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Abstract

The network-based approach has been used to describe the relationship among genes and various phenotypes, producing
a network describing complex biological relationships. Such networks can be constructed by aggregating previously
reported associations in the literature from various databases. In this work, we applied the network-based approach to
investigate how different brain areas are associated to genetic disorders and genes. In particular, a tripartite network with
genes, genetic diseases, and brain areas was constructed based on the associations among them reported in the literature
through text mining. In the resulting network, a disproportionately large number of gene-disease and disease-brain
associations were attributed to a small subset of genes, diseases, and brain areas. Furthermore, a small number of brain
areas were found to be associated with a large number of the same genes and diseases. These core brain regions
encompassed the areas identified by the previous genome-wide association studies, and suggest potential areas of focus in
the future imaging genetics research. The approach outlined in this work demonstrates the utility of the network-based
approach in studying genetic effects on the brain.
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Introduction

The human diseasome network by Goh et al. [1] presented a

stunning visual overview of the complex relationship between

genes and diseases. Without focusing on a particular disease or

gene, they were able to demonstrate how different diseases are

related through common genes. The network also showed

clustering of diseases according to their disease classes (e.g., bone,

cancer, cardiovascular, etc.), indicating some level of common or

shared genetic influences affecting the same tissues, organs, or

biological systems. This amazing network of human diseases and

genes outlines the potential of using network science in studying

biological systems. In fact, genetic networks have been used as

prediction tools to identify complex relationships among genes

[2–4]. Such networks can also be augmented with other types of

data, including protein-protein interaction [5–8], phenotype

information [5,8,9], gene-disease associations [1,7–12], and other

‘‘omics’’ data [3,5,8]. Construction of such networks can be

accomplished by text-mining of the literature [1,8–10,12] or by

mining existing data sets [4–6,8,11].

Organizing existing data and analysis results for such networks,

needless to say, is far more economical compared toactually

conducting a genomics study. A typical study for genetic

associations may require data collection and assays, which can

be time consuming and labor intensive. In addition, statistical

analyses of such data often require special techniques to account

for unique characteristics of the data, such as the family structure,

massive multiple comparisons, population biases, or non-normal-

ity. On the other hand, the network-based approach requires far

fewerresources in terms of costs and manpower involved. Most of

the effort is focused on culling multiple databases and organizing

findings in the form of a network. The network-based approach

enables combining of data from multiple populations together,

thus allowing investigators to focus on a large number of genes

and/or phenotypes simultaneously.Such a network may represent

consolidated results from multiple separate studies, but each of the

studies does not have to be as extensive as, for example, a genome-

wide association study (GWAS).

Some of the disease classes in the human diseasome network [1]

pertain to the brain. This is not surprising especially when we

consider the increasing number of studies linking genetic factors to

the brain. For example, the heritability maps on the human [13]

and the baboon [14] showed regional differences in heritability in

various brain areas. Moreover, recent advances in brain imaging

technologies have identified associations between some genes and

neuroimaging-derived phenotypes [15,16] of various types,

including the brain structure [17–23], the brain function

[18,19,24–27], and the brain connectivity [28–32]. More recently,

whole-brain GWASon schizophrenia [33] and on Alzheimer’s

disease [34–36] demonstrated the ability to localize associations

between genetic markers and brain areas simultaneously. Despite

the large amount of data involved in a whole-brain GWAS,

however, such a study can only focus on one disease or condition

at a time. In other words, typical genetic analyses focus on only

one of the nodes in the human diseasome network [1] at a time.

Although such studies are valuable, they are unable to address

questions related to overall genetic influences on the brain. For

example, common genes regulating the brain may also be related
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to multiple genetic disorders. Or, perhaps diseases affecting similar

areas of the brain may be associated with the same genes. To

appreciate an overview of genetic influences and associations on

various brain areas, an approach akin to Goh et al.’s [1] would be

ideal. To accomplish this, we connected various brain areas to the

human diseasome network. This was done by connecting genetic

diseases in the diseasome network and various brain areas that are

known to be associated with those diseases. Such disease-brain

connections were made based on text mining of the literature

in the PubMed database (http://www.ncbi.nlm.nih.gov/pubmed)

[37]. This process produced a tripartite network of genes, genetic

disorders, and brain areas. The characteristics of the resulting

network were examined. In particular, highly connected genes,

genetic disorders, and brain areas were identified. Moreover, we

investigated whether different brain areas were affected by the

same set of diseases or were associated with the same set of genes.

Results

Tripartite Graph
Figure 1 shows the complete tripartite graph of genes, genetic

disorders, and brain areas. To facilitate the presentation, the

disease nodes were grouped into disease classes and the brain areas

were grouped by larger anatomical divisions. The thickness of the

lines connecting disease classes and anatomical divisions are

proportional to the number of connections bundled between the

two groups of nodes. From Figure 1, it can be seen that con-

nections between the diseases and the brain areas are unevenly

distributed, with the connections between neurological diseases

and the frontal lobe being the most prominent.

Degree Distributions
The distributions of the number of connections at each node, or

degree denoted by k, in the three layers of the tripartite graph were

examined, and tremendous heterogeneity in the degree was

observed. The degree distribution of the brain area nodes can be

seen in Figure 2a. The figure shows the complementary

cumulative distribution, or 1 minus the cumulative distribution

function (CDF) 12F(k). The distribution closely follows an

exponentially truncated power law distribution (p = 0.78, Kolmo-

gorov-Smirnov (KS) test), a long-tailed distribution indicating a

few highly connected nodes witha large number of connections

(k.200). This is in contrast with the vast majority of other nodes

with just a few dozen connections; the median of the degree

distribution is 32, and 75% of edges are connected to the top30%

highest degree nodes. Connections originating from the disease

nodes were also heterogeneously distributed. A small number of

diseases affect a large number of brain areas extensively (see

Figure 2b) and a small number of the diseases are associated with a

large number of genes (see Figure 2c). Plotted on a log-log scale,

both distributions exhibited characteristics of long-tail distribu-

tions, spanning over multiple orders of magnitude with very few

high-degree nodes at the tail. In both distributions, 70% or more

edges are connected to the top 30% highest degree nodes.

However, bothobserved distributionsdid not fit exponentially

truncated power law distributions or power law distributions

according to KS tests (p,0.0001 in all cases). By visual inspection,

the degree distribution for connections originating from diseases to

brain areas exhibited an accelerated decay near the tail (Figure 2b),

whereas the distribution for connections originating from diseases

to genes seemed follow a straight line on a log-log scale (Figure 2c).

This discrepancy may be due to the difference in the abundance of

gene nodes and brain area nodes. While each disease node may

connect to any of 1210 gene nodes, each disease node can connect

to only up to 59 brain areas. Such a small number of available

brain nodes may inhibit the occurrence of a node with an

extremely large degree, resulting in a truncation in the degree

distribution. Alternatively, this discrepancy in the shape of the

distributions may be because the brain-disease system is inherently

differently organized than the disease-gene system.Interestingly,

there was not an overlap between the diseases highly connected to

brain areas and the diseases highly connected to genes. This may

be because not all genetic disorders have a strong neurological

component. Connections originating from genes were also

heterogeneously distributed. While the majority of genes were

associated with only a single disease, there were a few genes

associated with 6 or more diseases (see Figure 2d).

Common Disease Network and Common Gene Network
Brain areas sharing the same diseases or same genes were

connected, forming a common disease network and a common

gene network, respectively.In these networks, an edge connected

two brain areas if a disease or gene influenced both of them.Edge

weights in these networks represented the number of diseases or

genes shared in common between two brain areas connected

(see Figure 3 for the schematic). In the common disease and gene

networks, almost all the brain areas are interconnected (Figure 4a

and 4b, respectively). However, the strength of connections in

these networks, quantified by edge weights, was highly heteroge-

neous, with a few connections with tremendously large edge

weights. This can be seen in the distributions of edge weights in

Figure 5 exhibiting characteristics of a long-tail distribution. In

fact, more than 2/3 of common diseases or genes can be attributed

to the top 30% of all the edges in Figure 5. Althoughvisual

inspection of the edge weight distributions suggested theyfollow an

exponentially truncated power law distribution, formal statistical

tests failed to classify them as exponentially truncated power law

distributions (KS test p,0.0001 for both distributions). The

implication of this heterogeneity in edge weights is that a small

number of brain areas are affected by a large number of the same

diseases, or are associated with a large number of same genes. In

order to focus on such highly weighted connections, the common

disease network and the common gene network were pruned,

leaving only the connections with top 10% edge weights. This

process resulted in the core networks for the common disease

network and the common gene network (Figure 4c and 4d,

respectively). These core networks, in a sense, represented the

‘‘highways’’ of the common networks, emphasizing a network of

brain regions that are influenced by a large number of the same

diseases or genes. The core networks were very similar between

the common disease network and the common gene network. This

is not surprising since the connections in the common gene

network were mediated by disease nodes. In other words, the

common gene network shows the number of shared genes among

the diseases that affect the same brain areas.Therefore, if two brain

areas share a large number of diseases, it is more likely that some

of those diseases may share genes in common, resulting in a larger

edge weight. If the sharing of genes were limited among the

diseases despite the fact that they are connected to the same brain

areas, then the resulting common gene network would have a

dramatically different pattern of connectivity than that of the

common disease network. The brain areas forming these core

networks (listed in Table 1) tend to be the high degree brain areas

found earlier (see Figure 2a). These areas include those found by

recent whole-brain GWAS, including thalamus, cerebellum,

hypothalamus [33], and hippocampus [34–36]. This is noteworthy

because we were able to identify these brain areas based the net-

work data predating these whole-brain GWAS. The gene-disease

Gene-Disease-Brain Network
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connection data by Goh et al. [1] precedes both the schizophrenia

GWAS [33]and AD GWAS [34–36], while the disease-brain

connections by PubBrain search precedes the AD GWAS data.

Thus, the findings from the core networks demonstrate the utility

of the network-based approach as a prediction tool.

Disease Connectivity and Potential Biases
The connections originating from the disease nodes may

represent true biological relationships between genes, diseases,

and brain areas. Or, they may be biased by research funding for

particular diseases or by interests among researchers on particular

disorders or conditions. To determine the presence of such biases,

we plotted the degree of each disease against the number of

publications associated with that disease searched on the PubMed

database (see Figure 6). We also plotted the degree of selected

diseases against the total research funding by the NIH (National

Institute of Health) related to that disease (see Figure 7). Disease

degrees were correlated with the number of publications in terms

of PubMed hits. The correlation was somewhat stronger for the

degrees for connections to brain areas (Figure 6a) (Spearman’s

Figure 1. Gene-disease-brain area tripartite graph. The three layers are genes (1210 nodes), genetic disorders (509 nodes), and brain areas (59
nodes). Genetic disorders are grouped by disease types, and brain areas are grouped by lobes and large anatomical divisions. The thickness of the
lines connecting disease classes and anatomical divisions are proportional to the number of connections bundled between the two groups of nodes.
doi:10.1371/journal.pone.0020907.g001

Gene-Disease-Brain Network
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correlation r= 0.518, p,0.0001) than for connections to genes

(Figure 6b) (r= 0.362, p,0.0001). These results indicate that

diseases with high degrees are likely the highly published ones. It is

interesting to note that the distribution of PubMed hits seems to

have a long-tail distribution (Figure 6c), indicating tremendous

heterogeneity in the number of publications in different genetic

disorders, with research activities concentrating on a small number

of diseases. Disease degrees were also correlated with the amount

of NIH funding, with somewhat stronger correlation for the

degrees for connections to brain areas (Figure 7a) (r= 0.480,

p,0.0001) than for connections to genes (Figure 7b) (r= 0.436,

p,0.0001). These results show that highly funded diseases tend to

be highly connected diseases.

Discussion

We formed a network of genes, genetic disorders, and brain

areas. The resulting network revealed heterogeneity of genetic

influence in various brain areas, confirming findings from previous

studies that the genetic influence is not uniform in the brain

[13,38]. Moreover, connections in the tripartite network were

heterogeneously distributed among nodes. A small number of

brain areas, diseases, and genes were connected more abundantly

than the vast majority of other nodes. We also examined which

different brain areas are affected by the same diseases or associated

with the same genes. To this end, a common disease network and

a common gene network were generated. These networks revealed

Figure 2. Degree distribution plots of the gene-disease-brain tripartite network. Degree distributions of brain areas (a), diseases to brain
areas (b), diseases to genes (c), and genes (d) are shown. For the degree distributions for brain areas and diseases (a)–(c), the complementary
cumulative distribution (12F(k)) is plotted, whereas the actual frequencies are plotted for genes (d). Panel (d) is plotted as a bar graph since the range
of degrees is limited and does not span a single order of magnitude. The best-fit exponentially truncated power law curves are also plotted for (a)–(c).
In addition, the best-fit power law curve is also shown in (c). Highly connected nodes corresponding to each degree distribution are also listed, along
with the markers corresponding to those nodes indicated in Figure 1.
doi:10.1371/journal.pone.0020907.g002

Figure 3. A schematic of forming connections for the common disease and gene networks. A connection is formed according to common
diseases (a) and common genes (b) shared between two brain areas. The number of shared diseases or genes is used as the edge weight between
two brain areas.
doi:10.1371/journal.pone.0020907.g003

Gene-Disease-Brain Network
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a core witha small set of brain areassharing a large number of

genes or diseases in common. Thus, these core brain areas are

likely affected by many diseases and highly influenced by genes.

These brain areas also coincided with the areas indicated in

previous whole-brain GWAS [33–36]. These findings are

particularly interesting since our network approach was able to

identify these key brain areas without conducting a large-scale

study with explicit hypotheses on gene-brain associations, using the

network data that were collected before the publication of the

whole-brain GWAS results.

In this study, we were able to generate an overall picture of

genetic influences on the brain without focusing on a particular

disease or condition. This is in contrast to a conventional imaging

genetics study that only allows identification of genes and brain

areas connected to a single disease or condition. Although the

tripartite network generated in this work is unable to localize

significant associations to specific spatial coordinates in the brain

or precise loci in the genome, it shows a comprehensive overview

of genetic influences on various parts of the brain. This is

particularly visible in the common disease and gene networks

Figure 4. The common disease network and the common gene network. The full common disease network (a) and the full common gene
network (b) show that most brain areas are connected to each other. However, the core of the common disease network (c) and the core of the
common gene network (d), the networks with only the edges with top 10% connection weights, show that a small number of brain areas share a
large number of diseases or genes in common. Moreover, both common networks consist of similar nodes possibly due to the fact that connections
in the common gene network are mediated by disease nodes.
doi:10.1371/journal.pone.0020907.g004

Gene-Disease-Brain Network
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indicating how a core of brain areas shares the same diseases and

genes.

The network-based approach presented here can be an ideal

means to consolidate information originating from multiple studies

and to identify key components in a system. Although a network of

genes, diseases, and/or phenotypes can be constructed from actual

assay data (for example, see [3,4]), such networks can also be

formed by connecting nodes based on the knowledge already

available in the literature or databases [5,9,10,12]. In other words,

networks can be constructed simply by organizing connections

discovered by other studies on various populations and conditions.

Establishing each of such connections, representing an association

between two nodes, may not require a large number of subjects

(for example, see [18,19,39]). Provided that there is a wealth of

literature reporting a large number of connections, constructing

and analyzing a network can be done as a secondary analysis

without actually collecting data. It is an effective way of using

seemingly unrelated information to uncover possibly hidden

associations. In fact, the network-based approach has potential

as a prediction tool to uncover associations that have not been

previously known [2,3,40]. Our tripartite network, for example,

can be used to identify a group of genetic disorders that affect the

same brain areas. By tracing connections originating from this

cluster of diseases, one can identify potential associations between

genes and brain areas for one of the diseases in the cluster.

Although not all diseases in the OMIM database can be

considered as neurological diseases, we feel that no disease should

be excluded from the gene-disease-brain tripartite network just

because we are not aware of any neurological mechanism

associated with seemingly non-neurological diseases. It is true that

some neurological symptoms in non-neurological diseases may be

coincidental or secondary. However there is also likelihood that

such patterns of neurological symptoms may be a result of some

neurological pathology we may not be aware of yet. For example,

about a decade ago, diabetes was considered an endocrine and

metabolic disease, and consequently very few researchers inves-

tigated cognitive and neurological implications associated with the

disease. Today, on the other hand, cognitive decline and

neurological damages associated with diabetes are examined in

multiple large-scale epidemiological studies. Likewise there are

several studies today examining neurological damages associated

with hypertension, of which very little was known just a decade

ago. Thus, we believe that excluding non-neurological diseases due

to apparent lack of neurological underpinning inhibits the utility

and discovery potential of a network-based approach such as ours.

Figure 5. The edge weight distributions from the common disease and gene networks. The distributions of edge weights from the
common disease network (a) and the common gene network (b). The complimentary cumulative distribution (12F(wij)) of the edge weights (wij) as
well as the best-fit exponentially-truncated power law curves are plotted.
doi:10.1371/journal.pone.0020907.g005

Table 1. A list of brain areas in the common disease and
gene networks.

Core brain areas Core brain areas

(Common disease network) (Common gene network)

Basal Ganglia Basal Ganglia

Caudate nucleus Caudate nucleus

Globus pallidus Globus pallidus

Nucleus accumbens Putamen

Putamen Striatum

Striatum Substantianigra

Substantianigra Brainstem

Brainstem Medulla oblongata

Locus ceruleus Midbrain tegmentum

Medulla oblongata Pons

Midbrain tegmentum Superior colliculus

Pons Cerebellum

Cerebellum Cerebellar cortex

Cerebellar cortex Diencephalon

Diencephalon Hypothalamus

Hypothalamus Pineal body

Pineal body Thalamus

Thalamus Frontal

Frontal Precentralgyrus

Precentralgyrus Insular

Insular Insula

Insula Limbic

Limbic Amygdala

Amygdala Hippocampus

Anterior cingulate White Matter

Hippocampus Corpus callosum

White Matter Internal capsule

Corpus callosum Pyramidal tract

Internal capsule

Pyramidal tract

doi:10.1371/journal.pone.0020907.t001

Gene-Disease-Brain Network
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Although this study revealed interesting relationships, there are

some limitations associated with our tripartite network. First,

connections originating from diseases are highly biased. Diseases

that are studied more frequently tend to be connected to a larger

number of brain areas or genes. However, it is hard to establish a

causal relationship between the number of connections and the

number of publications attributed to different diseases. Some

diseases may be studied moreextensively than other diseases,

resulting in more publications identifying associations. Or, some

diseases may have true biological associations with many genes or

brain areas, and the large number of publications may be simply a

reflection of the large number of such associations. Similarly, it is

hard to infer the cause of the strong relationship between the

number of connections originating from different diseases and the

amount of research funding dedicated to those diseases. In any

case, it is clear that the tripartite network generated in this study is

likely confounded by other factors such as funding and research

activity, and may not purely represent true biological relationships

between genes, genetic disorders, and brain areas. We believe that

genuine biological effects without any bias could only be identified

by constructing a network similar to ours using data deliberately

collected for this purpose, as opposed to mining existing data. In

other words, a large scale study would be required to identify

associations between a large number of genes in multiple disease

populations, in which each subject’s brain is scanned by different

imaging modalities. Conducting such a study is, needless to say,

prohibitively expensive and labor intensive, although as brain

imaging becomes a more common phenotype in large population-

based studies, it may be possible to apply this technique in a

relatively unbiased sample in the future. It is true that our network

may be biased by non-biological factors, but we believe that a

network-based approach such as ours provides a reasonable

starting point to focus in future genetic and/or brain imaging

studies as long as the biases noted above are taken into

consideration.Another limitation is that the database searches

were conducted at different time points. The gene-disease

connections, extracted from the diseasome network by Goh et

al. [1], were gathered prior to 2007, whereas the disease-brain

connections were based on the database search conducted in July,

2009. It is likely that the number of diseases in the tripartite

network may be smaller than the number of known gene-disease

associations today. In addition to the time point of the database

queries, the consistency and quality of the search results may also

raise a potential problem. For example, some PubMed search

results may contain hits from species other than humans, such as

non-human primates or rodents. Such non-human hits could

occur in a large number in some cases. However, cleaning such

results would involve manually verifying each hit and that could be

Figure 6. Scatter plots of disease degrees and the number of publications. Disease degrees and the corresponding number of publications
are plotted. Disease degrees are for connections to brain areas (a) or genes (b). The number of publications is based on the number of hits on the
PubMed database. The correlation was somewhat stronger for the degrees for connections to brain areas (a) (Spearman’s correlation r= 0.518,
p,0.0001) than for connections to genes (b) (r= 0.362, p,0.0001). The complementary cumulative distribution (1 - CDF) of the PubMed hits is
plotted in (c), along with the best-fit exponentially truncated power law curve. The distribution in (c) indicates that a disproportionately large number
of papers (.10,000) have been published on a very few diseases.
doi:10.1371/journal.pone.0020907.g006

Figure 7. Scatter plots of disease degrees and the amount of research funding. Degrees for a subset of diseases are plotted against the
total amount of NIH funding in US dollars (USD) dedicated to those diseases. Disease degrees are for connections to brain areas (a) or genes (b). The
amount of NIH funding is based on the RePORTER database. Disease degrees were also correlated with the amount of NIH funding, with somewhat
stronger correlation for the degrees for connections to brain areas (a) (Spearman’s correlation r= 0.480, p,0.0001) than for connections to genes (b)
(r= 0.436, p,0.0001).
doi:10.1371/journal.pone.0020907.g007

Gene-Disease-Brain Network
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prohibitively labor-intensive. Lastly, in this work, we only

considered node degrees and degree distributions to extract

relevant information regarding the network. However, other

characteristics (modular structure, node centrality, etc) of this

network can be examined to reveal additional hidden information

in the relationship between genes, diseases, and brain areas.

In conclusion, we constructed a network outlining associations

between a large number of genes, genetic disorders, and brain

areas. The network was built based on the existing data culled

from publicly available databases. The resulting network and

characteristics of its connections can reveal relationships between

genes, diseases, and brain areas, emphasizing the power of a

network-based approach. Moreover, the common disease network

and the common gene network revealed the relationship between

brain areas that share the same set of diseases or genes. The brain

areas constituting the core of these common networks included

some areas identified in the previous whole-brain GWAS, and

such brain areas will likely be the main focus of future imaging

genetics research.

Methods

Creating the Tripartite Network
Connections between genes and genetic disorders were based

on the network data reported in Goh et al. [1], publicly available

on the web. In brief, the connections were made if an association is

reported between a genetic disorder and a gene in the OMIM

(Online Mendelian Inheritance in Man) database (http://www.

ncbi.nlm.nih.gov/omim).

Connections between genetic disorders and brain areas were

based on text mining of the PubMed database. The text mining

search was interfaced by the PubBrain search engine (http://www.

pubbrain.org/). The PubBrain website searches a user-provided

search term on the PubMed database together with over 300 brain

anatomical terms [37]. In a PubBrain search, if there are any hits

(i.e., co-occurrences between the user-provided search term and

any of the brain anatomical terms), then the results are presented

in the form of a 3D brain heat map, with the intensity representing

the number of hits associated with a particular brain area. Along

with the heat map, the PubBrain website can also produce a text

file listing the number of hits associated with each brain area.

PubMed search results in PubBrain are hierarchically organized.

This means that hits for a larger anatomical division subsume hits

for smaller substructures in that division. For example, hits for the

brain stem subsume hits for structures contained in the brain stem,

such as the midbrain, pons, and medulla oblongata. Thus the

number of hits for the term ‘‘brain stem’’ represents the number of

hits for the brain stem as well as the number of hits for the

midbrain, pons, and medulla oblongata. The names of all 1284

diseases from the diseasome network were searched using the

PubBrain website. In the search results, the brain anatomical

terms were reorganized to 65 terms of regions of interest (ROIs) so

that the anatomical terms were not too broad (e.g., frontal lobe) or

too narrow (e.g., accessory basal amygdaloid nucleus), and the

corresponding hits were re-calculated accordingly. A complete list

of the 65 brain areas is found in Table S1. A disease and a brain

area were considered connected if there were 5 or more hits

indicating consistent reporting in the literature. Finally, the disease

names were manually re-examined, and duplicate disease names

(n = 5) as well as disease names producing erroneous PubMed hits

(e.g., Anderson disease, CHILD syndrome, MASS syndrome, etc)

(n = 6) were eliminated. These disease names were eliminated

because they would produce hits associated with the disease as well

as a large number of unrelated results. For example, a search term

‘‘Anderson disease’’ would results in hits associated with the

Anderson disease, as well as any papers with an author named

‘‘Anderson’’ discussing a ‘‘disease.’’ Data for the resulting disease-

brain network are available in Data S1.

The PubBrain search above resulted in a tripartite network with

three layers: genes, genetic disorders, and brain areas. In this

network, any nodes without any connections were eliminated. The

final tripartite network consisted of 1210 nodes for genes, 509

nodes for genetic disorders, and 59 nodes for brain areas.

Node Degrees
At each layer of the tripartite network, the number of connections

at each node, or degree, denoted by k, was examined. In particular,

high-degree nodes were identified at each layer. The distribution of

the node degree was also examined to assess relative abundance of

high or low degree nodes. In many self-organized networks, the

degree distribution often follows highly skewed long-tail distribu-

tions such as power law distributions [41] or exponentially truncated

power law distributions [42]. Such distributions have a long tail

spanning multiple orders of magnitude, and often indicate existence

of a small number of hubs with extremely high degrees while the

vast majority of nodes have just a few connections. While networks

with a power law degree distribution have a small number of mega

hubs with extremely large degrees, physical or resource constraints

in many naturally occurring networks typically inhibit the

occurrence of such mega hubs [42]. This limitation often results

in a truncated version of a power law degree distribution, such as

exponentially truncated power law distributions. In a network with

such truncated degree distributions, there are still some hubs with

large degrees, but these hubs do not have comparably high degrees

as that of mega hubs found in networks with power law degree

distributions. For each degree distribution, we fitted an exponen-

tially truncated power law distribution and a power law distribution

using the parameter estimation algorithm outlined in Johnson et al.

[43]. Even if an observed degree distribution does not follow a

particular parametric distribution, such as an exponentially

truncated power law distribution or a power law distribution,

heterogeneity in node degrees can be easily observed by plotting the

degree distribution on a log-log scale. In this study, complimentary

cumulative distributions (12F(k)) were plotted on a log-log scale;

this way, the y-coordinate of a point on an observed distribution

curve can be interpreted as the empirical p-value for the node

degree corresponding to the x-coordinate. If there are a small

number of high degree nodes, often at least one order of magnitude

larger than the majority of other nodes, then such nodes can be

easily identified at the tail of the distribution curve.

The goodness-of-fit for an observed degree distribution can be

assessed statistically, for example by a Kormogorov-Smirnov (KS)

test. However, a KS test may not be uniformly sensitive over the

wide range of degrees covered in a typical long-tail degree

distribution. Even if the tails of the observed and theoretical

distributions may appear close to each other on a log-log scale, a

KS test statistic is likely dominated by the difference between the

observed and theoretical distributions among low degree nodes.

This is because the difference between the observed and

theoretical is a few orders of magnitude smaller near the tail of

the degree distribution compared to the difference near the lower

end of the degree range. Although we provide p-values based on

KS tests for the observed degree distributions from the tripartite

graph by comparing them to exponentially truncated power law

and power law distributions, lack of good fit does not imply a lack

of heterogeneity in node degrees. The instability of the KS test

statistic near the tail of long-tailed distributions was noted by

Stumpf et al. [44], and they suggested the Anderson-Darling (AD)

Gene-Disease-Brain Network
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test as an alternative approach to the KS test. The AD test is

sensitive near the tails of the null distribution in contrast to the KS

test which is sensitive near the median [45]. Unfortunately critical

values of the AD test are dependent on the null distribution. It is

possible to obtain critical values numerically for exponentially

truncated power law distributions and power law distributions by a

simulation-based approach [44], but performing such simulations

is beyond the scope of this paper.

Collapsing the Tripartite Network
Among the brain areas represented in the tripartite network,

some may be affected by the same set of diseases, or may be

associated with the same set of genes. To understand how brain

areas share the same connections to diseases or genes, the tripartite

network was collapsed as a set of connections between brain areas

representing shared genes or diseases. In particular, a common

disease network and a common gene network were constructed.

The common disease network was organized by connecting two

brain areas that are connected to the same diseases (see Figure 3,

left). The number of shared diseases between two brain areas was

used as the edge weight between them. Common diseases between

all pairs of brain areas were examined, resulting in a network of

brain areas connected by shared diseases. The common gene

network was constructed upon the same principle as the common

disease network, except for the fact that the connections were made

on the basis of shared genes between two brain areas (see Figure 3,

right). Since genes were not directly connected to brain areas,

shared genes between two brain areas were mediated by diseases.

The edge weight in the common gene network represented the

number of genes shared in common between brain areas.

In the common disease network and the common gene network,

edge weights were further examined in order to identify brain

areas sharing a large number of diseases or genes. To do so, first

the distribution of edge weights was examined to identify any

heterogeneity in the number of shared diseases or genes among the

brain areas. We also formed the core networks, the networks of

brain areas formed by the connections with top 10% of edge

weights in the common disease and gene networks, accentuating

the commonality among the brain areas sharing the same diseases

or genes.

One of the goals of the core networks is to extract meaningful

information from the common disease and gene networks, which are

almost fully connected (see Figure 4a and 4b). Another goal of the

core networks is to show how some brain areas are affected by a large

number of the same diseases. For example, both the hippocampus

and the corpus callosum are associated with a large number of

diseases (258 and 213, respectively, see Figure 2a), but this does not

imply that these areas are associated with the same set of diseases. In

other words, diseases that affect the hippocampus could be a

completely different type of diseases than the ones affecting the corpus

callosum. The core networks allow us to ascertain and visualize

whether different brain areas indeed do share the same diseases or

genes. This information cannot be obtained by simply examining the

high-degree brain-area nodes individually. Moreover, strong links

between different brain areas may indicate consistent co-occurrence

of pathological processes on those brain areas.

Examining Biases
Gene-disease connections and disease-brain connections in the

tripartite network were based on the data from publicly available

databases. However, the data in those databases may be biased

toward diseases that are highly studied among researchers. For

example, some diseases may be investigated more often than other

diseases. Or some diseases may be studied more widely due to

favorable availability of research funding for those diseases. To

examine such potential biases, the diseases from the tripartite

networks were queried in PubMed to gauge the research activity

associated with those diseases as the number of publications. The

number of PubMed hits and the degrees for the corresponding

diseases were plotted to assess any association. In addition, a

potential funding bias was investigated among 69 diseases selected

from the tripartite network to cover the entire range of disease

degrees. For each of these diseases, the amount of total research

funding was searched on the RePORTER (Research Portfolio

Online Reporting Tools Expenditures and Results) database, a

publicly available database of research funding by the NIH

(National Institute of Health) of the United States. The amount of

total NIH funding and the disease degree were plotted to assess

any association between them.

Supporting Information

Table S1 A list of 65 brain anatomy terms used in the
PubBrain searches.
(DOCX)

Data S1 A node list and an edge list of the disease-brain
network in Pajek format.
(NET)
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