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Abstract

Background: Despite a plethora of bioluminescent reporter genes being cloned and used for cell assays and molecular
imaging purposes, the simultaneous monitoring of multiple events in small animals is still challenging. This is partly
attributable to the lack of optimization of cell reporter gene expression as well as too much spectral overlap of the color-
coupled reporter genes. A new red emitting codon-optimized luciferase reporter gene mutant of Photinus pyralis, Ppy RES,
has been developed and used in combination with the green click beetle luciferase, CBG99.

Principal Findings: Human embryonic kidney cells (HEK293) were transfected with vectors that expressed red Ppy RE8 and
green CBGY9 luciferases. Populations of red and green emitting cells were mixed in different ratios. After addition of the
shared single substrate, D-luciferin, bioluminescent (BL) signals were imaged with an ultrasensitive cooled CCD camera
using a series of band pass filters (20 nm). Spectral unmixing algorithms were applied to the images where good separation
of signals was observed. Furthermore, HEK293 cells that expressed the two luciferases were injected at different depth in
the animals. Spectrally-separate images and quantification of the dual BL signals in a mixed population of cells was achieved
when cells were either injected subcutaneously or directly into the prostate.

Significance: We report here the re-engineering of different luciferase genes for in vitro and in vivo dual color imaging
applications to address the technical issues of using dual luciferases for imaging. In respect to previously used dual assays,
our study demonstrated enhanced sensitivity combined with spatially separate BL spectral emissions using a suitable
spectral unmixing algorithm. This new D-luciferin-dependent reporter gene couplet opens up the possibility in the future
for more accurate quantitative gene expression studies in vivo by simultaneously monitoring two events in real time.
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Introduction

During the last decade, bioluminescent (BL) imaging has
become an indispensable tool for visualizing molecular events at
a cellular level both i viwo and i vitro leading to new advances and
discoveries in life sciences [1].

There are many available BL luciferase/luciferin reporter gene
systems for i vivo imaging:the first reportedly used, and most popular,
are the luciferases that require D-luciferin and are ATP dependent
(ie. firefly luciferase, click beetle luciferase) [2].Other luciferases
followed such as Renilla luciferase and Gaussia luciferase which
require coelenterazine as a substrate and are ATP independent [2,3].
In addition, the use of the blue emitting (490 nm) bacterial luciferases
from Photorhabdus. luminescens has been reported [4]. Such luciferases
do not require the infusion or administration of the BL substrate and
are scarcely expressed in mammalian cells. The codon-optimized
version of this luciferase has been recently proposed for in vivo imaging
but it is less robust than firefly luciferase [5].
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Renilla and Gaussia luciferases emit blue light which in part
compromise their i wwo performance due to extensive light
absorption by the small animal body. Blue light is strongly
absorbed by tissue components particularly in highly vascularised
tissues where haemoglobin is present [6].

In the case of Renilla, new red-shifted and more stable mutants
with an emission peak at 535 or 547 nm have been produced by
site directed mutagenesis [7], but dual color imaging still remains
difficult to perform in part due to the relative low quantum
efficiency of CCD cameras below 500 nm (30%), where the native
enzyme shows the peak of emission.

Until now there are no red-shifted Gaussia luciferase mutants
available but only brighter ones or with a prolonged half-life
[3,8,9]. Red-emitting mutants from the railroad worm (Phrixothrix
hartus) , possessing higher activity and better stability. have recently
been proposed for BL imaging but these have not yet been fully
investigated for i vivo applications [10].
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Click beetle and firefly luciferases, variants with different
emission wavelengths have been developed but they do not
possessoptimal characteristics for  wviwo imaging [11,12]. In
particular, red/green couplets of reporter proteins for i vivo
applications must possess intense BL emission with narrow
emission spectra resulting in a reasonable separation and with
good thermostability at 37°C [12,13,14].

Codon-optimization of the reporter gene is a fundamental
prerequisite for improving the BL signal in mammalian cells thus
facilitating their detection i vivo [15].

Recently it has been reported that dual color BL imaging could
be applied i vitro using appropriate filters for the separation of BL
signals and mathematical corrections for their deconvolution
[16,17]. Furthermore, ¢ vivo applications using multicolor analysis
can be achieved using different substrates or fluorescent proteins
(18].

The fate of two different cell populations, was simultaneously
monitored in vivo when the novel red codon-optimized
luciferase reporter gene mutant of Photinus pyralis, Ppy RES,
was combined with the green click beetle luciferase, CBG99.
Ppy RES is characterized by a peak emission at 618 nm and has
an excellent thermostability (half-life of 4,5 h at 37°C) [13].
CBG99 is a pH insensitive luciferase with an emission maximum
at 537 nm which showed better performance for n wivo
applications than the widely used P. pyralis wild type luciferase
(PpyWT) [19].

Here, we demonstrate the applicability of the two luciferases in
vitro and in vivo by generating lentiviral vectors for the expression of
the genes under the control of the CMV promoter. Multicolor
HEK?293 cell-based assays were developed to evaluate the
suitability of simultaneous measurements of the red and green
emitting luciferases by spectral unmixing. Both luciferases
maintained the same spectrum of emission in cells at 37°C. We
also show the applicability of the dual luciferases in wvivo, after
intraperitoneal injection of D-luciferin, when HEK293 cells were
moculated either subcutaneously or injected directly into the
prostate in mice and then imaged. A good separation of the
individual signals could be obtained using spectral unmixing
algorithms for their deconvolution. Ppy RE8 was demonstrated to
be an excellent tool for in viwo BL imaging and, in particular, when
used in combination with a green luciferase to monitor dual events
at the molecular level. The use of a single D-luciferin substrate for
the same couple of reporter gene allows time and cost saving in
contrast to dual-color luciferase imaging using Firefly and Renilla
luciferases in which the addition of a second luminescent substrate,
coelenterazine, is warranted.

Dual Color In Vivo Bioluminescence Imaging

Results

Emission spectral unmixing of bioluminescence in cell
lysates

The ability of the two red and green selected luciferase signals to
be detected and quantified in a single run, using a single substrate,
was evaluated. The red codon-optimized luciferase reporter gene,
Ppy RES, and the green emitting click beetle, CBG99, were
expressed transiently under the control of the same promoter in
HEK293 cells and lysed after 24 hours. For the same number of
cells the light output of red emitting lysate was 2.5 higher than the
one of green emitting cells (Fig. 1A). In our constructs and assay
conditions, Ppy RE8, produced more light that CBG99. Both
luciferases produced more signal than CBred when cloned in the
same plasmid backbone and expressed in HEK293 cells, as
previously reported [11,13]. Moreover, when cell lysates of the red
or green expressing cells were plated in different ratios,
calculations of the percentages of red and green light in a mixture
were possible by applying the spectral unmixing algorithm to the
acquired images (images acquired using a series of 20 nm band
pass filters) as shown in Figure 1B. In this set of experiments there
were no significant differences between plated and calculated
percentage of cell lysates which demonstrated the validity of the
method. In addition, the algorithm allowed for the calculation of
the emission spectra for both luciferase variants plus the Ppy WT,
which were similar as those obtained when analysed separately
(Fig. 1C). A representative image of a spectral unmixing of cell
lysates is shown in Figure 2. Lysates from red and green expressing
cells were serially diluted in duplicate and mixed in different
proportion. In Figure 2A images were taken using a series of band
pass filters (20 nm) and as a control in the absence of any filters.
Figure 2B shows the unmixed images corresponding to the red and
green signals. Data were calculated from the unmixed images that
corresponded to the red and green signals.

Live cell dual color imaging

In this set of experiments, HepG2 cells were stably transduced
using lentiviruses that expressed the different luciferases. This was
used to evaluate the performance of this pair of luciferases in living
cells. Selected clones of cells stably expressing the luciferase
variants cannot mirror the expression level of transiently
transfected populations, and different promoters vary expression
in different cells types. For these reasons a direct comparison
between the level of expression of CBG99 and Ppy RES luciferase
could not be performed but other relevant parameters such as
emission spectra and dynamic range of luminescence signals for i
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Figure 1. Validation of Ppy RE8 and CBG99 as a bioluminescent couple for multicolor imaging. (A) Level of expression of lentiviral
constructs in HEK293 cells. (B) Spectral unmixing of cell lysates mixed in different proportions. Cells were lysed 24 h after transfection with lentiviral
constructs. (C) Emission spectra of luciferases calculated with Living Image software in cell lysates at 25°C with the Ppy RE8 peak around 620 nm,

CBG99 around 540 nm and WT Luc around 560 nm.
doi:10.1371/journal.pone.0019277.g001
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Figure 2. Representative image of emission spectral unmixing of bioluminescence in cell lysates. (A) Multispectral acquisition of red and
green emitting cell lysates. In the left part (row 1 and 2) of the plate dilutions of green emitting lysates were dispensed in duplicate while in the right
part (row 5 and 6) dilutions of the red ones. In the middle (row 3 and 4) lysates were mixed in different proportions. The plate was scanned with an
open filter and at different wavelengths ranging from 500 nm to 680 nm with a 20 nm interval.(B) Resulting unmixed images used for calculation and

composite of the two different luciferases in false colors.
doi:10.1371/journal.pone.0019277.9002

viwo application could be evaluated. Ppy RE8 expressing cells
showed a 5-fold higher signal than the cells expressing CBG99 at
37°C. Figures 3A and 3B report a representative analysis of
different amounts of the red and green HepG2 cells at 37°C when
an unmixing algorithm was applied to the acquired images.
Analysis of the images allowed us to determine that the emission
spectra of Ppy RE8 and CBG99 cells did not vary in intact cells at
37°C under physiological pH conditions. A good correlation be-
tween number of cells and light emission was obtained (R? =0.98)
when the experiment was carried out in triplicate (Fig. 3C).

In vivo dual color imaging

In order to test this pair of luciferases for i vivo applications,
cells expressing each luciferase were injected subcutaneously in
mice. Five minutes after substrate injection, a series of images with
30sec acquisitions were obtained. The emission spectra of the
luciferases calculated from the @ viwo experiments showed a slight
red shift because of absorption and scattering of light generated
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under the skin (Fig. 4). Intensity of the BL signals allowed the
calculation of the red/green cell ratio in a mixed population after
applying spectral unmixing algorithm. Average luminescence
expressed in photon/sec/sr/cm” was determined for the ROI
corresponding to the different areas where cells were inoculated.
These values were extracted from the unmixed images generated
by Living Image software. Experiments carried out in three mice
for both independent set of experiments gave reproducible results.
Cells (10%) expressing only the green or red luciferase were
subcutaneously injected in the upper and middle part of the back.
The mixed population of red and green emitting cells was
composed by 2.5x10* cells of each population.,The calculated
numbers of cells in the mixture were 2.0+0.4 x10* for CBG99 and
2.4+0.2x10* for Ppy RES (Fig. 5A). These data were confirmed
when the algorithm was applied only to the ROI corresponding to
the mixed population. Furthermore, the data generated were
concordant to that generated in whole body scans of the mouse
which confirmed the good unmixing spatially of red and green
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Figure 3. Live cell imaging. (A) Representative spectral unmixing of signals emitted from stable red and green HepG2 cells;10%, 7.5x10% 5x10*
and 2.5x10* cells were plated for each HepG2 cell line. (B) Composite images generated after unmixing signals. (C) Graph representing the
correlation between luminescent signals and different amounts of red or green luciferase expressing HepG2 cells.

doi:10.1371/journal.pone.0019277.g003

signals. Moreover the normalized spectra obtained from this
region (Fig. 5D) under the skin were almost identical to the
reference spectra calculated from cells emitting only one luciferase
(Fig. 5C).

Further experiments were conducted to investigate the use of
the red/green luciferase couplet at different depths and in tissues
with different absorption properties whereby red or green emitting
HEKZ293 cells were injected in the liver and in the prostate. The
calculated normalized spectra are reported in Figure 6. The
spectrum of emission of Ppy RE8 did not vary considerably while
the spectrum of the CBG99 changed. In the liver (Fig. 6B), the
CBGY9 spectrum became bimodal with a peak around 600 nm
and a shoulder at a lower wavelength. This is likely due to the

@ PLoS ONE | www.plosone.org

presence of large amounts of hemoglobin, the principal absorber
of green light, which prevents good spectral unmixing of the
signals within this organ. When injected in the dorsolateral
prostate, the signal output was lower but the spectrum shape of
CBGY9 still produced good spectral unmixing (Figure 7). The
spectra obtained from the unmixed ROI shown in Figure 8 were
comparable to the reference spectra.

Discussion

The main advantages of using BL in bioanalysis are related to
the high signal/noise ratios and quantum efficiencies of the
luciferin/luciferase system. This gives rise to sensitive cell based
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Figure 4. Multispectral acquisition of light from live animal. Cells expressing Ppy RE8 and CBG99 luciferases and a mixture were inoculated in

the upper part, middle part and lower part of the back, respectively.
doi:10.1371/journal.pone.0019277.9g004

assays and for in vivo molecular imaging [20,21]. Moreover, the
availability of luciferases with different emission wavelengths gives
the possibility of performing multicolor and multiplexed assays.
Here, we evaluated for the first time a new red-codon optimized
luciferase, Ppy RES, in combination with a green click beetle,
CBGY9, luciferase that permitted a simultaneous, sensitive and
reliable 2D imaging and quantification of different imaging signals
in vivo using the same D-luciferin substrate. Issues concerning i vivo
applications, such as cell tracking in deep tissues, are different from
that concerning analysis of gene expression in cell based assays.
For this reason, we carried out experiments in three different
conditions:in cell lysates, in live cells and in whole animals. In
order to demonstrate its performance we employed the Ppy RES
and CBG99 genes for the development of lentiviral expression
vectors and used them for transient and stable expression in
different cell lines. A major concern was to separate the green
emission overlap with the red filter (620 nm) particularly when the
two signals have a different intensity. Images were obtained by
collecting light using a set of filters (20 nm band pass) from
500 nm to 680 nm and without a filter. This was performed on the
IVIS Spectrum (CaliperLS Inc, Hopkinton, MA) and a spectral
unmixing algorithm was applied to all the images using the Living
Image 4 software (CaliperLsS, Inc). This unmixing algorithm
enabled the deconvolution of the luciferases as two distinct spectra.
The spectral unmixing of the images obtained from cell lysates
showed the suitability of the use of these red and green luciferases
as a BL pair with a single substrate. Images were collected five
minutes after substrate addition when signals of both emitting
enzymes are stable as indicated by previous studies [11,13]. An
analysis was performed on stable transfected HepG2 cells to mimic
the conditions for  vive imaging. In this case, temperature was set
to 37°C and the substrate consisted of 1 mM D-luciferin without
cofactors normally present in commercial assay buffers for testing
cell lysates. Each image generated by a different band pass filter of
20 nm was obtained by integrating signals for 30 s since ATP

@ PLoS ONE | www.plosone.org

present in living cells represents a limiting factor on biolumines-
cence intensity. In this set of experiments, acquisition of images
took 5 minutes and generated accuracy of detection and
quantification. Moreover, we envisage the possibility to perform
single cell or tissue analysis by using a novel implemented
microscope for dual color bioluminescence imaging [22,23]. To
complete the evaluation and to establish that the red/green
luciferase couplet is optimal for n viwo imaging , studies of the
luciferase pairing were performed in living animals. Our results
from living mice inoculated with red and green emitting cells
demonstrated the possibility for 2D visualization and (semi-
)Jquantification of cells which produced different colors in mixed
populations. The light emission of both luciferases underwent a
red-shift of 20 nm due to tissue absorption and scattering of light
generated under the skin. As previously reported [24], emission
spectra of luciferases i viwvo are affected by tissue depth and
concentration due to absorption and scattering of light through
tissues. Therefore, our luciferase couplet will be adequate for
studying cells implanted subcutaneously or in the mammary fat
pad for breast cancer research. Moreover, the use of different
organisms for cancer research such as transparent adult zebrafish
[25] or transparent frogs [26] that can fit in the bioluminescence
imager is possible. The experiments carried out in the dorsolateral
prostate and in the liver showed that the use of the red emitting
luciferase is preferential for imaging in deeper tissues since the
spectrum of emission does not change and the attenuation is lower.
Regarding the green emitting luciferase, the spectrum of emission
varies due to the presence of absorbers like haemoglobin but it did
not hamper a good separation of signals in the dorsolateral
prostate. Moreover, future improvement of the analytical
performance of spectral unmixing of light signals as in fluorescence
applications should lead to a better separation in deeper tissues
[27]. Recently, Hida and colleagues applied multicolor luciferases
to study protein-protein interaction and proposed Phrixothrix hirtus
red luciferase (em. Max. 630 nm) as an internal control in
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Figure 5. Spectral unmixing of signals after subcutaneous injection of cells. (A) Unmixed and composite images. The injected cells were 10° (upper
and middle part) and 2.5 %x10% in the mixture (lower part). The numbers of cells calculated with Living Image software were 2.0+0.4x10* for CBG99 and
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noticed for both luciferases. D) Unmixed spectra calculated for the region of interest of the mixture. The spectra are almost identical to the reference ones.

doi:10.1371/journal.pone.0019277.g005

combination with fusion proteins constructed of different N or C
parts of luciferases for a complementation assay. However, no
multispectral image acquisition was performed and no unmixing
algorithm was applied to images in order to obtain effective
quantification of signals i vivo [28].

In conclusion, Ppy RE8 was demonstrated to be an excellent
tool for both i vitro and n vivo bioluminescence imaging and, in
particular, when used in combination with a green luciferase to
monitor dual events at the molecular level. Ppy RE8 has a good
thermostability at 37°C and is highly expressed in mammalian
cells. In contrast, the combined use of Firefly and Renilla luciferase
requires the use of different substrates that are luciferin and
coelenterazine. Biodistribution and enzyme kinetics with the two
substrates are very different making ratio-metric measurements
more difficult. Therefore, the described new D-luciferin-depen-
dent red/green couplet will allow clearcut (semi-) quantitative gene
expression studies m viwo and enable simultaneous tracking of
different populations of stem cells, T-cell accumulation in tumors
and simultaneous analysis of different molecular pathways. An

@ PLoS ONE | www.plosone.org

eventual derivation from this study will be to generate new dual
color transgenic animal models.

Materials and Methods

Ethics statement

Animal experiments were reviewed and approved by the
Bioethics Committee of Leiden University, The Netherlands
(Animal protocol 08158). Allanimals received humane care in
compliance with the ‘Code of Practice Use of Laboratory Animals
in Cancer Research” (Inspectie W&V, July 1999).

Plasmid construction

Self-inactivating lentiviral vectors, pLV.CMV.bc.NEO and
pLV.CMV .bc.PURO, were kindly provided by Prof. R. Hoeben.
The pLV.CMVPpy RE8.NEO vector was constructed by ampli-
fying the Ppy RE8 gene from pGex Ppy RE8'!, using the following
pair of primers:Ppy RE8ForAscl:taggcgcgecgaggacgecaagaacatca
and Ppy RE8RevXhol:aatctcgagtcagatcttgeegeccttett, and inserted
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in the MCS of pLV.CMV.bc.NEO. pLV.CMVCBG99.PURO was
created by inserting the CBG99 gene, cut with Neol and Xbal from
the pCBGY9basic vector (purchased from Promega, Madison, WI,
USA), into the MCS of pLV.CMV .bc.PURO via blunt ligation.

Cell lines

HEK?293 and HepG2 cells were cultured in DMEM (Sigma,
St. Louis, MO, USA) with 10% fetal bovine serum and 2 mM
L-glutamine. The cultures were incubated at 37°C with 5% COe..
HepG2 cells were transduced by self-inactivating lentiviruses as
previously described [29]. Cell clones were selected with 1 mg/ml
G418 or 1 ug/ml Puromycin for 14 days.

Imaging

All images were acquired with an IVIS spectrum (Caliper Life
Sciences, Hopkinton, MA, USA) with the stage heated to 37°C
during live cell imaging. The plates used were black-walled with
clear bottoms. Generally, images were acquired at binning 8x8
pixels, f/stop 1, 12.5 cm field of view for the time and with the

filter sets indicated. Experiments carried out with a different setup
are indicated. Living Image 4 software was employed for
generating spectral unmixed images and calculations of signals.

Spectral unmixing of emission wavelengths in cell lysates

Clonfluent HEK293 cells from a T25-flask were trypsinized and 10°
cells/well plated in a 6 well plate. The next day, cells were transfected
with 1 pg of pLV.CMVPpy RES.NEO or pLV.CMV.CBG99.PURO
using Fugene HD, per the manufacturer’s protocol. After 24 h, cells
were lysed for 10 min with 0.4 ml of Promega’s Passive lysis buffer.
Cell debris was pelleted by centrifugation at 13,000 rpm for 10 min.
The level of expression of each luciferase was evaluated in triplicate,
and then each luciferase was diluted to a similar level of activity in lysis
buffer. Subsequently, 30 ul of each lysate were plated in linear dilutions
and in different proportions and imaged after addition of 30 pl of
luciferase assay buffer (Promega, Madison, WI, USA) in a 96 black-
walled plate with a clear bottom. Images were taken using a set
of 20 nm filter steps from 520 nm to 680 nm and without a
filter:acquisition time was 2 sec and f/stop 4 at 25°C. Two
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Figure 7. Representative unmixing images generated after injecting a mixture of red and green cells in the prostate.

doi:10.1371/journal.pone.0019277.g007
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independent sets of transfections and images were used for calculations.
Green and red signals were calculated from unmixed images. Data
were plotted using GraphPad Prism 5.

Spectral unmixing of emission wavelengths in living cells

Stably expressing red and green HepG2 cells were trypsinized
and resuspended in PBS in the 96 black-walled plates described
above. Images were acquired at 37°C 5 min after addition of
1 mM D-luciferin (Synchem OHG, Felsberg, Germany) for 5 sec.
Three independent experiments were carried out using the same
selected cell lines.

In vivo imaging in mice

HEK293 cells were plated at 2x10° cells per well in a six well
plate. After 24 h, 1 pug of either pLV.CMVPpy RE8.NEO or
pLV.CMVCBG99.PURO was transfected as described. After
24 h, the cells were trypsinized, pelleted and resuspended in PBS
at 10° cells/100 pl. For injection in liver and in the dorsolateral
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prostate cells were resuspended in PBS at 10 cells/10 pl. Aliquots
were used for testing i vitro and in vivo imaging in mice.
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anesthetized by isofluorane, while injected subcutaneously with cells.
For injection of cells in the prostate and liver mice were anesthetized
by Ketamine/Xylazine 100 mg/kg and 10 mg/kg body weight.
Cells were implanted in the prostate or in the median liver lobe and
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