therefore efficient information transfer. Similarly, the

local efficiency of a graph G can be interpreted as the average

global efficiency of the NV subgraphs of G, where again a high

value for ELoc(G) implies efficient local information transfer, on

average.

We have used E(G) to denote the efficiency metric of the

unweighted graph G. This should be distinguished from the graph-

theoretical concept of the edge set, which we have denoted E(G).
Since both quantities are functions of G, we have emphasized this

distinction through our notation. Note also that we will make use

of the expectation operator from probability theory, which will be

denoted by E½:�. For simplicity, all our development, examples and

technical results will be based on the general efficiency described

in equation (5). However, these methods could readily be extended

to both global and local efficiencies. In fact, most of our discussion

Brain Network Analysis
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applies to all topological metrics that can be computed for any

level of sparsity. We will discuss the generalization of our results to

other topological measures in the Discussion section.

Cost and Weighted Cost. In network analysis, it is often of

interest to quantify the cost or wiring cost of an unweighted graph.

In this section, we extend this concept to weighted networks. This

generalized version of cost will be termed the weighted cost or

weighted density.

The cost or density, K : ~K(G), of an unweighted network

G~(V,E) quantifies the relative number of connections in G as a

proportion of the number of edges contained in the NV -matched

saturated network GSat. That is,

K(G) : ~
jE(G)j
jE(GSat)j~

NE

NI

, ð7Þ

where NI : ~NV (NV{1)=2. The computation of the cost of a

network G implicitly refers to the adjacency matrix A of that

network. Hence, we can reformulate the definition in equation (7)

by explicitly using A as follows,

K(G)~

PNV
i~1

PNV
j=i aijPNV

i~1

PNV
j=i aSat

ij

~
1

NI

X
I (G)

aij , ð8Þ

where the aSat
ij ’s denote the elements of the adjacency matrix ASat,

which represents a saturated network of NV nodes.

Similarly, it will be of interest to quantify the cost of a weighted

network, which will be referred to as KW (G). We define it by

generalizing the relationship between an unweighted graph and its

adjacency matrix in order to apply it to weighted graphs and their

association matrices. However, to extend the concept of cost to a

real-valued association matrix, say W, we need to formalize what

we mean by a saturated weighted graph. A natural choice is to define

WSat as a matrix of order (NV|NV ) with unit entries. Formally,

WSat : ~1(NV |NV ). Using this saturated association matrix, we

can now define the cost of a weighted graph as follows,

KW (G) : ~

PNV
i~1

PNV
j=i wijPNV

i~1

PNV
j=i wSat

ij

~
1

NI

X
I (G)

wij , ð9Þ

where wSat
ij ’s are the elements of WSat. The non-standardized

version of the cost of a weighted network in equation (9) was

introduced by Fallani et al. [11]. Thus, the weighted cost of

G~(V,E,W) is the mean of the off-diagonal elements in W,

populated by the setW. This is reminiscent of our starting point in

equation (7), where the same observation can be made about

unweighted networks. In the sequel, the concept of weighted cost

will be used interchangeably with the phrase connectivity strength.

Note that depending upon which standardization one chooses, one

may obtain different types of weighted costs. In particular, KW

could also be standardized with respect to the number of elements

in W. This would produce a different measure. In this paper, we

will assume that the networks under consideration are fully

weighted, such that NE~NW ~NI , and therefore these two types

of weighted costs are equivalent.

There is currently no guidance in the literature on how to

quantify the topological aspects of a weighted network. We

review here two approaches to this problem in the following two

sections: (i) weighted, and (ii) cost-integrated metrics of network

topology. We describe and define these two families of measures,

in turn.

Weighted Measures
A natural approach to the problem of quantifying the topology

of weighted networks is to translate unweighted measures, such as

efficiency metrics, for example, into a weighted format. This is a

very general procedure, which has been introduced by several

authors including Latora et al. [19] and Rubinov et al. [20].

Weighted versions of classical metrics commonly rely on the

definition of a weighted shortest path. For unweighted networks,

the shortest path dij between nodes i and j in G~(V,E) is defined

as the following minimization,

dij : ~ min
Pkl[Pij (G)

jE(Pkl)j, ð10Þ

where Pij(G) is the set of all paths between nodes i and j that are

subgraphs of G. A subgraph Pij(G is a path if and only if

i, j[V(Pij) such that

E(Pij)~ ia, ab, . . . ,yz, zjf g, ð11Þ

where each pair of letters stands for an edge. One can similarly

define a weighted shortest path, dW
ij , for some weighted graph

G~(V,E,W) as follows,

dW
ij : ~ min

Pkl[Pij (G)

X
uv[E(Pkl )

f (wuv), ð12Þ

where the weighted edge set of a path now takes the form,

W(Pij)~ wia, wab, . . . ,wyz, wzi

� �
, ð13Þ

using the notational convention introduced in equation (2). Since

we have normalized the association weights, wij ’s, the real-valued

function f (:) is restricted to a map of the form f : ½0,1�.½0,1�. A

convenient choice of f (:) is the inverse function, f (wij) : ~1=wij .

It now suffices to use our chosen definition of the weighted shortest

path dW
ij , in order to obtain a weighted version of the general

efficiency metric in equation (5), which gives

EW (G) : ~
1

NV (NV {1)

XNV

i~1

XNV

j=i

1

dW
ij

~
1

NI

X
I (G)

1

dW
ij

: ð14Þ

Note that weighted efficiency is here bounded between 0 and 1.

Since the standardized association weights take values in ½0,1�, it

then follows that dW
ij §1, and therefore 1=dW

ij [½0,1�, for every pair

of vertices.

Cost-integrated Measures
A second approach to the problem of quantifying the topology

of weighted networks proceeds by integrating the metric of interest

with respect to cost. Here, some authors have integrated over a

subset of the cost range [7], whereas others have integrated over

the entire cost domain [27]. This second family of metrics will be

referred to as cost-integrated measures. Given a weighted graph

G~(V,E,W), the cost-integrated version of a topological metric

T(:) is defined as follows,

Tp(G) : ~
X

k[VK

T(c(G,k))p(k), ð15Þ

where cost is treated as a discrete random variable K , with

Brain Network Analysis
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realizations in lower case, and p(k) denotes the probability mass

function of K . Since K is discrete, it can only take a countably

finite number of values, which is the following set,

VK : ~
1

NI

,
2

NI

, . . . ,
NI{2

NI

,
NI{1

NI

, 1:0

� �
~ : k, ð16Þ

where, as before, NI : ~NV (NV{1)=2~jVK j. It will be useful to

treat VK as an ordered set, k, whose elements, kt’s, are arranged in

increasing order and indexed by t~1, . . . ,NI . The function

c(G, k) in equation (15) is a thresholding function, which takes a

weighted undirected network and a level of wiring cost as

arguments, and returns an unweighted network. We defer a full

discussion of c to Methods B, where we describe its definition in

more detail. This function is based on the percentile ranks of the

elements of W, where tied ranks are resolved by assigning the

corresponding ordering of the elements’ indices. Since K is treated

as a discrete random variable, we can define its probability mass

function. We will here consider two different choices for p(k): (i) a

uniform distribution on K and (ii) the use of a Beta-binomial

distribution on K .

Uniform Distribution on K. Firstly, as there is no prior

knowledge about which values of K should be favored, one may

choose to specify a uniform distribution over VK . In equation (16),

we have excluded the null cost for standardization purposes. Since

any edge-based topology of interest will be zero when K~0, this

particular value is irrelevant when comparing different populations

of networks. In example 3, we will also see that this exclusion of

the point mass at K~0 ensures a more satisfying standardization

of EU (G). As no particular cost levels are favored, K is given a

discrete uniform distribution, such that

K*DisUnif(VK ), ð17Þ

where each element of VK has an identical probability of

occurrence, which, in our case, is equivalent to

p(k)~
1

jVK j
~

1

NI

, ð18Þ

for every k[VK . The theoretical integration in equation (15) is

therefore a weighted summation over a finite set of atoms [28],

and may be computed as follows. The cost-integrated version of

the general efficiency in equation (5) then becomes:

EU (G)~
XNI

t~1

E(c(G, kt))p(kt)~
1

NI

XNI

t~1

E(c(G, kt)): ð19Þ

where the index t runs over the elements of VK described in (16).

Beta-binomial Distribution on K. Secondly, one may also

choose to favor different portions of the domain of K . This can be

formally conducted by specifying a Beta-binomial distribution on

K . The Beta-binomial distribution is particularly suited to this task

because it can be regarded as a discrete version of the Beta

distribution over a discrete interval, and can be parametrized in

order to de-emphasize the importance of the topologies situated at

the ends of the cost domain: i.e. for very low and very high costs.

This is a distribution, which commonly arises in the context of

Bayesian statistics, as the marginal likelihood of a hierarchical

model with binomial likelihood and Beta prior [29]. Since

realizations from a Beta-binomial distribution represent the

number of successes on a sequence of Bernoulli trials, it follows

that we here need to consider the probability of the number of

edges, NEkt. Thus, we have the following definition linking the

probability mass function of K with the one of the number of

edges,

p(ktja,b,NE) : ~BB NEkt{1ja,b,NE{1ð Þ, ð20Þ

for every t and where the Beta-binomial distribution is given the

following parametrization,

BB kja,b,nð Þ : ~
n

k

� �
B(kza,n{kzb)

B(a,b)
, ð21Þ

with B(:,:) denoting the Beta function. In equation (20), we have

subtracted 1 from all the realizations of the Beta-binomial

distribution in order to restrict the domain of that distribution to

the number of elements in VK , as we have excluded the null cost.

Thus, this distribution weights each kt according to the

distribution controlled by a and b. The corresponding formulae

for the general efficiency is therefore,

EBB(Gja,b) : ~
XNI

t~1

E(c(G,kt))p(ktja,b,NE): ð22Þ

In figure 2, different distributions of BB(NEktja,b,NE) have been

plotted for different choices of a and b, while NE has been chosen

to reflect the size of the functional brain networks. The values

given to the parameters (a,b) determine which cost levels are

upweighted. In particular, one can observe that EU can be

recovered as a special case of EBB by selecting a~b~1, as shown

in figure 2. We have here restricted ourselves to symmetric

versions of the Beta-binomial distributions, but asymmetric choices

are also possible.

Cost-integration over a Subset of the Costs. More

generally, cost-integrated metrics can be defined with respect to

a subset of the cost regimen. We here illustrate this approach for

the case of uniform cost-integration. This perspective on the

problem of weighted network comparison has been utilized by

several authors [5,7,30]. In our notation, a subset of the cost levels

will be indicated by an interval of the form ½k{,kz�(VK , which

Figure 2. Symmetric versions of the Beta-binomial distribution
for different choices of parameters, with NE~4005.
doi:10.1371/journal.pone.0021570.g002
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refers to a finite number of values of K , satisfying k{ƒkƒkz.

Integration over that subset is then defined as

EU (Gjk{,kz) : ~
XNI kz

t~NI k{

E(c(G,kt))p(ktjk{,kz), ð23Þ

where the probability mass function on K is normalized with

respect to the chosen domain of integration ½k{,kz�, such that

p(kjk{,kz)~1=(NI kz{NI k{z1), for every k in that interval.

The computational formula for this generalization of equation (19)

is then given by

EU (Gjk{,kz)~
1

NI kz{NI k{z1

XNI kz

t~NI k{

E(c(G,kt)), ð24Þ

which follows from NI kl~l, using the definition of cost in

equation (7). Note that the value of the conditional probability

p(kjk{,kz) will be different if semi-open intervals such as

(k{,kz� are considered, instead of closed ones. This is due to

the fact that the interval of interest is over a set of discrete values,

as opposed to a subset of the real line. As a special case, this

notation can also handle the estimation of a particular topological

metric at a single cost level, say k0. In such cases, the interval of

interest becomes ½k0,k0�. Our notation makes explicit the fact that

integration over a subset of the full cost regimen, is conditional on

the choice of such a subset.

Since K has been treated as a random variable and because

E(c(G,K)) is a function of K , it follows that E(c(G,K)) is also a

random variable. The integral EU (G) can therefore be seen as the

expectation of E(c(G,K)) with respect to the distribution of K .

This probabilistic treatment of cost-integrated metrics will be

particularly helpful when considering how to estimate these

quantities, as a Monte Carlo (MC) sampling scheme can readily be

devised in order to approximate EU (G), when the network of

interest is too large to be computed exactly. More details about this

sampling scheme are given in Methods A.

Pros and Cons of Integrating over Cost Levels
We now turn to the main question tackled in this paper: Is it

useful to integrate over the different cost levels of a particular

weighted network? In order to answer this question, we briefly

consider some of the alternatives to this approach. This consists of

(i) fixing a cutoff point, (ii) fixing a cost regimen, (iii) integrating

over all cost levels, and (iv) directly using weighted topological

metrics. Our comparison of these four approaches is substantiated

by some simple examples, synthetic data sets, and theoretical

results. For convenience, we will solely treat the case of two

weighted networks in this section. Extensions of these ideas to the

case of several populations of networks are discussed in the

Discussion.

Fixing a Cutoff Threshold. The simplest way of comparing

the topology of weighted networks is to threshold the

corresponding association matrices at a specific value, and

evaluate the resulting discrete topologies. It is instructive to

study the consequences of such a naive thresholding on two

networks with proportional association matrices, as we describe in

the following example.

Example 1 Let two weighted networks G1~(V,E,W1) and

G2~(V,E,W2), with standardized association matrices denoted

W1 and W2, respectively; such that every wij,k[(0,1) where k~1,2
labels the two graphs under scrutiny. In addition, assume that

W1 : ~aW2, ð25Þ

where a[(0,1) is a scalar. That is, the association matrix of G2 is

simply proportional to that of G1. Two such association matrices

have been discussed in the introduction and were illustrated in

panel (a) of Figure 1. Note that the relationship in equation (25)

implies that the diagonal elements of W1 are not standardized to

1:0. However, the topology and cost of weighted networks solely

depend on the off-diagonal elements of such association matrices.

Therefore, differences in the diagonal elements do not pertain to

this discussion. Interestingly, it is easy to show that proportionality

in association matrices implies proportionality in weighted cost.

Using equation (9), we have

KW (G2)~
1

NI

X
I (G1)

awij,1~aKW (G1), ð26Þ

since a is applied elementwise. Therefore, KW (G2)wKW (G1) as

by assumption 0vav1.

A naive approach to the problem of comparing the topologies of

these two networks may proceed by thresholding W1 and W2 at a

particular value, say c�, as was done in the introduction. If we

compare these networks in terms of global efficiency, straightfor-

ward computation of the two corresponding quantities shows that

we necessarily have

E(k(G2,c�))§E(k(G1,c�)), ð27Þ

for any c�[½0,1�, where k(Gk,c�) : ~IfWkwc�g. This follows

since G2, thresholded at c� has all the edges of k(G1,c�), as well as

additional links owing to its weighted cost being higher. The

relationship in equation (27) is then deduced from the monoto-

nicity of the efficiency function with respect to cost. Note that these

inequalities would hold for both local and global efficiencies, or

any other topological metric, which is a monotonic increasing

function of the cost level. Therefore, example 1 has shown that

thresholding weighted graphs at a fixed cutoff point is misleading,

since graphs with higher weighted cost will tend to be classified as

having higher levels of global efficiency. This problem can be

remedied by fixing cost levels instead of cutoff points.

Fixing a Cost Level. A natural approach to the problem of

separating cost from topology is to choose a particular cost level.

This may be a single value or a subset of the cost regimen. Such a

strategy has been adopted by several authors [5,7,30]. One of the

original justifications for conditioning over a subset of the cost

regimen was that topological metrics such as CPL or CC cannot

be computed for disconnected networks, thereby making it

impossible to calculate these quantities for small cost levels.

However, since comparable global and local topological properties

can also be measured using the efficiency metrics introduced by

Latora et al. [19], such problems do not arise when using these

topological metrics. We illustrate the consequences of integrating

over a subset of the range of K with a real data example, where the

original data has been transformed. We have constructed a

pathological case, which shows that integrating over a subset of the

cost levels can fail to distinguish between topologically distinct

weighted networks.

Example 2 We here consider a single functional connectivity

matrix W, corresponding to the mean statistical parametric

network (SPN) of a previously published data set [31]. The matrix

W was transformed in order to produce two other matrices with

either a regular or a hybrid structure, denoted by
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Wreg : ~Freg(W) and Whyb : ~Fhyb(W), respectively. The func-

tions Freg and Fhyb simply re-organize the position of the entries in

W, as can be seen from Figure 3. The choice of these

transformations was constrained by the following prescriptions,

c Greg,k
0� 	

~c Ghyb,k
0� 	

and c Greg,k
00� 	

~c Ghyb,k
00� 	

, ð28Þ

for cost levels k
0

: ~0:25 and k
00

: ~0:75, respectively. That is,

the adjacency matrices corresponding to costs k
0

and k
00

are

identical for Wreg and Whyb. The effect of the functions Freg and

Fhyb was to create different layers of topological structures that

vary according to wiring cost. The hybrid matrix was composed of

alternating layers of random and regular topologies. Roughly, the

three layers of the hybrid network corresponding to an hybrid

association matrix can approximately be described as follows,

topology c(Ghyb,k)

 �

~

Random if k[½0,k
0 �,

Regular if k[(k
0
,k
00 �,

Random if k[(k
00
,1:0�;

0
BB@ ð29Þ

for every k[½0,1�, where k can only take a finite number of values

in the unit interval. The regular matrix, by contrast, was built as

three layers of regular topologies. That is,

topology c(Greg,k)

 �

~Regular, ð30Þ

for every k[½0,1�. The random and regular layers were constructed

in a standard fashion [31]. Matrices W, Wreg and Whyb

corresponding to weight sets W, Wreg and Whyb, are represented

in Figure 3 with the corresponding adjacency matrices resulting

from different choices of cost levels.

By construction, the weighted graphs Greg~(V,E,Wreg) and

Ghyb~(V,E,Whyb) have identical levels of general efficiency for

the cost levels comprised in the interval ½k0 ,k00 �. Therefore,

integrating over that interval gives the same result for both graphs:

E½k0 ,k00 �(Greg)~E½k0 ,k00 �(Ghyb) ¼: 0:708, ð31Þ

where ¼: means approximately. By contrast, the general

efficiencies of these two networks differ substantially when

uniformly integrating over the full range of cost, i.e. ½0,1�. This

gives

EU (Greg) ¼: 0:662 and EU (Ghyb) ¼: 0:679: ð32Þ

This is as expected, since the hybrid network has several layers of

random topologies, which renders it more globally efficient than

Greg.

Example 2 illustrates the problems associated with integrating

over a subset of the cost regimen. By doing so, we are potentially

omitting substantial topological differences between the networks

of interest at other cost levels. The difference in EU between Greg

and Ghyb reported in that counterexample may not appear very

large. However, these two networks could have represented the

mean networks of two populations of interest. Providing that the

pool of subjects is sufficiently large, such topological differences

could be found to be statistically significant. By contrast,

comparison of these two networks on the basis of the full cost

regimen yielded answers, which were exactly identical, thus

nullifying any statistical test of group differences. Naturally, this

example could have been constructed in the opposite direction in

order to show that networks that seem to differ topologically for

some cost subsets are, in fact, identical when uniformly integrating

over the full cost regimen.

Fixing a cost level or a subset of the cost regimen therefore

suffers from two main problems. Firstly, the arbitrariness of the

choice of a specific cost subset will generally be difficult to justify

from either a theoretical or a practical perspective. Secondly, as we

have illustrated with example 2, considering only a subset of the

cost potentially omits topological differences, which are solely

visible at other cost levels. Thus, any network analysis using this

strategy can only draw conclusions that are conditional on the choice

of cost subset, and this dependence should be made explicit when

Figure 3. Simulation framework for example 2. The small-world correlation matrix W is transformed into a regular and a hybrid matrix, denoted
Wreg and Whyb, respectively. The regular matrix exhibits a lattice-like topology throughout its cost range, whereas Whyb consists of alternating
topological layers of random and regular structures. The entries in both matrices have been arranged in decreasing order from the diagonal, to
facilitate visualization.
doi:10.1371/journal.pone.0021570.g003
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reporting the results of such analyses. Nonetheless, fixing a

particular cost subset successfully satisfies one of our desiderata,

which was to disentangle differences in cost from differences in

topology. That is, weighted networks’ topologies can be compared

irrespective of cost differences, by conditioning on some subset of

the cost levels. This invariance property will be made mathemat-

ically more precise in the next section.

Integrating over Cost levels. From a statistical perspective,

the problem of isolating topology from connectivity strength may

be reformulated as evaluating topological differences while

‘controlling’ for cost, where these two quantities are treated as

random variables. A natural starting point is to consider weighted

networks whose association matrices are proportional to each

other, as in the ensuing example.

Example 3 As a simple example, consider the following

problem. Let two weighted networks G1~(V,E,W1) and

G2~(V,E,W2), be characterized by the following standardized

association matrices:

W1 : ~
0:0 w12,1

0:0

� 

, and W2 : ~

0:0 w12,2

0:0

� 

, ð33Þ

where we assume that w12,1 and w12,2 are comprised in the open

interval (0,1). Here, there are only two levels of cost, K[f0,1g.
Trivially, G1 and G2 can therefore be shown to exhibit identical

general efficiency for these two cost levels. Since our proposed

formula for cost-integrated topological measures in equation (19)

does not include the null cost, we simply have VK~f1g, which

implies that both graphs attain the maximal level of uniformly

cost-integrated efficiency. That is, considering a uniform distribu-

tion over K , we have

EU (G1)~EU (G2)~1:0: ð34Þ

This simple example serves as a justification for our exclusion of

the null cost from the set VK in equation (16). Including the null

cost would result in EU~0:5 for these two basic networks, which

does not appear satisfying. Crucially, the equality in (34) does not

depend on the relationship between w12,1 and w12,2. That is,

differences in weighted cost have no impact on cost-integrated

topology. We now return to the case studied in example 1 in order

to elucidate the exact effect of cost-integration.

Example 1 (Continued) In this example, we considered two

networks with proportional association matrices, satisfying

W1 : ~aW2. An application of the uniformly cost-integrated

metrics described in equation (19) to the networks of this example

gives the following equalities,

EU (W1)~EU (aW2)~EU (W2): ð35Þ

That is, when uniformly integrating with respect to the cost levels,

we are evaluating the efficiencies of G1 and G2 at NI discrete

points. At each of these points, the efficiency of the two networks

will be identical, because W1 is proportional to W2 and therefore

the same sets of edges will be selected. Thus, G1 and G2 have

identical cost-integrated efficiencies.

The equalities derived in these two examples can be shown to

hold in a more general sense. The invariance of cost-integrated

efficiency turns out to be true for any monotonic (increasing or

decreasing) transformation of the association matrix and applies to

any topological metric, T , that takes an unweighted graph as an

argument, as formally stated in the following result.

Proposition 1 Let a weighted undirected graph G~(V,E,W). For

any monotonic function h(:) acting elementwise on a real-valued matrix, W,

corresponding to the weight set W, and any topological metric T , the cost-

integrated version of that metric, denoted Tp, satisfies

Tp(W)~Tp(h(W)), ð36Þ

where we have used the association matrix, W, as a proxy notation

for graph G.

A proof of this result is provided in Methods B. It relies on the

idea that the evaluation of a weighted network solely depends on

the ranking of the off-diagonal elements of W (i.e. the ranking of

the elements in W), and that the ranks of a set of values are

independent of a monotonic transformation of these values. Note

that the arguments used in Methods B do not rely on the definition

of T , nor on the choice of p(K). Therefore, proposition 1 is true

for any cost-integrated topological metrics –i.e. a metric originally

defined in a discrete setting for an unweighted graph, and

integrated with respect to cost, when applied to a weighted

network. Note also that proposition 1 only holds for all levels of

sparsity of G if the thresholding function c(G,k) used in the

computation of a cost-integrated metric preserves the original

ordering of elements in W with tied ranks, using their indices. In

general, however, sparse networks may better be dealt with, in this

context, by adjusting the size of the integration domain.

Proposition 1 encapsulates both the advantages and limitations

of cost-integrated topological metrics. Two weighted networks,

whose topologies are roughly identical at every cost level will be

given identical scores under this family of metrics, irrespective of

cost differences. Cost-integrated metrics are therefore successful at

winnowing topology from connectivity strength. Another singular

advantage of this approach is that we obtain a measure, which is

invariant under any normalization or standardization of the

original data. That is, any functions that simply rescale or shift the

association weights, in order to ensure that they are comprised in

the unit interval, for instance, will have no effect on the value of

the cost-integrated topological measures.

However, proposition 1 also demonstrates the limitation of such

an approach. One can easily see that such cost-integration will

potentially mask some cost-specific topological differences, as

illustrated in example 2. In addition, when cost-integrated

topological metrics are used for network comparison, this requires

that the sizes of the weight sets of different networks are identical.

Similarly, the presence of multiplicities in the ranks of the weights

may also cause problems, as this would artificially induce a

random topological structure, since weights with equal ranks

would be randomly allocated to different cost levels. We will

further discuss these limitations in the conclusion of this paper.

Using a Weighted Metric. A seemingly natural way of

amalgamating connectivity strength and topological characteristics

is by directly considering weighted topological metrics, such as the

weighted global efficiency, EW , introduced in equation (14).

Unfortunately, we here prove that such an approach suffers from a

serious limitation, which could potentially dissuade researchers

from using this particular type of metrics. With the next

proposition, we show that in a wide range of settings, the

weighted efficiency is simply equivalent to the weighted cost of the

graph of interest.

Proposition 2 For any weighted graph G~(V,E,W), whose weight

set is denoted by W(G), if we have

min
wij[W(G)

wij§
1

2
max

wij[W(G)
wij , ð37Þ
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then

EW (G)~KW (G): ð38Þ

This result can be proved by contradiction, as demonstrated in

Methods C. The hypothesis in proposition 2 may at first appear

relatively stringent. However, it will encompass a wide range of

experimental situations. For the real data set described in example

2, the difference between max wij and 2 min wij is close to, but not

exactly, zero. However, we nonetheless have EW ~KW , for that

example. Thus, the added value of using the weighted efficiency

will, in general, be questionable since there exists a strong

relationship between this topological measure and a simple

average of the edge weights.

These theoretical results and associated counterexamples have

therefore highlighted the limitations of various approaches to the

problem of disentangling differences in cost from differences in

topology. As a result, when comparing several populations of

networks, we recommend the reporting of differences in weighted

costs and differences in cost-integrated topological measures. We

illustrate this approach with a re-analysis of a previously published

fMRI data set.

N-back Working Memory Data Set
In this section, we illustrate our theoretical results with a

previously analyzed data set of a working memory task based on

functional Magnetic Resonance Imaging (fMRI) data [31]. In

particular, we use this data set for testing our proposed MC

sampling procedure and for comparing a graph’s weighted cost

with its cost-integrated and weighted global efficiencies.
Description. Ginestet et al. [31] considered topological

changes in functional brain networks under different levels of

cognitive load. Here, we give a cursory description of the

experimental procedure used in this study and refer the reader

to the original paper for the full technical details. Ginestet et al.

[31] constructed networks on the basis of fMRI data gathered

from 43 healthy adults undergoing a working memory task known

as the N-back paradigm. Echo planar imaging data quality was

assessed using an automated technique [32]. In this experiment,

subjects were shown one letter every two seconds, and were asked

to monitor the stimuli, in order to indicate by the push of a button

whether the current letter was identical to the one presented N
trials previously, where N~f1,2,3g. A control or null condition

was also included, the 0-back task, which consisted of simply

indicating whether the current letter was an X. In this experiment,

the subject-specific fMRI images were parcellated into 90 regions

of interest using the Anatomical Automatic Labelling (AAL)

template [33]. The BOLD time series were averaged for each AAL

region. These regional mean time series were then wavelet

decomposed. Wavelet coefficients in the low frequency range

(0.01–0.03 Hz) were selected for the main network analysis [6].

Since the N-back paradigm contains four experimental levels, we

decomposed these time series into blocks corresponding to each

N-back condition. As each condition was repeated more than

once, these blocks were then concatenated. Note that this sequence

of processing steps involving wavelet decomposition immediately

followed by block concatenation was studied by Ginestet et al. [31]

using simulated data, and was not found to bias the results of the

final network analysis.

Vertices in these subject-specific functional networks were

chosen to be the 90 AAL regions, and the edges were constructed

by computing pairwise correlations between each condition-

specific time series of wavelet coefficients. The results of this

construction can be summarized using Statistical Parametric

Networks (SPNs), as illustrated in Figure 4 [31]. SPNs are

estimated using a mass-univariate approach, where the edges in a

population of subject-specific networks are tested for significance

using a mixed-effects model, and then thresholded using the false

discovery rate [34,35]. SPNs can be constructed using functions

made freely available through the R package NetworkAnalysis

(http://CRAN.R-project.org/package = NetworkAnalysis).

From Figure 4, one can observe that the connectivity strength (i.e.

weighted cost or averaged correlation coefficient) of the functional

networks in each condition tend to diminish as subjects experience

greater cognitive load.

Monte Carlo (MC) Estimation. A full description of the

theory supporting MC estimation in this context is provided in

Methods A. MC techniques are here used to speed up the

computation required when estimating our proposed cost-

integrated measures. Figure 5 shows the convergence of E
(m)

U to

EU , for a medium-sized weighted network derived from fMRI

data on the working memory task described in example 2. The

results are provided for both global and local efficiencies. Each

plot in Figure 5 shows the running mean plus or minus twice the

running MC standard error, which are defined for the uniformly

cost-integrated global efficiency, as E
(m)

U and (v
(m)
U )1=2, respectively,

where m~1, . . . ,5000. (See Methods A for details.) In Figure 5,

we also report the exact values of EU using formula (19) by dashed

lines.

In all the cases studied, the MC estimates compared favorably

with the exact integrals after approximately a quarter of the

number of computations required for the exact calculations. That

is, the exact derivation of EU necessitates NI~4005 evaluations of

the global or local efficiency. By contrast, MC estimates based on

approximately 1000 samples appear to provide reasonably good

approximations of these quantities, as indicated by the small MC

standard error. This constitutes a non-negligible computational

gain. The MC standard error, which is derived as a by-product of

these computations could then be used as an indicator of the

uncertainty associated with these estimates in a Bayesian

hierarchical model, where uncertainty is propagated from the

data to the population’s parameters of interest.

A simple alternative to MC averaging, in our context, would be

to construct a mesh of the unit interval and to approximate the

desired integral by a weighted sum of the values of the topological

metric of interest at the midpoints of that mesh. The latter method

is generally referred to as the Gauss-Kronrod quadrature formula

[36]. While this method is very efficient for simple functions, it

becomes rapidly unwieldy for complex ones, as it requires an

increasingly refined mesh to ensure good interpolation. Moreover,

since the Gauss-Kronrod is a deterministic algorithm, it does not

provide a measure of the accuracy of the estimation. By contrast, a

MC approach ensures asymptotic convergence for any level of

complexity and also produces precise confidence bands. (See

Methods A for details.)

Evaluation and Comparison. Following the statistical

framework used in the original analysis of this data set [31], we

tested for the statistical significance of the N-back factor on

different topological metrics using a mixed-effects model. We here

have n~43 subjects and J~4 experimental conditions. Using the

formalism introduced by Laird et al. [37], we have

yi ~XibzZibiz[i, i~1, . . . ,n,

[i *
iid

N(0,s2
[I) bi *

iid
N(0,s2

bI),
ð39Þ

where yi : ~½yi1, . . . ,yiJ �T is a subject-specific vector of

Brain Network Analysis

PLoS ONE | www.plosone.org 10 July 2011 | Volume 6 | Issue 7 | e21570



topological metrics of interest, b : ~½b1, . . . ,bJ �T is a vector of

fixed effect, which do not vary over subjects, bi : ~bi1 is a subject-

specific random effect and ei : ~½[i1, . . . ,eiJ �T are the residuals.

Finally, the matrices Xi’s and Zi’s are given the following

specification,

Xi~

1 0 0 0

1 1 0 0

1 0 1 0

1 0 0 1

2
6664

3
7775, and Zi~

1

1

1

1

2
6664
3
7775, ð40Þ

for every i~1, . . . ,n. The effect of the N-back factor was then

evaluated using Wald’s F -test. All these analyses were conducted

within the R environment using the lme4 package [38]. Note that

the model used here is slightly simpler than the one used in

Ginestet et al. [31], as the present mixed-effect model was found to

be better identified than the growth curve model utilized in the

original analysis.

In Figure 6, we report the cost–integrated global efficiencies for

this experiment. For illustrative purposes, we have computed

these quantities for four different choices of domains of

integration. The EGlo
U (Gij jk{,kz) were here estimated using

1,000 MC samples for each subject in each N-back condition. In

panel (a), one can observe a clear increase of the cost-integrated

global efficiencies as we increase the size of the domain of

integration, due to the monotonicity of global efficiency with

respect to cost. This is a standard property of global efficiency: as

graphs become denser, their diameter tends to diminish [39]. In

Figure 6, one can also note the dependence of the inter-subject

variability of the cost–integrated metrics on the chosen domain of

integration.

We therefore tested for the effect of the N-back factor on the

topological metrics of interest, given different domains of

integration, in order to evaluate whether such a choice of domain

has a systematic impact on the effect of the experimental factor.

These tests are based on the mixed-effects model described in

equation (39), and we have reported the results of these statistical

tests in Table 1. These results do not indicate that the choice of

different domains of integration or the choice of different

specifications of the Beta-binomial distribution yield systematic

biases in statistical inference. As was reported by Ginestet et al.

[31], the weighted cost was found to be systematically affected by

the N-back factor (Wald F~3:59,df1~3,df2~126,p~0:01).
However, none of the cost-integrated global efficiencies appeared

to be significantly influenced by the experimental factor. Most

Figure 4. Mean Statistical Parametric Networks (SPNj) over the 4 levels of the N-back task, in the sagittal plane, based on wavelet
coefficients in the 0.01–0.03 Hz frequency band, with FDR correction (base rate a0~:05). Locations of the nodes correspond to the
stereotaxic centroids of the corresponding cortical regions. The inferior–superior orientation axis is indicated in italics. The size of each node is
proportional to its degree.
doi:10.1371/journal.pone.0021570.g004

Figure 5. Running means of Monte Carlo (MC) estimates for uniformly cost-integrated global and local efficiencies in panels (a) and
(b), respectively, for the 3-back network described in example 2. The grey ribbon represents the variability of these estimators at each
m~1, . . . ,5000, using twice the MC standard error. That is, E

(m)
U +2s

(m)
U for both global and local efficiencies. The dashed lines indicate the exact value

of EU . See Methods A for details.
doi:10.1371/journal.pone.0021570.g005
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importantly, neither the use of different domains of integration nor

the specification of different parameters for the Beta-binomial

distribution seemed to affect the results. Integration over the entire

cost domain, however, resulted in a larger F -statistic, which may

be explained by the lower amount of variability characterizing

cost-integration over larger cost domains, as can be observed in

Figure 6. In panel (b), cost-integrated efficiencies with respect to

the Beta-binomial distribution for several choices of parameters

indicate that a possible relationship between global efficiency and

cognitive load may exist. However, this relationship did not reach

statistical significance, as can be seen from Table 1. It therefore

appears that although different choices of probability mass

functions on K yielded slightly different results, the overall analysis

seems to indicate that the experimental factor was not a predictor

of global efficiency.

In addition, in Table 1, we have also reported the F -statistic for

the effect of the N-back factor on the weighted cost. The subject-

specific network’s weighted costs were found to be significantly

influenced by the level of the experimental factor, as is

immediately visible from the mean SPNs reported in Figure 4.

The separation of the differences in cost from the differences in

topology that results from the use of a cost-integrated topological

metric is best illustrated by the interaction plots in Figure 7, where

ensembles of global efficiencies corresponding to different costs are

represented for the four levels of the experimental factors. Note

that, here, we are reporting the efficiency metrics for a single level

Figure 6. Box plots of cost-integrated global efficiencies. In panel (a), uniformly cost-integrated and in panel (b), Beta-binomial cost-
integrated global efficiencies of fMRI N-back networks for four different domains of integration and different choices of parameters are represented.
These integrals were estimated using MC approximation over 1,000 samples for each of the 43 subjects in each of the four experimental conditions.
Note that different domains of cost-integration do not induce any differences in the effect of the experimental factor, in panel (a). However, the use
of the Beta-binomial distribution seems to indicate that a gradual increase in global efficiency follows an increase in cognitive load, in panel (b).
However, these relationships did not reach statistical significance (see Table 1).
doi:10.1371/journal.pone.0021570.g006
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of cost, not integrated over a subset of the cost regimen as was

done in Figure 6. This is a visual depiction of the N-back factor

that corroborates the conclusions reached using cost-integrated

topological metrics, which stated that topology, as measured by

global efficiency, does not significantly vary with the experimental

factor.

Discussion

This paper has investigated the effect of thresholding matrices of

correlation coefficients or other measures of association for the

purpose of producing simple unweighted graphs. On the basis of

this analysis, and the examples studied in this paper, we make the

following methodological recommendations to researchers intend-

ing to compare the topological properties of two or more

populations of weighted networks.

Summary and Recommendations
We here summarize the main findings of this paper: (i) fixing a

cutoff threshold is not satisfactory, because this is fully determined

by differences in connectivity strength, as we have shown

previously; (ii.) fixing a subset of cost levels is not satisfactory,

because this potentially omits topological differences at other cost

levels; (iii) integrating over the entire cost regimen successfully

disentangles connectivity strength from topology up to monotonic

transformations. Specifically, such metrics are invariant to

monotonic transformations of the association weights; and (iv.)

the weighted topological metrics, such as EW , appear to be too

closely related to weighted costs.

From a methodological perspective, we therefore recommend

the following. As a preliminary step, it is good practice to

standardize the association weights, in order to obtain wij[½0,1� for

all wij ’s, with large values of the weights corresponding to strong

associations, although some care must be taken in the interpre-

tation of the resulting standardized weights. This may facilitate

comparison across separate network analyses, and ease the

interpretation of the results. Secondly, the weighted cost, i.e.

connectivity strength, of the networks of interest can then be

computed for all networks. This is central to the rest of the

analysis, and should be conducted systematically. Moreover,

quantitative differences in connectivity strength per se are

informative about the brain processes at hand, and their

experimental relevance should not be neglected. Thirdly,

Table 1. Statistical inference for the mixed-effects model
described in equation (39).

Outcome Variable Cost Domain F-statistic p-value

KW (G)

Weighted Cost 3.59 0.01

EGlo
U (Gjk{,kz)

Cost-integrated ½0,:25� 0.34 0.79

Cost-integrated ½0,:50� 0.24 0.86

Cost-integrated ½0,:75� 0.40 0.75

Cost-integrated ½0,1:0� 1.09 0.35

EGlo
BB (Gja,b)

Beta-binomial,
a~b~1

½0,1:0� 1.09 0.35

Beta-binomial,
a~b~2

½0,1:0� 0.94 0.42

Beta-binomial,
a~b~3

½0,1:0� 0.97 0.41

Beta-binomial,
a~b~4

½0,1:0� 1.37 0.25

Testing of the effect of the N-back factor on global efficiency. For uniformly
cost-integrated (EU ) global efficiencies, we have separately tested four different
domains of integration, whereas for Beta-binomial (EBB) cost-integration, we
have considered four different specifications of the parameters of the Beta-
binomial distribution.
doi:10.1371/journal.pone.0021570.t001

Figure 7. Interaction plots of cost-dependent global efficiencies of fMRI networks with respect to the levels of the N-back factor. We
here consider five different costs K[f0:05,0:15,0:35,0:55,0:75g. The dashed lines represents the cost-specific global efficiencies for each subject,
whereas the plain line represents cost-specific global efficiencies averaged over the 43 subjects. The flatness of the lines at each cost levels suggests
that the experimental factor has little effect on the topological structure of these networks.
doi:10.1371/journal.pone.0021570.g007
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population differences in cost-integrated topological metrics may

then be evaluated. This will indicate whether the topologies of the

populations under scrutiny vary significantly irrespective of their

differences in connectivity strength. This aspect of network

analysis could be regarded as qualitative, as this reflects the

networks’ architectural properties. In Table 1 and Figure 6, we

seen have that different choices of parameters for the Beta-

binomial distribution can lead to different inferential results.

Therefore, it may be appropriate to report such results for

different choices of distributions over K , in order to assess the

sensitivity of these results to such changes. We now expand and

discuss some of the remarks that were made in the Results section.

Limitations of Cost-integration
As with any form of averaging, cost-integration ignores cost-

specific topological differences. Networks G1 and G2, in example

1, differ in connectivity strength and these differences may also be

expressed through their cost-dependent respective topologies.

That is, as illustrated in example 2, certain graphs may not

exhibit the same topological structure at different cost levels, and

therefore integrating over cost may potentially mask these subtle

topological differences. Another potential problem with cost-

integrated quantities is that they may be expensive computation-

ally. The number of possible cost levels increases at rate O(N2
V )

with respect to the number of vertices in the networks of interest.

In Methods A, however, we show how such integrals can be

estimated through MC sampling, which can substantially diminish

the required computations.

Another potential pitfall which is not directly visible from

proposition 1 is that the use of cost-integration for the comparison

of several populations of networks requires these networks to have

the same number of positive weights. That is, to be comparable

two networks do not simply need to possess the same number of

vertices, i.e. jV(G1)j~jV(G2)j, but also should have the have the

same number of weights, i.e. jW(G1)j~jW(G2)j. In this paper, we

have re-analyzed an fMRI data set, based on correlation matrices,

which produce fully weighted networks, for which NI~NW for

every subjects. However, when such a condition does not hold, we

recommend the selection of a domain of integration that

corresponds to the smallest common denominator. That is,

N�W : ~ mini~1,...,n jW(Gi)j, for a given population of n weighted

networks denoted Gi. Thus, when considering sparser networks,

such as structural brain networks, one may still be able to control

for differences in cost, by integrating over a subset of the cost

regimen, which reflects the sparsity of the networks under

comparison.

A similar problem may arise if one or several networks in the

population of interest have multiplicities, i.e. weights that take

identical values. Since cost-integration relies on the ranking of

weights, it follows that one may need to adjust for such

multiplicities, otherwise this can lead to spurious generation of

random topologies. That is, when the tied ranks are resolved by

random ordering, the allocation of weights with identical values to

specific cost levels is random, and therefore artificially create a

random topology for these cost levels. For sparse networks,

multiplicities are likely to arise around zero. However, for large

non-sparse networks, the occurrence of multiplicities should be

evaluated by counting the number of tied ranks in the distribution

of the weights. In particular, if the two populations of networks

that one wishes to compare differ significantly in number of tied

ranks, then comparison based on cost-integration will be

contaminated by an artificial level of random topology.

Another possible limitation of cost-integration is that by

integrating over several cost levels, we omit to take into account

the dependence between the topologies of the different thre-

sholded graphs. The topological structure of the unweighted

networks created by thresholding the original weighted graph

share the same edges. Arguably, the cumulative nature of this

procedure results in emphasizing the importance of the set of edges

with the largest weights. Once these edges have been included into

a thresholded graph, they will be retained for the remaining cost

levels. This is especially true for the topological metrics that we

have studied in this paper, since global and local efficiencies are

both monotonic functions of cost.

Extensions
Most of this paper has focused on the global efficiency metric.

Thus, our conclusions and the examples studied will not

necessarily apply to other topological measures. However, our

main result (proposition 1) was proved in a very general setting,

which is independent of the particular formula of the topological

metric of interest. Our general conclusion about the usefulness of

cost-integration when one wishes to disentangle differences in cost

from differences in topology is therefore valid for any topological

metric defined for an unweighted graph. In addition, we note that

since most weighted metrics are constructed on the basis of the

weighted shortest path matrix, one may surmise that our second

main theoretical result (proposition 2), may hold in a more general

setting. However, a proof that the equivalence relationship

between the weighted version of a topological metric and the

weighted cost, for instance, hold for topological measures other

than the global efficiency would require further work.

Thus far, we have only considered user-defined distributions on

the space of network costs. Future methodological developments

will be needed in order to consider more sophisticated approaches

to this problem. In particular, the specification of a probability

mass function on K should take into account the effect size

associated with different values of this random variable. When

considering correlation coefficients, for instance, it can easily be

shown that higher values indicate larger effects, and it may

therefore be preferable to emphasize network comparisons built

upon the largest correlation coefficients. This may be implemented

by integrating network topological metrics with respect to a

skewed distribution on K , which puts more weight on sparse

networks, whose edges are better identified.

One should note that the use of cost-integration when

comparing weighted networks is not akin to taking into

consideration the multilevel or hierarchical nature of a weighted

network. Such a structural interpretation of the successive

thresholding necessary for such an integration is not necessary to

justify the usefulness of the method in controlling for monotonic

differences in weighted cost. Since the networks of interest ‘exist’ as

weighted networks, their thresholding remains artificial and it is

not clear whether one can ascribe any substantive meaning to the

resulting family of thresholded graphs. Further work will therefore

be needed in order to better characterize the architecture of the

ensemble of thresholded discrete networks subtending a weighted

graph.

Methods

A: Monte Carlo (MC) Sampling
The cost-integrated quantities introduced in this paper may first

appear unwieldy to compute, especially when considering large

graphs. However, the structure of these integrals allows the

construction of a straightforward MC sampling scheme. This

classical approximation method has the advantage of providing

both an estimate of the quantity of interest and an estimate of the
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variance of that estimation. For an introductory text to MC

techniques, see Gilks et al. [40], and for a more advanced

treatment, Robert et al. [41].

In order to apply MC sampling theory, we first observe that our

integration problem –that is, the computation of EU – can be re-

formulated as an expectation. For convenience, we drop any

reference to the function c(G,K), and therefore denote the

efficiency metric E(c(G,K)) as E(K). The uniformly cost-

integrated metric EU can then be expressed as an expectation of

E(K) since, straightforwardly, we have

EU~

ð
VU

E(k)p(k)dk~Ep E(K)½ �, ð41Þ

where VU is the space of all possible costs for G, with

jVU j~
NV

2

� �
~NV (NV {1)=2. The expectation in (41) is taken

with respect to p, the probability mass function of K , and explicit

reference to G has been omitted. It is natural to consider the use of

a sample fk1, . . . ,kmg from p in order to approximate EU by the

following empirical average,

E
(m)

U ~
1

m

Xm

l~1

E(kl): ð42Þ

The approximation E
(m)

U converges to EU almost surely, by the

Strong Law of Large Numbers. In addition, providing that E(K) is

square-integrable, the speed of convergence of E
(m)

U can be

evaluated by considering the theoretical variance of that estimate,

Var E
(m)

U

� 	
~

1

m

ð
½0,1�

(E(k){Ep E(k)½ �)2p(k)dk: ð43Þ

which can be approximated by the following MC variance,

s(m)
U

� 	2

~
1

m2

Xm

l~1

E(kl){E
(m)

U

� 	2

: ð44Þ

This quantity is of special interest in MC sampling, as it permits

the evaluation of the rate of convergence of the estimation. It is

generally referred to as the MC standard error. Using Slutsky’s

theorem, it can also be shown that as m??, the random variable,

E
(m)

U {EU

s(m)
U

, ð45Þ

has the probability density function of a Normal variate centered

at zero, with unit variance. MC sampling is especially useful when

the stochastic function that we wish to integrate –here, denoted

E(K)– is complex, whereas the random variable with respect to

which we integrate can easily be sampled. Most topological

metrics will be of a complex nature –i.e. non-linear. By contrast,

the wiring cost K will be straightforward to sample, whether we

specify a uniform or a Beta-binomial distribution on K . The

theory underlying MC sampling is general and can therefore be

applied to any type of topological metrics. Care, however, should

be taken when evaluating the properties of very large networks,

where the topology may vary substantially from one level of cost to

another. When confronted with such large networks, the MC

standard error remains a good indicator of the accuracy of such

approximations.

B: Proof of Proposition 1
In order to prove proposition (1), we first need to give a formal

definition of c(G,k), for some given weighted network

G~(V,E,W). This function relies on the concept of rank, which

can be formally defined in our context, as follows

Rij(W) : ~
1

2

XNV

u~1

XNV

v=u

Ifwijƒwuvg, ð46Þ

where Rij~1 implies that wij is the largest weight in W. Here, we

have assumed that there are no ties in the ranks of W. When ties

occur in practice, we recommend to resolve tied ranks by assigning

the corresponding ordering of the elements’ indices. By contrast,

resolving tied ranks using random allocation can result in

introducing a spurious amount of random topology in the

networks of interest. The presence of tied ranks, however, will

generally be indicative of a high level of sparsity, which is better

dealt with by restricting the domain of integration.

Computationally, this definition can be simplified if one only

considers the upper off-diagonal elements of W and omits the

division by 2. For our purpose, this definition will be more

convenient. These ranks can be standardized in order to derive the

percentile ranks,

Pij(W) : ~
Rij (W)

NI
,ð47Þ

where NI is the number of edges in the saturated version of G.

Note that the resulting matrices R and P of ranks and percentile

ranks, respectively, are both symmetric. A good introduction to

order statistics, ranks and percentile ranks is provided by Lin et al.

[42].

The function c(G,k) can now be given a formal definition using

the Pij ’s, such that

c(G,k) : ~ : c(W,k) : ~IfP(W)ƒkg, ð48Þ

where the indicator function is applied elementwise to matrix

P(W), where W is the similarity matrix of G. It can hence be seen

that the function c prescribes an adjacency matrix A(k) with the

desired cost. This can be verified by computing the cost of the

corresponding unweighted network G(k)~(V,E(k)), where E(k) is

the edge set that populates A(k), obtained after application of the c
function at k. Provided that k[VK , as defined in equation (16), we

have

K(G(k))~
1

NI

X
I (G)

a
(k)
ij ~

1

NI

X
I (G)

IfPij(A
(k))ƒkg~k, ð49Þ

which can be verified by noting that equation (49) is simply the

discrete version of the integration of an indicator function of the

form,
Ð 1

0
Ifxƒkgdx~

Ð k

0
dx~k. Using this notation, the proof

of proposition 1 is now straightforward. This demonstration uses

the fact that a monotonic function does not modify the ranks of its

arguments.

Proof. Recall that the cost-integrated version of T(G), in its

computational form, is given by

ð47Þ
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Tp(W)~
XNI

t~1

T(c(W,kt))p(kt): ð50Þ

To demonstrate that Tp(W)~Tp(h(W)), it therefore suffices to

show that

Tp(c(W,kt))~Tp(c(h(W),kt)), ð51Þ

for every kt, which further simplifies to the sole requirement that

c(W,kt)~c(h(W),kt), for all t~1, . . . ,NI . From the definition of

the c function introduced in equation (48), we have the following

relationship,

c(h(W),kt)~IfP(h(W))ƒkg~I Rij(h(W))

NI

ƒk

� �
: ð52Þ

However, one can observe that, since h is applied elementwise, we

have

Rij(h(W))~
1

2

XNV

u~1

XNV

v=u

Ifh(wij)ƒh(wuv)g~Rij(W), ð53Þ

for any monotonic function h. This completes the proof.

C: Proof of Proposition 2
Proof. We prove the result by contradiction. Assume that the

conclusion does not hold. That is, EW=KW . By applying the

definitions of EW and KW in equations (14) and (9), respectively,

we have

EW (G) : ~
1

NI

X
I (G)

1

dW
ij

=
1

NI

X
I (G)

wij~ : KW (G): ð54Þ

It therefore suffices to show that dW
ij =w{1

ij for at least one of the

weights. The weighted shortest path dW
ij is defined in equation (12)

as

dW
ij : ~ min

Pij[Pij (G)

X
wuv[E(Pij )

w{1
uv : ð55Þ

It follows that dW
ij =w{1

ij if and only if there exists a path P
�
ij in

Pij(G), which satisfies

X
wuv[E(P

�
ij

)

w{1
uv vw{1

ij : ð56Þ

That is, the path P
�
ij is shorter than the direct connection wij

between the ith and jth vertices. Inequality (56) can be sandwiched

in the following fashion,

jE(P
�
ij)j max

wij[E(G)
wij

 !{1

ƒ

X
wuv[E(P

�
ij

)

w{1
uv vw{1

ij ƒ min
wij[E(G)

wij

 !{1

,ð57Þ

where jE(P
�
ij)j denotes the cardinality of P

�
ij . Inverting the entire

inequality then gives

1

jE(P
�
ij)j

max
wij[E(G)

wij§

X
wuv[E(P

�
ij

)

w{1
uv

0
B@

1
CA

{1

wwij§ min
wij[E(G)

wij : ð58Þ

However, we clearly have

1

2
max

wij[E(G)
wij§

1

jE(P
�
ij)j

max
wij[E(G)

wijw min
wij[E(G)

wij , ð59Þ

which contradicts our hypothesis, and proves the claim.
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