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Abstract

Computational studies have given a great contribution in building our current understanding of the complex behavior of
protein molecules; nevertheless, a complete characterization of their free energy landscape still represents a major
challenge. Here, we introduce a new coarse-grained approach that allows for an extensive sampling of the conformational
space of a large number of sequences. We explicitly discuss its application in protein design, and by studying four
representative proteins, we show that the method generates sequences with a relatively smooth free energy surface
directed towards the target structures.
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Introduction

Protein molecules play a central role in the large majority of

biochemical reactions in living organisms [1]. Performance of

these functions generally requires folding of the proteins into a

specific three-dimensional structure, the so-called native state

[2,3], (a number of exceptions involving the so-called ‘‘disordered’’

proteins has also been discovered [4]). Computer simulations

combined with experiments have given a great contribution to

our current understanding of the complex behavior of protein

molecules and of the mechanism by which folding takes place

[3,5,6]. Advances have been made through the use of atomistic

models, which are capable of providing detailed descriptions of

protein dynamics [7,5,6], and through the development of coarse-

grained representations, which enable more comprehensive sam-

pling of the conformational space [3,8,9,10].

A common approach to protein folding involves the use of Go-

models [11]. The Go-models are non-transferable potentials

tailored to the native structure such that each amino acid interacts

selectively with a subset of residues and only when in the native

configuration. Hence, Go-proteins are hypothetical proteins with a

arbitrary variety of pair interactions among the residues (alphabet),

but are able to successfully fold, and have a smooth free-energy

landscape with a single global minimum in the native structure.

However, if the size of the alphabet is reduced, for instance, to the

*20 letter alphabet of real proteins, it becomes more and more

difficult to observe folding for a random sequence, as the land-

scape most of the time changes from the smoothnes of Go-models,

to rugged with many local minima. Hence, folding becomes more

complex and requires an extensive search in the space of possible

sequences to obtain a folding chain. For this reason these methods

are often referred as ‘‘protein design’’. Protein design was origi-

nally developed for lattice heteropolymers by Wolynes [12], and

recently has been extended by Coluzza et al. [13]. By using lattice

models it was possible not only to design heteropolymers with a

large variety of target configurations, but also to generate lattice

proteins with more complex self-assembly properties [14,15]. The

solution of the design problem is of considerable interest in biotech-

nology as it holds promises for the engineering of proteins with new

functional properties. Some successful designs of novel artificial

enzymes have been obtained by introducing residues expected to

play a catalytic role in a specific reaction [16] in sequences with

known folds.

In this work we will go beyond lattice models by introducing a

novel design procedure that can produce realistic amino acid

sequences able to fold into protein structures taken directly from

experimental data. In what follows we will demonstrate for the first

time that accurate representation of the protein backbone is a

necessary condition for successful protein design, as such con-

straints confine the possible configurations of proteins to the

structural space of real proteins. Our hypothesis is based on the

observation that the design procedure developed for lattice pro-

teins was unable to produce folding sequences when applied to

simple off-lattice representations (e.g. a flexible chains of particles)

(as indicated by our earlier simualtions). In order to understand the

importance of constraints, let us ignore for a moment long range

correlations in the system (i. e., we make a mean field approx-

imation). Hence, energy minimization can be viewed as a local

optimization of the residue-residue pair-interactions. In such con-

dition, sequence mutation (design) is guaranteed to find the same

minimum as configuration changes (folding) [12], provided that

the number of possible sequences is larger or equal to the number

of all possible configurations. Hence, for real proteins with an

alphabet limited to *20 letters, it becomes clear that one needs to

introduce constraints that limit the size of the configurational

space (e.g. cubic lattice). Of course, in order to reproduce the space

of real proteins, a specific set of constraints is needed that, contrary

to Go potentials [11], does not vary from protein to protein.
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Recently, Maritan and co-workers [17,18,19], have introduced

a novel protein coarse-graining procedure by representing a

typical protein as a flexible self-avoiding tube (from here the

name ‘‘Tube’’ model) with a radius of *2:5 Å and effective

hydrogen bonds interactions along the tube. The configurations

of the tube model are controlled by just two parameters, the total

hydrophobicity and the bending rigidity, that drive the tube into

all secondary and many known protein’s tertiary structures.

Hence, the results obtained with the tube model, strongly suggest

that the typical protein structures are inherent in the geometrical

constraints of the backbone, as the latter are the main features

of the the tube model. To put in the words of the authors the

tube ‘‘pre-sculpts’’ the free energy landscape. So far, a design

method for the tube model has not been introduced and when

hydrophilic/hydrophobic patterns of typical proteins were tried,

the tube model could not systematically fold to the native

structures [20]. However, we believe that the tube model high-

lighted the important type of constraints necessary to design

sequences for real protein structure, namely the self-avoidance of

the backbone and the hydrogen bonds.

In order to support our hypothesis, we have developed a

new model taking inspiration from the work of Maritan and co-

workers, but unlike the tube model, the physico-chemical pro-

perties of individual amino acids are represented by an effective

spherical potential centered on the Ca atoms, and a more realistic

potential to represents the hydrogen bonding interactions. We

refer to this model as the caterpillar model because of the image

created by the spheres that follow the backbone (Fig. 1). The

behavior of the caterpillar model depends on the balance

between the spherical and hydrogen bond potentials. The main

differences between the caterpillar and the tube model is that our

model considers an arbitrary alphabet of amino acids and has a

more detailed structure of the backbone that represents more

faithfully the hydrogen bonding interactions. However, we retain

the tube nature of the protein, via the self-avoiding core of the

spheres centred on the Ca atoms [21]. We expect then the

constraints resulting from the spherical and the hydrogen

bonding potentials to confine the polypeptide chains, to regions

of the conformational space with realistic protein-like structure

elements. It is important to notice that the higher level of

description of the caterpillar model allows not only for a higher

precision in the representation of structures, but also to directly

transfer the results obtained with the caterpillar model to the

further refinement of full atomistic simulations. In fact, in order

to further study the results of the caterpillar model with full

atomistic simulations, we only need to add the atoms of the side

chains of each amino acid directly on the backbone configura-

tions of the coarse-grained simulations. Moreover, the use of

spheres to account for self-avoidance is computationally more

efficient [21] than the three-body interaction rules used in the

tube model [18].

In this paper, we will show that the caterpillar model satisfies the

two conditions mentioned above for foldabilty and designability, as

it retains the elements of the polypeptide chain essential for the

folding of designed sequences, and at the same time is simple

enough to allow for an extensive exploration of the configurational

space. Below we describe the novel design procedure based on the

caterpillar model and we discuss the design of four representative

protein structures taken directly from the Protein Data Bank

(PDB) [22] [38]. We show that with our model we are able to

design all test structures, and generate a large number of sequences

with the target configurations stting at the bottom of a global free

energy minimum. Finally, to further support the tangible link with

real proteins we show that the hydrophobic/philic profile of

designed sequences agrees with that typical of real sequences, and

more importantly we demonstrate that the caterpillar model can

refold the sequence of one of the four test proteins to its cor-

responding native structure.

Methods

Model
As outlined above, the caterpillar model is a 5-bead model with

the Ca augmented by the full main atomic positions to introduce

directional hydrogen bonds. The degrees of freedom of the model

are the torsional angles w and y; all other structural parameters

are kept fixed at values from the literature [23]. The C, O, N, H

positions were determined from the Ca atoms as shown in Fig. 1.

Figure 1. Illustration of the caterpillar model. The large transparent spheres represent the self-avoidance volume, which has a radius of 2:0 Å,
associated to an amino acid and centered on the position of the Ca atoms. The backbone degrees of freedom are the torsional angles w1 and w2. In
order to describe hydrogen bonds also the backbone amide (NH) and the carboxyl (CO) groups are explicitly represented.
doi:10.1371/journal.pone.0020853.g001
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The side chain interactions are represented by and effective

Ca-Ca sphere-sphere interaction energy given by

Eij rij

� �
~a eij 1{

1

1:0ze2:5½1=Å� rmax{rij

� �
" #

ð1Þ

where rij is the distance between the Ca atoms at the centers of

spheres i and j and rmax (rmax~12 Å) is the distance at which

Eij~eij=2; a is a scale factor; see below. This expression provides a

continuous square well form for the sphere-sphere interaction

energy [39]. To determine the parameter eij we made use of the

model of Betancourt and Thirumalai (BT) [24], in which the

interaction energies were derived from a calculation of the contact

frequency in the PDB. This potential had been used primarily for

lattice proteins, but it is also appropriate for the caterpillar model,

which employs a square-well-like potential. Backbone hydrogen

bonds were modeled with a 10–12 Lennard-Jones type potential

using the expression [25]

EH~{eH cos h1 cos h2ð Þn 5
s

rOH
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where rOH is the distance between the hydrogen atom of the amide

group (NH) and the oxygen atom of the carboxyl group (CO) of

the main chain. We set s~2:0 Å, eH~{3:1kBT , and n~2; the

values are given in [25].

To complete the parametrization, we need to determine rmax

and a. Since BT is a contact potential, there is no cutoff value.

Here, we considered the Ca-Ca pair-correlation function g(r) of

several proteins and found that it begins to decay at approximately

12:0 Å (see Figure S1). This behavior can be interpreted as the

range of the effective interactions among amino acids. For larger

values of rmax, the system tends to acquire a mean field behavior,

where every particle interacts with all the others, regardless of the

geometry. By contrast, for smaller value of rmax, correlations that

are crucial for the stability of the target structure can be missed.

The parameter a was chosen to balance the contributions of Eij

(Eq. (1)) and EH (Eq. (2)). With a~1=4, Eij and EH provide

approximately the same contributions to the energy per particle. If

a is too small, all sequences form a-helices, while if it is too large all

sequences fail to self-assemble and collapse in random glassy

structures. In Eq. (2), the directionality of the hydrogen bonds is

accounted for by multiplying the Lennard-Jones term by a factor

containing the h1 and h2 angles between the atoms COH and

OHN, respectively. (Figures S2, S3 shows the distance dependence

and angular dependence of EH 0). The directionality of the

hydrogen bonds is essential to make more probable regions of

conformational space characterized by the secondary structure

elements typical of proteins. The spheres centered on the position

of the Ca atoms ensure that only the maximum of the term in Eq.

(2) for angles close to p is accessible; that at {p corresponds to

configurations that are not allowed by the self-avoiding volumes of

the spheres.

The energy function, Eq. (1), does not take the effects of the

solvent into account explicitly. Although the designed sequences

are able to fold to their respective target structures, their surface

exposure profiles do not necessarily reproduce those of actual

proteins. To improve this aspect of the design, we added an energy

term Ei
Sol that penalizes the surfaces exposure of hydrophobic

amino acids; the expression has the form

Ei
Sol ~

ei
Sol V{Vi
� �

Vi
ƒV

0 Vi
wV

8><
>:

Vi ~
P

j
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where V is a threshold for the number of contacts in the native

structure above which the amino acid is considered to be fully

buried and ei
Sol is the Dolittle hydrophobicity index [26], rescaled

by 0:75 to make this term match the contributions from the other

energy terms. The number of contacts for the amino acids in the

native state varies between 10 and 33; the value 24 was chosen for

V (see Fig. 5).

The designs described in this paper were done mainly using

only Eqs. (1) and (2) for the energy. A comparison calculation was

then made for one protein including the solvation energy term of

Eq. (3).

Design procedure
Given the potential function for the caterpillar model, there are

two steps in the design procedure. First, a larger number (106) of

sequences with a low energy and high sequence heterogeneity are

generated using the target structure. Second, a selected subset is

studied to determine its free energy surface and folding properties.

Several methods have been proposed to design the sequence of

proteins such that they fold into a specific target conformation

[27,28,13,29]. We use here a modified version of a method that we

described recently [13], which generates sequences by minimizing

the energy of the target configuration and, at the same time,

maximizes the number of amino acid permutations to increase the

sequence heterogeneity. With this procedure the distribution of

possible sequences remains large, which is necessary to generate

sequences with a free energy minimum low enough to stabilize the

folded state [27]. The search in sequence space is carried out by a

parallel tempering Monte Carlo procedure with single point

mutation moves. As in the conventional Metropolis scheme, the

acceptance of trial moves depends on the ratio of the Boltzmann

weights at a design temperature T of the new and old states [30].

However, if this were the only criterion, there would be a tendency

to generate homopolymer chains with a low energy, rather than

chains that fold selectively into a specific target structure. To

ensure an amino acid composition far from the homopolymer

region of the sequence space, we impose the following acceptance

criterion for a single mutation

Pacc~ min 1, exp { DE{Ep ln
Nnew

P

Nold
P

� �
=kBT

� 	
 �
, ð4Þ

where DE is the difference of the energy before and after the

mutation attempt, Ep is a scale factor for the relative value of the

two terms in the equation, and NP is the number of permutations

that are possible for a given set of amino acids; NP is given by the

multinomial distribution

NP~
N!

n1!n2!n3!:::
ð5Þ

where N is the total number of monomers and n1,n2, etc are the

number of amino acids of type 1,2, etc. While sampling the

sequence space with the Monte Carlo scheme, we set Ep to high
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enough value Ep~5kT to generate sequences with a heteroge-

neous composition. To adequately sample the sequence space, we

generated 1010 sequences with the native structure as the template

using the parallel tempering scheme [13] with a set of tem-

peratures 0:025,0:05,0:125,0:25,0:5,0:75,1:25,2:5f g in units of

k. From these we selected the ones most likely to yield stable

structures for the native state. For this purpose, we used the

Landau free energy F E,NPð Þ, defined by

F E,NPð Þ~{kT ln P E, ln NPð Þ½ � ð6Þ

and generate the two-dimensional normalized histogram

P E, ln NPð Þ of the distribution of the pair (E and ln NP) collected

over the ensemble of the 1010 generated sequences. For further

study we chose a small number of sequences with low Landau free

energy; i.e., ensembles of sequences that have a reasonably low

energy and a high probability of being observed. The rationale for

this choice is that such sequences are robust against point

mutations, which are correlated with the overall thermodynamic

stability ([31,32]; see also [33]). Our criterion can be understood

with a simple argument in the mean-field approximation, where

we consider only short range correlations between the amino acids

in the chains. In these conditions point mutations are equivalent to

small structural distortions, as both perturbations only have a local

effect. Hence, proteins that are robust against point mutations are

most probably resistant to small deformations induced by thermal

fluctuations.

For each selected sequence, we computed the free energy F ½Q�
as a function of a the order parameter Q, where F (Q) is defined by

F Qð Þ~{kT ln P Qð Þ½ �, ð7Þ

where P(Q) denotes a normalized histogram of the number of

sampled conformations with order parameter Q, and Q is the

Distance Root mean square difference (DRMSD) from the native

structure. In practice, a direct calculation of this histogram is not

efficient, since even the caterpillar model tends to be trapped in

local minima, especially at low temperatures. To induce escape

from these local minima, we made use of the Virtual Move Parallel

Tempering Monte Carlo sampling scheme proposed by Coluzza

and Frenkel [34], based on the Waste Recycling approach [35].

This scheme is very efficient in sampling both high and low free

energy states (see supplementary informations). We find that on a

4 quad-core dual Xeon (Harpertown) compute nodes the

calculation of F(Q) as a function of Q for a single sequence

requires 336 hours of CPU time, while generation of the 1010

sequences requires only 2 hours CPU time.

We used the native conformations of four representative

proteins as target structures (see Fig. 2), the B1 immunoglobulin-

binding domain of streptococcal protein G (PDB ID 1PGB), the C-

terminal domain of the ribosomal protein L7/L12 of E. coli (PDB

ID 1CTF), a putative lipoprotein from Pseudomonas syringae (Gene

Locus PSPTO2350, PDB code 2K57), and the UBA domain of

Tap/NXF1 (PDB ID 1OAI).

Results

The Landau free energy diagram F E,NPð Þ for protein 1CTF,

which we studied in detail, is shown in Fig. 3. As is evident from

the diagram, the lowest energy sequences and lowest Landau free

energy are not directly correlated; i.e., there are numerous very

low energy structures with sequences that have a low probability of

being observed. We then calculated the free energy as a function of

the DRMSD from the native structure (Eq. (7)) for five selected

low free energy, high heterogeneity sequences of protein 1CTF;

they corresponds to the point indicated by the arrow labeled

‘‘LowF’’ in Fig. 3. Figure 4 shows the free energy surfaces for these

proteins at a low temperature where the proteins are stable with

the present energy function, it is a relatively smooth surface with

the minima of the free energy at an DRMSD in the range 1 to

1:5 Å; the breadth of the surface can be argued to reflect the

structural fluctuations present in the native state. Because of the

definition of DRMSD, structures that are long lived would appear

as free energy minima at high values of DRMSD. Hence, the

Figure 2. Comparison of the designed (yellow) and the target
(red) structures for the four proteins analyzed in this work,
from top to bottom. (a) Protein G (PDB ID 1PGB) 1:3 A DRMSD (3:0 A
RMSD 0); (b) L7/L12 (PDB ID 1CTF) 1:45 A DRMSD (2:9 RMSD 0); (c)
lipoprotein (PDB id 2K57) 1:9 A DRMSD (3:8 RMSD 0); (d) UBA domain of
Tap/NXF1 (PDB ID 1OAI) 1:35 A DRMSD (2:3 RMSD 0).
doi:10.1371/journal.pone.0020853.g002
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smoothness of the free energy profiles in Fig. 4 indicates that the

folding process of our artificial sequences occurs spontaneously

with no long lived metastable states. An important result is that in

the low temperature simulations, the free energy surface shows no

misfolded states with free energies below that of the target

structure. It is important to notice that in order to have a single

free energy minimum, we did not explicitly impose to the design

process to disfavor particular conformations of the chain. Similar

Figure 3. Plot of the design free energy surface F½E, ln (NP)�=kT for protein L7/L12 (PDB ID 1CTF) as a function of the total Ca{Ca

energy and the logarithm of the number of possible letter permutations ln (NP). For small values of NP the sequences will tend to be more
and more homopolymeric. The most stable sequences corresponds to the to lowest free energy point (indicated by the the LowF arrow) and the
folding capacity deteriorates moving away from that point even if the total energy is lower (e.g. the point indicated by the LowE arrow). The
boundaries are determined by the limits in the computational power but also by the fact that some combinations of E and ln (NP) are not possible.
doi:10.1371/journal.pone.0020853.g003

Figure 4. Comparison of the folding free energies F½DRMSD� of 6 designed sequences and of the real sequence for L7/L12 as a
function of the root mean square distance (DRMSD) from the target structure. The profile of F ½DRMSD� (black dashed line) for 5
sequences selected from the ensemble of those with the lowest free energy in sequence space (LowF in Fig. 3) is compared with the profile (red line)
obtained for a sequence with lower energy (LowE) than the previous ones. The free energy has been calculated at the same temperature TvTF . The
folding efficiency of the LowF sequences is very different from the one of LowE as the latest one cannot reach a proper folded structure. Finally we
also plot the folding free energy for the real sequence (Real) of the same protein L7/L12 (point dash blue line). At TvTF , we found the minimum
of F ½DRMSD� to be around 1.6 Å (3:5Å RMSD), indicating that the designed proteins are folded correctly on their targets.
doi:10.1371/journal.pone.0020853.g004
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results for the other three systems are given in supplementary

informations (Figure S4), and overall we get a structure prediction

precision between 1 and 2 Å in DRMSD (2:3 and 3:8 Å in RMSD

[40]) as shown in Fig. 2.

We tested if the sequence selection mechanisms, based on the

Landau free energy, performed better than simply taking a low

energy sequence, as was done previously for lattice proteins [27].

Figure 4 also shows the results of a sequence selected for its low

energy (LowE) with a relatively high number of permutations; see

Fig. 3. In order to show how important is to select sequences from

the most probable ensemble, we chose the LowE sequence not too

far from the global sequence free energy minimum. Nevertheless,

the folding of ‘‘LowE’’ is significantly less reliable than that of the

LowF sequences, as the equilibrium configuration of LowE dra-

omatically differs from the native structure.

We finally introduced the solvation term in equation (3). By

including the latter we repeat the design procedure for L7/L12, and

the refolding for the natural sequence of L7/L12 as taken from the

PDB (1CTF). We set V~24. In figure 5 we plot the hydrophobic/

philic profile (HP) of the protein 1CTF designed with and without

the solvation term in Eq. (3). The first important observation is that

even with our 12Å ranged potential (Eq. (2)), we are able to

distinguish between buried amino acids and surface residues, as is

demonstrated by the large variation in the number of contacts (top

frame). Moreover the HP profiles averaged over the designed

sequences with solvation term (W.S.) follow much better the contact

profile than the profile relative to sequences designed without the

solvent term (Wo.S.), indicating that our ‘‘artificial’’ proteins have a

hydrophobic core surrounded by hydrophilic amino acids as

expected for molecules that live in aqueous solutions [36]. Finally

we compared the artificial HP profiles to the average profile

obtained from the Pfam alignment data (PF00542) for protein

1CTF; the curve for W.S. sequences is qualitatively comparable to

one of the real proteins, as the discrepancies (between residue 20

and 30 and around residue 45) occur in regions where the wild type

proteins express hydrophobic residues even if highly exposed to the

solvent, which could be the results of functionalities that we did not

include in the design procedure. At this point it is natural to ask if

the caterpillar model, with the solvation term, is able to reproduce

the folded structures of real proteins, since we have shown that

designed sequences refold to the target structure, and the design

now produces protein like sequences. In Fig. 4 we plot the folding

free energy profile of the natural sequence of protein L7/L12. The

profile is qualitatively similar to the one obtained from the folding of

the artificial sequences, and the distance of the global free energy

minimum from the X-Ray structure is still small (1.6 Å DRMSD,

3.4 Å RMSD). Hence, the quality is again striking considering that

the only parameters we had to adjust in the model are the range of

Figure 5. Hydrophobic/philic profile of the protein L7/L12 (PDB ID 1CTF) designed with and without the solvation term. In the top
frame we plot the number of contacts that each amino acids along the chain has with the all the other non consecutive amino acids in the range
of 12Å defined by our potential in Eq. (2). Large numbers indicate amino acids that are buried in the core of the protein while low number
correspond to residues that are highly solvated. The dashed horizontal line refers to the value V~24 in Eq. (2). In the bottom frame we compare
the hydrophobic/philic profiles averaged over the designed sequences, with (W.S., blue continuous line) and without (Wo.S., red point-dash line)
the solvation term in Eq. (3), to the average profile obtained from the Pfam alignment data (PF00542, black dashed line) corresponding to the
structure L7/L12. W.S. sequences capture many of the features of the HP profiles of the PF00542 and follows more closely the profile described in
the top frame, indicating that we design proteins with an hydrophobic core surrounded by hydrophilic amino acids, which overall is more
realistic. It has to be noted that the discrepancies between the designed and the real proteins (between residue 20 and 30 and around residue 45)
occur in regions where structurally one would expect hydrophilic amino acids. The unexpected hydrophobic patches present in the wild type
proteins may very well be involved in the function of the protein in vivo that we do not take into account during the design procedure. In the
inset From left to right, comparison of the designed (W.S.) and the native hydrophilic (blue) and hydrophobic (red) amino acids distributions for
L7/L12.
doi:10.1371/journal.pone.0020853.g005
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the potential, the scaling factor of the Ca{Ca interaction and the

threshold V of the solvation term.

We conclude that a carefully tuned external field can produce

a protein-like hydrophobicity profile (Fig. 5) and closely predict

the native structure of the real sequence (Fig. 4). The proposed

framework is then fully self consistent since the design procedure

is able to produce natural-like sequences, while the folding pro-

perties of the caterpillar are compatible with the folding of real

natural sequences. Moreover, the estimation of all free param-

eters is based on the condition that designed sequences must

refold into their respective target structure, and as a result we

reattain fundamental properties of real proteins that we did not

impose to the system. Model and methodology are therefore

shown to be an important step forward in bridging the crucial

gap between a coarse grained representation and a fully atomistic

description of proteins.

Discussion

In this work we introduce a fundamental criterion for the

designability of coarse-grained models of proteins. With the

caterpillar model we are able to design protein sequences for

various proteins representative of the typical combinations of

protein secondary structures. Each of the tested sequences reached

the target structure with a very high precision considering the

simplicity of the model, demonstrating that the procedure is

universal for proteins with different proportions of alpha helices

and beta sheets. With our model we could characterize in detail

the free energy of the folding process, and we showed that each of

the free energy landscapes has a global free energy minimum near

the target structures. Moreover, the landscapes are relatively

smooth indicating that our designed proteins can spontaneously

fold without remaining trapped for long time in metastable states.

The caterpillar model provides a strong evidence to sup-

port our hypothesis that a minimum number of constraints

is necessary in order to successfully perform protein design. By

applying an accurate representation of the backbone we

demonstrated that design and folding of real proteins is possible

to a degree of accuracy that could not have been anticipated

given the level of coarse-graining applied. To the best of our

knowledge, a direct analysis of the importance of constraints for

the design of protein like structures has never been done before.

Our results, then not only extend protein design beyond lattice

proteins but also further extend the important work of Maritan

and co-workers [17,18,19] on the tube model. With the tube

model, the authors showed that the protein structure universe is

largely determined by the particular geometry imposed by the

backbone, independently of the accuracy used to represent the

amino acid pair interactions. With the caterpillar model we not

only verify the results of Maritan and co-workers, but also we

extend the function of the backbone geometry to the crucial role

of enforcing the minimal set of constraints responsible for the

protein design property.

It is important to stress that the three free parameters of the

model have been adjusted only on the refolding ability of the

designed sequences, and, as a result, the artificial sequences re-

semble real proteins in the hydrophilic/phobic profiles, and the

folding of real sequences predicts the correct native structure with a

surprising high accuracy. This last result suggests that it is possible to

determine a universal set of values for the parameters valid for all

proteins, which we intend to make the center of further investi-

gation. Moreover, given its computational efficiency, we anticipate

that the caterpillar model will be useful for studying other important

aspects of protein behaviour such as folding, misfolding and

aggregation. Especially considering that, thanks to the high detail of

the backbone, the results of our model can be easily integrated in full

atomistic simulations by adding the side chains of each amino acid.

Supporting Information

Figure S1 Ca{Ca Radial distribution function g(r) of three of

the target proteins tested in our work. The solid lines are spline

interpolations of the data points to guide the eye. The plots show

common features between all three proteins, in particular the

position of the major peaks is contained in the 12Å radial distance.

This alone is not enough to prove that the effective potential

between Ca pairs should have such a wide range, but it supports

our phenomenological observation that shorter or longer ranges

do not guarantee the same universal refolding properties to the

caterpillar model.

(EPS)

Figure S2 Angular dependence of the potential used to model

hydrogen bonds in Eq.(2).

(EPS)

Figure S3 Radial dependence of the potential used to model

hydrogen bonds in Eq.(2).

(EPS)

Figure S4 Free energies F (DRMSD) of the designed sequences

as a function of the root mean square distance (DRMSD) from

their target structures for the four cases that we considered in this

work: (a) the B1 immunoglobulin-binding domain of streptococcal

protein G (PDB ID 1PGB), (b) the C-terminal domain of the

ribosomal protein, (c) a putative lipoprotein from Pseudomonas

syringae (Gene Locus PSPTO2350, PDB code 2K57), and (d) the

UBA domain of Tap/NXF1 (PDB ID 1OAI). The free energy is

shown for two temperatures, the first (T~0:2) slightly below the

folding temperature (TF^0:25) and the second (T~0:3) slightly

above; all temperatures are in reduced units). At low temperatures,

for all the target structures that we considered we found the

minima of F ½DRMSD� to be between 1.0 and 1.5 Å, indicating

that the designed proteins are folded correctly on their targets. At

T~TF the native is at equilibrium with the unfolded state. The

exact determination of the folding temperature requires a fine

analysis of the temperature dependence of the folding process, and

is beyond the scope of our work. Our estimate is based on the

observation that just above T^0:25 the protein is unfolded, while

below the native state is the most stable state.

(EPS)

Text S1 Supporting information.

(PDF)
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