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Abstract

Background: We initiated a prospective trial to identify transcriptional alterations associated with acquired chemotherapy
resistance from pre- and post-biopsy samples from the same patient and uncover potential molecular pathways involved in
treatment failure to help guide therapeutic alternatives.

Methodology/Principal Findings: A prospective, high-throughput transcriptional profiling study was performed using
endoscopic biopsy samples from 123 metastatic gastric cancer patients prior to cisplatin and fluorouracil (CF) combination
chemotherapy. 22 patients who initially responded to CF were re-biopsied after they developed resistance to CF. An
acquired chemotherapy resistance signature was identified by analyzing the gene expression profiles from the matched
pre- and post-CF treated samples. The acquired resistance signature was able to segregate a separate cohort of 101 newly-
diagnosed gastric cancer patients according to the time to progression after CF. Hierarchical clustering using a 633-gene
acquired resistance signature (feature selection at P,0.01) separated the 101 pretreatment patient samples into two groups
with significantly different times to progression (2.5 vs. 4.7 months). This 633-gene signature included the upregulation of
AKT1, EIF4B, and RPS6 (mTOR pathway), DNA repair and drug metabolism genes, and was enriched for genes overexpressed
in embryonic stem cell signatures. A 72-gene acquired resistance signature (a subset of the 633 gene signature also
identified in ES cell-related gene sets) was an independent predictor for time to progression (adjusted P = 0.011) and survival
(adjusted P = 0.034) of these 101 patients.

Conclusion/Significance: This signature may offer new insights into identifying new targets and therapies required to
overcome the acquired resistance of gastric cancer to CF.

Citation: Kim HK, Choi IJ, Kim CG, Kim HS, Oshima A, et al. (2011) A Gene Expression Signature of Acquired Chemoresistance to Cisplatin and Fluorouracil
Combination Chemotherapy in Gastric Cancer Patients. PLoS ONE 6(2): e16694. doi:10.1371/journal.pone.0016694

Editor: Alfons Navarro, University of Barcelona, Spain

Received September 10, 2010; Accepted December 24, 2010; Published February 18, 2011

This is an open-access article distributed under the terms of the Creative Commons Public Domain declaration which stipulates that, once placed in the public
domain, this work may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose.

Funding: This work was supported in part by the National Institutes of Health Intramural Program, Center for Cancer Research, National Cancer Institute; by the
Korean National Cancer Center Grant 0910570 and by the Converging Research Center Program through the Ministry of Education, Science and Technology
(2010K001121). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: jegreen@nih.gov

Introduction

Understanding how tumors evolve on a molecular level to

overcome the cytotoxic effects of chemotherapy is a critical step in

developing therapeutic approaches that will prevent or overcome

chemoresistance. However, due to the difficulties in obtaining

serial tumor biopsies from patients at various stages of therapy, the

identification of molecular alterations that occur as tumors become

resistant to therapy has been a vexing problem. The serial

collection of solid tumor samples from the same patients has been

extremely difficult in the clinical setting, but gastric cancer

provides a unique opportunity for this purpose, since it is often

initially responsive to chemotherapy and repeated endoscopies

may be performed to monitor tumor response to chemotherapy.

In this study, endoscopic biopsy samples were collected from

gastric cancer patients. We identified a gene expression signature

for acquired chemoresistance to cisplatin and fluorouracil (CF)

combination chemotherapy, by comparing samples collected prior

to CF therapy with samples taken from the same patients at the

time resistance to CF developed based upon objective clinical

progression. Using this approach, we could identify molecular

candidates that may possibly lead to development of new targeted

therapies for gastric cancer. Importantly, we also found that an

acquired chemoresistance signature could identify whether newly

diagnosed gastric cancer patients would have a short or more

sustained response CF therapy. Since the acquired resistance

signature is already highly represented in non-responders and that

it seems unlikely that the numerous expression changes occurring

on a global level would evolve in a relatively short period of time,

our results appear to support the conventional, clonal selection

model for tumor progression and acquired chemoresistance [1].

Identifying biomarkers that distinguish cancer patients who will or

will not benefit from cytotoxic chemotherapy will greatly improve

clinical management. Although studies using high-throughput
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transcription profiling of pretreatment biopsy samples have

attempted to identify such predictors, the performance of these

predictors has been mixed [2]. In part, this may be due to the

difficulty of identifying robust gene signatures in tumors from

populations with large genetic variation. Our data suggests that

expression-profiling of posttreatment samples could be a possible

alternative approach.

Some studies have suggested that tumors which develop

chemoresistance may acquire certain properties inherent to stem

cells, and that chemotherapy treatment leads to a concomitant

enrichment of cancer stem cells in vitro [3]. We further demonstrate

that the acquired resistance signature is enriched for genes

previously identified in embryonic stem (ES) cell expression

signatures, further suggesting that for gastric cancer, chemoresis-

tance arises from selection of pre-existing cells with particular stem

cell characteristics.

Materials and Methods

Patient accrual and follow-up
This is the part of a prospective trial approved by the

Institutional Review Board (IRB) of the National Cancer Center

Hospital in Goyang, Korea (NCCNHS01-003). All participants

signed an IRB-approved informed consent form. Eligibility for

enrollment into the study included the following parameters: 1)

age $18 years; 2) histologically-confirmed gastric adenocarcino-

ma; 3) clinically-documented distant metastasis; 4) no previous or

concomitant malignancies other than the gastric cancer; 5) no

prior history of chemotherapy, either adjuvant or palliative; and 6)

adequate function of all major organs. Patients who were lost to

follow-up before completing 6 cycles of chemotherapy, except for

documented progressive disease, were excluded from the analyses.

Our prospective trial had 2 objectives. The first objective, which

is the focus of another paper [4], was to develop a genomic

predictor for initial chemotherapy response by correlating the

expression profiling data of pretreatment samples with clinical

outcome (intrinsic resistance study). Sample size of the trial was

planned based on this first objective. For the training set, 91 events

were estimated to be required at a= 0.001, b= 0.05, t (standard

deviation of log intensity) = 0.75, and d (hazard ratio associated

with one-unit change of log intensity) = 2. Hence, 96

pretreatment samples were collected from August 2001 to January

2005 as the training set (for the intrinsic resistance study). A second

group of 27 eligible patients was enrolled as the array validation

cohort between February 2005 and April 2006, which includes 22

patients treated with CF, and 5 patients treated with cisplatin plus

oral capecitabine (a fluorouracil pro-drug considered equivalent to

fluorouracil; CX). CX therapy was demonstrated to be therapeu-

tically equivalent to the CF regimen for metastatic gastric cancer

[5].

The second objective of our prospective trial, which is pursued

by analyses presented in this paper, was to identify a gene

expression signature for the acquired chemoresistance by com-

paring pre- and post-treatment samples of the clinical responders

(acquired resistance study). After an initial endoscopic biopsy, all study

patients were prospectively treated and followed-up. Patients were

treated with cisplatin (60 mg/m2, D1) in combination with either

fluorouracil (1 g/m2 for 5 days; n = 118) or capecitabine (Xeloda;

Roche; 1,250 mg/m2 BID for 2 weeks; n = 5)5 every 3 weeks.

Chemotherapy doses were reduced depending upon toxicities and

the patient’s performance status. Specific dose modification

schemes for the subsequent treatment cycle were at the discretion

of the attending oncologist. The treatment schedule for fluoro-

uracil could be shortened at the discretion of the oncologist from 5

to 3 days for elderly patients ($70 years) or patients with a poor

performance status (Eastern Cooperative Oncology Group

(ECOG) performance status $2). Abdominal spiral computed

tomography (CT) scans were performed for all patients every 3

cycles of chemotherapy (i.e., 9 weeks). Objective response was

documented for patients with measurable disease according to

World Health Organization (WHO) criteria [6]. A partial response

(PR) was defined as more than a 50% decrease in the sum of the

products of the 2 largest perpendicular diameters of measurable

lesions for at least 4 weeks, but a confirmation CT was not

routinely performed 4 weeks after the initial documentation of PR.

There were 38 patients with PR among 96 training set (of the

intrinsic resistance study). Patients with PR underwent a follow-up

biopsy at the time disease progression was observed (i.e.,

progressive disease according to the WHO criteria), referred to

as the ‘‘chemoresistant state’’. Adequate biopsy samples from

tumors in a chemoresistant state were available from 22 patients

with PR (57.9%). Chemoresistance state biopsy samples of the

other 16 patients (42.1%) could not be profiled due to either

inadequate RNA quantity/quality or patients’ refusal. There was

no difference in age, sex, histological type, time to progression

(TTP), and overall survival between 22 re-biopsied patients and

the other 16 patients who had PR but were not re-biopsied.

Samples were collected at least 2 weeks after the last dose of the

fluorouracil and before second-line chemotherapy was started, in

order to minimize any acute drug effects on expression profile.

Two pieces of grossly-normal gastric mucosa tissue samples

were also collected from antrum of 21 healthy volunteers (Table

S1).

Identification of an acquired resistance signature to CF
Endoscopic biopsies were performed to obtain the fresh tissue.

Five to ten pieces of fresh tumor tissues were obtained from non-

necrotic portion of tumor using large cup biopsy forceps of

7.3 mm diameter (Olympus FB-24K-1, Olympus, Tokyo, Japan).

Then obtained fresh tissues were frozen in liquid nitrogen within

15 min of the first biopsy harvest. Tissue samples containing at

least 50% tumor cells were processed for RNA as previously

described [7]. One microgram of total RNA was amplified and

hybridized to an HG-U133A cartridge array, according to the

manufacturer’s protocol (Affymetrix, Santa Clara, CA). All

expression microarray data is available at the Gene Expression

Omnibus (GEO) Database (accession number GSE14210, http://

www.ncbi.nlm.nih.gov/geo) [CURRENTLY, REVIEWER AC-

CESS ONLY: http://www.ncbi.nlm.nih.gov/geo/query/acc.

cgi?token = rtgnlocqoqeiwtw&acc = GSE14210]. Gene expression

microarray data were normalized by Robust Multichip Average

(RMA) using R2.6. Pre- and post-CF expression data from 22

rebiopsied responders were normalized independently from the

expression data from a separate group of 101 non-rebiopsied

patients. Microarray data were analyzed using BRB ArrayTools

(version 3.6, National Cancer Institute, http://linus.nci.nih.gov/

BRB-ArrayTools.html) [8].

Gene expression changes that distinguished the initial tran-

scriptional status of tumors from gene expression patterns when

tumors became chemoresistant were determined for the 22

patients with documented initial response (PR) to CF therapy.

Matched microarray data was compared between the samples

obtained prior to CF treatment and samples collected after

resistance to therapy developed. These data were analyzed using

the class comparison algorithm of BRB-ArrayTools (random

variance model), which computes a paired t-test for each gene

using the RMA-summarized log-intensities for Affymetrix U133A

arrays. Genes differentially expressed between these 22 paired
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samples defined the acquired resistance signature. At feature

selection P-value cutoffs of 0.05 and 0.01, a permutation P value

was calculated, which is the proportion of random permutations

that identify a similar number of significant genes that are found

when comparing the true class labels.

Time to progression was plotted using the Kaplan-Meier

method. A log-rank test was used to determine differences between

survival curves. Wald’s test was used to assess the statistical

significance of the Cox hazard ratio. Multivariable regression

analyses were performed using a Cox proportional hazard model.

All these analyses were performed using SPSS (version 15.0; SPSS,

Inc., Chicago, IL). Multivariable ordinal logistic regression

analysis was performed using to SAS (version 9.1.3, SAS, Cary,

NC), to evaluate the association between the 72-gene predictive

index and radiographic response.

Transcription factor analysis
Transcription factor analyses were performed to look for the

enrichment of transcription factor targets in the genes comprising

the acquired resistance signature (BRB-ArrayTools). All genes

queried in this analysis algorithm have been catalogued to

transcription factor responsive categories based upon experimen-

tally-verified transcription factor responsiveness. Transcription

factor-binding curation information in the Transcriptional Regu-

latory Element Database (TRED) [9] was used to eliminate targets

without any experimental verification.

Analysis of public DNA microarray data from surgically
treated gastric cancer patients

Publicly accessible microarray data for surgically-treated gastric

patients generated by the Stanford Functional Genomics Facility

were also obtained from the NCBI GEO database (GSE4007) and

included about 30,300 genes common to these datasets. The

microarray data were generated and normalized as described in

Leung et al [10]. Batch effects in gene expression were removed

with probe-wise mean centering and missing data were imputed

with the nearest neighbor averaging method [11]. The array

cDNA clones were annotated using SOURCE (Stanford Micro-

array Database) and the Entrez GeneID was used as the mapping

identifier for the Affymetrix HG-U133A array.

Gene set comparison analyses
The gene set comparison tool analyzes user-defined gene sets for

differential expression among pre-defined classes of a source

dataset. For each source dataset, a P-value is computed for each

gene to correlate the expression level vs. survival time using a

proportional hazards model (or for the differential expression

between pre-defined classes, depending on the nature of the

phenotype), generating a ranked gene list of a given BRB-

ArrayTools project. For a set of N genes, the LS statistic is defined

as the mean negative natural logarithm of the P-values of the

appropriate single gene univariate tests [12]. A summary statistic is

computed that summarizes these P values over the user-defined

gene set; the summary statistic is average log(P) for the LS

summary of how the P values differ from a uniform distribution for

LS [12]. The summary statistic is related to the distribution of the

summary statistics for random samples of N genes, sampled from

those represented on the array. Here N is the number of genes in

the user-defined gene set. 100,000 random gene sets were sampled

to compute this distribution. The LS P value is the proportion of

random sets of N genes with smaller average summary statistics

than the LS summaries computed for the real data. This approach

is used for a variety of types of correlations between gene

expression levels and phenotype. The nature of the phenotype (for

instance, survival time or binary indicators) determines the

manner in which the gene specific P values are computed. An

LS P value less than 0.005 is considered significant.

Identification of a gastric cancer-specific signature and a
gastric cancer differentiation signature

Total RNA was isolated from frozen endoscopic biopsy samples

of the antral mucosa collected from 21 healthy volunteers and

analyzed by microarray as previously described. In order to

identify the gastric cancer-specific signature, we compared the

expression data from the 21 normal samples with 101 samples

from patients prior to chemotherapy samples (excluding 22

rebiopsied patients used to develop the acquired resistance

signature) using class comparison algorithms of BRB-ArrayTools.

Of the 101 patients, 41 patients had Lauren’s intestinal histological

type of primary tumors and 60 had the diffuse type. Mixed-type

tumors were categorized together with the diffuse type. A

differentiation signature was identified by comparing the gene

expression data from the 41 intestinal type samples with 60 diffuse

type samples using class comparison algorithms of BRB-ArrayTools.

Generation of ES cell signatures from published data
To generate a user-defined gene set for our gene comparison

analyses, we adopted several gene lists from the published work of

Ben-Porath et al [13], in which several gene sets associated with ES

cell identity were compiled for gene set comparison analyses. An

‘‘ES expression set’’ was previously defined by Ben-Porath et al [13]

as genes over-expressed in human ES cells in at least 5 out of 20

profiling studies [14]. This ES expression set was then amended

[13] so that genes in the ‘‘proliferation’’ Gene Ontology and the

proliferation cluster of breast cancer [13,15] were excluded and

referred to as the ES set without proliferation genes. Lists of target genes

for MYC [16], SOX2 [17], OCT4 [17], NANOG [17], SUZ12

[18], EED [18], and H3K27 [18], which are key transcription

factors in stem cells, were also adopted from Ben-Porath [13].

These genes were originally identified by chromatin immunopre-

cipitation array studies [16–18]. For our gene set comparison

analyses, Entrez IDs [13] of target genes were mapped to probe set

IDs on the HG-U133A array (www.NetAffx.com).

Identification of a 72-gene predictive index
Among the 468 genes upregulated at the chemoresistant state

(P,0.01), 72 unique genes were members of at least one of 4

published ES cell-related gene sets (‘‘ES set without proliferation genes’’

[13,15], the experimentally-validated MYC transcription factor

target gene set (TRED MYC_T00140) [9], and target genes of

MYC and SOX2 identified by a chromatin immunoprecipitation

array study [16,17]). A genomic predictor (referred to as the ‘‘72-

gene predictive index’’) was constructed by calculating the weighted

linear combination of log signal values of these 72 unique genes

overlapping between the acquired resistance signature and ‘‘ES cell-

related gene sets’’. The univariate t-statistics for comparing the classes

(acquired chemoresistant vs. pretreatment states) were used as the

weights. BRB-ArrayTools (the class prediction) was used to calculate

the t-value of each gene. The predictive power of the 72-gene

predictive index was tested for time to progression and survival

using the Cox proportional hazards model.

Results

Identification of an acquired resistance signature to CF
Twenty-two patients who demonstrated a clinical response (PR)

to CF therapy were biopsied prior to the initiation of therapy and
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subsequently following progression of disease after chemotherapy.

Pre- and post-CF samples were not significantly different in the

tumor cell percentage and measures of microarray data quality

control (Table 1 and Table S2). Median interval between the 2

biopsies was 8.7 months (interquartile range, 6.4–12.6). Since the

permutation P values were consistently less than 0.05 at P cutoffs

for feature selection of 0.01 and 0.05 (permutation P values, 0.012

and 0.006, respectively), this demonstrates that gene expression is

significantly different between the chemoresistant and pretreat-

ment states. Genes differentially expressed between the pretreat-

ment state of 22 tumors that proved initially responsive to CF

chemotherapy and tumors from the same patients after having

evolved into an acquired chemoresistant state were identified as

the ‘‘acquired resistance signatures’’. 2,446 genes were identified

in the acquired resistance signature with a feature selection of

P,0.05, whereas 633 genes were identified using a feature

selection of P,0.01. The most highly represented functional

category in the acquired resistance signature was Protein Synthesis

(Table S3; Ingenuity Pathway Analysis [www.ingenuity.com]),

which includes AKT1, ribosomal subunit mRNAs (RPS6, RPL13,

RPL14, RPL15, RPL18, RPL29, RPL3, RPL30, RPL4, RPS11,

RPS19, RPS9), and eukaryotic translation initiation factors (EIF4B

EIF3D, EIF3E, EIF3F, EIF3H). Akt/mTOR and Ras–MAPK

signaling modules are two most-studied pathways that exhibit a

paramount effect on translational regulation [19]. Given the

concurrent upregulation of these key components of this pathway

(AKT1 (P = 0.0012), EIF4B (P = 0.0089), and RPS6 (P = 0.0009)),

the PI3K/Akt/mTOR signal transduction pathway is presumed to

be activated in the acquired resistance state (Figure S1). AKT1 has

been linked to in vitro cisplatin resistance [20–22]. mTOR

inhibition has also been known to reverse in vitro acquired

resistance to endocrine therapy and EGFR inhibitors of breast and

lung cancers, respectively [23,24]. Since ERBB2 is also upregu-

lated in the acquired resistance signature (P = 0.0065), ERBB2 may

play a role in the upregulation of Protein Synthesis-related genes,

through activation of the mTOR pathway [25].

Transcription factor gene set comparison analysis indicated that

the acquired resistance signature is enriched with targets of

multiple transcription factors, including a MYC target gene set

(TRED MYC_T00140) [9] (Table S4). This is consistent with a

microarray data in the literature that the majority of genes

responsive to Myc overexpression are involved in macromolecular

synthesis, protein turnover, and metabolism, including 30

ribosomal protein genes [26].

The acquired resistance signature segregates patients
according to the time to disease progression following
CF therapy, but is not prognostic in gastric cancer
patients treated only by surgery

We wished to determine whether expression of the acquired

resistance signature in gastric cancer tumors at initial diagnosis

was predictive of response to CF therapy. Expression of the

acquired resistance signature in a separate group of 101 non-

rebiopsied gastric cancer patients was determined and related to

the clinical outcome of the patients according to which major

hierarchical cluster the patients were grouped. In patients without

lesions initially measurable by diagnostic imaging, time to

progression (TTP) was measured from the initiation of CF therapy

to the time when a change in therapy was required due to

unequivocal disease progression. Hierarchical clustering of the 101

pretreatment samples was performed using the 2,446-gene

acquired resistance signature. Outcome as measured by TTP

was significantly different between patients in each of the two

Table 1. Clinicopathological Characteristics of Patient
Subgroups Used for This Analysis.

Rebiopsied
Non-
rebiopsied

(N = 22) (N = 101)

Baseline clinicopathological characteristic

Age (years)

Median 58 58

Interquartile range (52–63) (52–64)

Sex – no. (%)

Male 20 (90.9%) 76 (72.2%)

Female 2 (9.1%) 25 (27.8%)

Performance status (PS) – no. (%)

ECOG1 PS 0 or 1 22 (100%) 94 (93.1%)

ECOG PS 2 or 3 0 (0.0%) 7 (6.9%)

Histological type – no. (%)

Lauren’s intestinal 8 (36.4%) 41(40.6%)

Lauren’s diffuse 14 (63.6%) 60 (59.4%)

Location of primary lesion – no. (%)

Upper 1/3 1 (0.5%) 15 (14.9%)

Middle 1/3 7 (31.8%) 31 (30.7%)

Lower 1/3 13 (59.1%) 51 (50.5%)

Entire stomach 1 (0.5%) 4 (4.1%)

Distant metastasis – no. (%) 22 (100%) 101 (100%)

Tumor cell percentage in sample – (%)

Median 60 60

Interquartile range (50–78) (50–70)

Treatment and outcome

Chemotherapy regimen – no. (%)

Cisplatin/Fluorouracil 22 (100%) 96 (95.0%)

Cisplatin/Capecitabine 0 (0%) 5 (5.0%)

Relative dose intensity - %

Median 73 80

Interquartile range 68–82 74–90

Number of chemotherapy cycles

Median 10 4

Interquartile range (9–15) (3–8)

Radiographic response (WHO
criteria) – no. (%)

PR2 22 (100.0%) 28 (31.8%)

SD3 0 28 (31.8%)

PD4 0 32 (36.4%)

Nonmeasurable disease 0 13

Second-line chemotherapy – no. (%) 19 (86.4%) 69 (68.3%)

Median follow-up for survivors – mo. 35.5

Time to progression – mo.

Median 8 3.9

Interquartile range (5.6–12.5) (2.3–8.6)

Overall survival – mo.

Median 11.9 7.9

Interquartile range (11.3–21.1) (5.6–16.8)

1Eastern Cooperative Oncology Group,
2Partial Response,
3Stable Disease, and,
4Progressive Disease.
doi:10.1371/journal.pone.0016694.t001
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primary clusters. Patients in the cluster with increased expression

of the genes upregulated in the chemoresistant state had a

significantly shorter TTP than patients with lower expression of

these genes (Log-rank P value = 0.033) (Figure 1A). In order to

further evaluate the association of these 2,446 genes with TTP of

101 patients, we also performed a survival risk prediction analysis

of BRB-ArrayTools, in which the entire 10-fold cross-validation

process was repeated using 2,446 genes and a log-rank statistic for

TTP between 2 predicted risk groups was obtained for each

random dataset with TTP data shuffled among 101 patients

[8,27]. The permutation P value for testing the null hypothesis that

there is no relation between 2,446 genes and TTP, which is the tail

area of this null distribution beyond the log-rank value obtained

for the real data, was estimated 0.06, suggesting a borderline

significance of the association. Patients in the cluster with

increased expression of 468 genes upregulated in the chemoresis-

tant state at P,0.01 also had a significantly shorter TTP than

patients with lower expression of these genes (Log-rank P

value = 0.012) (Figure 1B). These results suggest that the acquired

resistance signature reflects real molecular profile of chemoresis-

tant clones, not nonspecific drug effects.

We also wished to further address whether these acquired

resistance signatures were predictive of CF response or represented

a general prognostic signature that could predict survival of 88

gastric cancer patients who were treated by surgery alone and not

by chemotherapy10. Neither of the two acquired resistance

signatures (2,446 or 633 genes) was predictive of survival in the

surgically treated gastric cancer patients using the same hierar-

chical clustering method as above (Log-rank P values, 0.84 and

0.41, respectively). Thus, the acquired resistance signature is

predictive of patient response to CF and not just prognostic for

gastric cancer patients in general.

Figure 1. Hieraching clustering analyses of pretreatment samples using acquired resistance signatures. Hierarchical clustering
dendrograms of pretreatment samples from a separate set of 101 gastric cancer patients, using genes differentially expressed between the
pretreatment- and chemoresistant-states of 22 rebiopsied responders at various P cutoffs for feature selection. Kaplan-Meier plots for the time to
progression (TTP) calculated for each of the two major clusters generated by each dendrogram are shown below. (A) Hierarchical clustering of 101
pretreatment samples using the 2,446–gene acquired resistance signature (P for feature selection,0.05). Heatmap generated using a log2-
pseudocolor image with gene centering. Kaplan-Meier plots for TTP calculated for each of the two major clusters generated are shown below.
Patients in high risk cluster (n = 60, high expression of the genes upregulated at chemoresistant state (upper) had a significantly shorter TTP than
patients in low risk cluster (n = 41, low expression) (3.0 vs. 5.0 months; P = 0.033). (B) Hierarchical clustering of the same 101 gastric cancer samples
using the 633–gene acquired resistance signature (P for feature selection,0.01). Patients in high risk cluster (n = 38, high expression of genes
upregulated at chemoresistant state (upper) had a significantly shorter TTP than patients in low risk cluster (n = 63, low expression) (2.5 vs. 4.7 months;
P = 0.012).
doi:10.1371/journal.pone.0016694.g001
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Table 2. Genes Which Belong to the Acquired Resistance Signature (selected at P,0.05) and Were Correlated with TTP of 101
Non-rebiopsied Patients at P,0.05.

Upregulated at Downregulated at

chemoresistant state1 chemoresistant state1

Gene HR2 Gene HR Gene HR Gene HR Gene HR Gene HR Gene HR

DEXI 3.1 RPS20 4.4 INTS8 1.7 PA2G4 1.7 MINA 1.5 SLC29A2 1.5 CYorf14 0.6

TRAP1 1.9 TIMM10 1.9 COPS5 1.7 PSMD4 1.8 EIF4B 2.1 RPL3 2.4 SYTL2 0.7

HIST3H2A 1.7 LGTN 2.0 RPS19 2.4 C10orf2 1.5 PSMD4 1.6 FAU 1.9 PTPRD 2.3

RPL13P12 3.4 RPS19 2.5 SQLE 1.3 E2F5 1.4 ATP5G1 1.6 EXOSC4 1.4 SEC24D 0.6

RPL13 5.4 RPL13 3.0 POLR2G 1.8 SCRN3 0.5 APRT 1.5 DNAJB12 1.7 TLE4 0.4

RPS20 3.8 MPHOSPH10 2.2 MEST 1.3 EEF1B2 1.8 EXOSC5 1.4 RPS9 1.9 214101_s_at 1.6

ATIC 1.9 AOF2 1.8 SNRPD2 1.6 NAT10 1.6 OSBPL1A 0.8 CCNB1IP1 1.3 CASP1 0.7

EIF3H 2.7 NHP2L1 1.9 RPS18 3.1 CDK4 1.5 NOL7 1.5 EIF3L 1.8 KLHL2 0.5

NENF 2.6 CENPN 1.4 RRP12 1.7 CDK5RAP1 1.6 KLHDC3 1.6 MRPL11 1.4 SAT1 0.6

RPL8 2.3 PHB2 1.9 PKN2 0.8 SMYD5 1.7 SPTLC2 1.6 METRN 1.5 207799_x_at 2.4

RBMX 2.5 RNASEH2A 1.5 PHB 1.5 RANBP1 1.4 RPS5 1.8 DDB1 1.8 IL15 0.7

PRMT5 1.8 ADSL 1.6 PTK2B 0.6 H2AFY 0.7 TNFRSF11A 0.7 LONP1 1.6 ARNTL 0.5

PCBD1 1.8 COX4NB 1.8 MRPL13 1.6 RPS3 2.2 EIF2B4 1.6 RPL12 2.1 JAK2 0.7

FDPS 2.2 FXC1 2.3 DGUOK 2.2 VKORC1 1.6 POLG2 1.6 RPL3 2.7 GATA3 1.3

DAP3 2.3 ENY2 1.8 STOML2 1.5 DDX19A 1.8 EIF3C 1.6 GLG1 1.6 ANTXR1 2.3

LAS1L 1.9 NBAS 2.5 EEF1G 2.6 PFDN2 1.5 TRMT12 1.4 DDAH2 1.3 SEC24D 0.5

C15orf44 2.9 TBRG4 1.7 ELP3 1.9 IMP4 1.5 NRTN 2.2 CPNE3 1.5 EIF1AY 0.7

RAN 1.8 EIF4EBP1 1.4 RPL32 3.0 GCSH 1.5 TFDP2 1.4 ICT1 1.4 STX12 0.6

TRMT1 1.7 TBCB 1.6 HMBS 1.8 NELF 1.5 C14orf1 1.5 VARS 1.3 KCNJ15 0.8

UTP14A 1.6 POLR2C 2.1 MOSC1 1.6 LMNB2 1.6 RPL38 2.3 ITPA 1.8 LIMS1 1.5

SNRPE 1.9 Magmas 1.8 HTRA2 1.9 DDX28 1.5 RPL14 1.7 GP2 0.9 CCRL2 0.7

RPL13 3.8 RPP40 1.5 M10098_5_at 0.9 SSSCA1 1.5 ZNF259 1.6 SF3B2 1.9 CYP19A1 1.5

SNRPB 1.7 PCCB 1.7 NDUFA13 1.7 GNB2L1 1.8 NLE1 1.4 SGSM3 0.7 GATA3 1.3

PUS1 2.0 GTPBP4 1.6 DDX28 2.0 FOXJ1 1.6 CSE1L 1.3 RPL12 2.2 SPG20 0.7

RUVBL1 1.5 TH1L 1.5 NME1 1.4 M6PR 1.6 RPL15 2.0 FUS 1.5 JTV1 1.6

PUF60 1.9 UMPS 1.8 INTS5 1.9 MCM3 1.4 BANF1 1.4 YY1 1.5 AMPD1 0.7

RPL13 4.1 RPS15 2.2 CSE1L 1.4 MYLIP 1.5 C17orf90 1.7 EIF3CL 1.6 KCNJ15 0.7

NUP93 1.8 TRMT1 1.7 ADSL 1.6 CNPY2 1.6 MED18 0.5 CHCHD8 1.6 AZIN1 1.7

PPIE 2.1 IPO5 1.5 CSTF2 1.9 EEF1G 2.3 FLAD1 1.5 PSMB7 1.4 KLF10 1.5

RPL36A 2.4 CKAP5 1.8 PTRH2 1.6 DHX30 1.6 MAN1B1 2.0 RPL4 1.6 DDN 1.8

EIF3F 2.4 EIF3E 1.9 RPL24 2.2 PSMB4 1.7 FTSJ2 1.6 CDCA4 1.4 DDX3Y 0.7

CCT7 2.0 PES1 1.9 DDX31 1.7 ALDH7A1 1.5 DNPEP 1.6 PAAF1 1.3 SEMA3F 0.7

HSPC152 2.1 SNRPC 2.2 MMS19 1.7 TNFSF13 0.8 GPR172A 1.4 POLR2H 1.6 NR3C1 0.7

ERI3 1.9 MRPL15 1.6 WDR74 1.6 C16orf58 2.0 LOC552889 0.7 KATNB1 1.5 KLF2 0.8

TTC27 1.6 NHP2 1.7 SQLE 1.4 DDX49 1.8 CLNS1A 1.4 CHST5 1.5 LOC100130354 2.9

PMPCA 2.1 SMARCC1 1.5 POLR2I 1.5 MTX1 1.5 MCM7 1.3 C6orf48 1.3 ALK 2.7

EIF3D 2.2 RPP21 1.9 RDBP 1.5 ZNF593 1.4 MDN1 1.5 FLAD1 1.5 HS3ST3A1 1.4

RUVBL2 1.7 RPL6 2.6 NOP56 1.4 ATP1A1 0.7 CDC34 1.5 LY6E 1.2 SEC24A 0.7

TDP1 1.8 APEX1 1.6 TJP3 0.8 NFATC2IP 0.7 TEX264 1.7 NUDC 1.4 PTPRR 0.8

MRPL24 1.9 TMEM147 1.6 RPS21 1.8 MRPS28 1.4 APRT 1.5 TRAPPC2L 1.5 EDA 1.6

KARS 2.2 NSUN5 1.7 EHF 0.8 CPSF1 1.5 OPA3 0.6 AGFG1 0.7 EIF2C4 0.5

PPIE 1.9 CNPY3 1.6 NOL7 1.6 MACROD1 1.4 MRPS7 1.5 RPLP0P6 1.7 INHBC 1.4

LIG3 2.1 CIAPIN1 2.0 TUFM 1.7 GADD45GIP11.4 TUSC4 1.8 RPL29 1.6 SEZ6L 1.7

RPL31 3.3 HMGA1 1.4 LANCL2 1.5 GP2 0.8 GPR175 1.7 EIF1AY 0.9

RPL10A 2.3 BCAT2 1.6 ANAPC5 1.6 POLR1C 1.5 GPSN2 1.4 SLC6A6 0.5

RPL30 3.2 RPL18 2.2 SMARCA4 1.6 RPL12 2.4 TTC38 0.7

RPL4 2.2 POP5 1.8 RNF8 1.8 PRPF3 1.6 FAM86B1 1.4

C8orf55 1.6 CSNK1A1 0.6 EMG1 1.5 EEF1G 2.4 LSM4 1.4
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Table 2. Cont.

Upregulated at Downregulated at

chemoresistant state1 chemoresistant state1

Gene HR2 Gene HR Gene HR Gene HR Gene HR Gene HR Gene HR

RPL4 2.2 MED20 1.6 PACSIN3 1.7 KAT2A 1.6 THG1L 1.6

DDX1 1.7 CCT3 1.6 THAP11 1.9 TSFM 1.7 MRPS2 1.4

1Sorted according to the increasing order of P value for TTP correlation.
2The ratio of hazards of disease progression of 101 patients for a two-fold change in the gene expression level.
doi:10.1371/journal.pone.0016694.t002

Figure 2. Acquired resistance signature and stem cell signature. (A) Hierarchical clustering of 101 pretreatment patient samples using the ‘‘ES
set without proliferation genes signature’’. Kaplan-Meier plots for time to progression (TTP) of patients in each cluster generated are shown on the
right side. Patients in high risk cluster (I) (n = 44, high expression of ‘‘ES set without proliferation genes’’) had a significantly shorter TTP than patients
in the low risk cluster (II) (n = 57, low expression) (2.7 vs. 4.7 months; Log-rank P value = 0.014). (B) Principal component analysis plot using a published
U133A microarray meta-analysis dataset [14] containing 24 human ES cell samples (shown in red) and 193 various fetal and adult differentiated tissue
samples (shown in green) using the 633-gene acquired resistance signature (feature selection P,0.01). Each sphere represents a single sample.
Samples whose expression profiles of 633 genes are similar are shown close together. (C) a. Expression of the 633-gene acquired resistance signature
using the same published meta-analysis microarray data14 as in (B). Heatmap generated using a log2-pseudocolor image with gene centering. Red
and green colors represent high and low gene expression levels, respectively. Genes upregulated at the chemoresistant state of our study patients
(post/pre.1, I) show coordinated overexpression in ES cells (left), while genes downregulated at the chemoresistant state (post/pre,1, II) show
coordinated overexpression in differentiated tissue samples (right). b. Expression of the same 633-gene acquired resistance signature in 101
pretreatment samples collected from a separate set of gastric cancer patients. Each row represents each patient, sorted according to the increasing
order of TTP from left to right, as matched with Kaplan-Meier curves for TTP of 101 patients (top right). Genes upregulated at the chemoresistant state
of our study patients (I) show the concordant overexpression in patients with shorter TTP (left), while genes downregulated at the chemoresistant
state (II) show the concordant overexpression in patients with longer TTP (right).
doi:10.1371/journal.pone.0016694.g002
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The acquired resistance signature shares many features
with the intrinsic resistance signature, but not with a
gastric cancer-specific signature or a gastric cancer
differentiation signature

These acquired resistance signatures were then compared with

the intrinsic drug resistance signature of a separate group of 101

non-rebiopsied patients, using gene set comparison analysis of BRB-

ArrayTools [12]. Briefly, this algorithm computed a P-value for

each of 2,446 genes to correlate the expression level vs. TTP of these

101 patients using a proportional hazards model. Then it computed

mean negative natural logarithm of the P-values of the single gene

univariate tests (LS statistic of this set of 2,446 genes) and the

proportion of random sets of 2,446 genes with smaller average

summary statistics than the LS summaries computed for the real

data (LS P value). The same analysis was repeated for 633 genes

selected at P,0.01. Consistent with results of the hierarchical

clustering analyses, the acquired resistance signatures were found to

be highly enriched in the ‘‘intrinsic resistance signature’’ of a

separate group of 101 CF-treated patients. LS re-sampling P values

were ,1025 for both user-defined gene sets selected with different

cutoffs to define the acquired resistance signature (i.e., for 2,446 and

633 genes). Genes overlapping between acquired and intrinsic

resistance signatures are listed in Table 2. Figure 2Cb graphically

displays that 468 genes upregulated at the chemoresistant state of 22

rebiopsied patients (P,0.01) show the concordant overexpression in

non-rebiopsied patients with shorter TTP, while 165 genes

downregulated at the chemoresistant state show the concordant

overexpression in patients with longer TTP.

Using similar gene set comparison analyses, acquired resistance

signatures were then compared with ‘‘gastric cancer-specific signature’’ and

‘‘gastric cancer differentiation signature’’ of these 101 patients. To compare

the acquired resistance signature with ‘‘gastric cancer-specific signature’’,

the LS statistic of 2,446 genes in the acquired resistance signature was

estimated by computing a mean negative natural logarithm of the P-

values of the single gene univariate tests for differential expression of

each of 2,446 genes between 101 gastric cancer patients and 21

healthy volunteers. No significant overlap in gene expression was

observed comparing the acquired resistance signature to a ‘‘gastric

cancer-specific signature’’ (LS P value = 0.96; Table S5). Similarly, there

was no significant overlap between the 2,446-gene acquired

resistance signature and a‘‘gastric cancer differentiation signature’’ that we

identified through the comparison of gene expression between

Lauren’s intestinal- (n = 41) vs. diffuse-type (n = 60) tumors, either (LS

P value = 0.024; Table S5). These results further suggest that the

acquired resistance signature represents a set of genes dysregulated in

association with chemoresistance, and not cancer in general.

The acquired resistance signature shares features with
stem cell signatures

Given that complex regulatory networks in stem cells can be

best detected by expression analysis of many genes, we performed

several gene set comparison analyses comparing our acquired

resistance signatures with published ES cell signatures as reported

by Ben-Porath et al13 (Table S6). We hypothesized that comparing

the acquired resistance signature with ES cell signatures would be

informative, since it has been suggested that cancer progenitor

cells possess stem cell-like traits [28].

Our acquired resistance signature, unlike the gastric cancer-specific

signature or the gastric cancer differentiation signature, was found to be

highly enriched for genes contained in the ES expression set (defined as

genes over-expressed in at least 5/20 human ES cells profiling

studies [14]) (LS P value = 3.061023; Tables S5 and S6). Since ES

cells are highly proliferative in vitro while stem cells are generally

quiescent in vivo, the ‘‘ES expression set’’ was modified13 to exclude

genes listed in the ‘‘proliferation’’ category of Gene Ontology and

the proliferation cluster of breast cancer15. This amended ES

expression set (designated the ES set without proliferation genes) could

also segregate the 101 pretreatment tumor samples according to

time to progression. Patients in the high risk cluster (n = 44, high

expression of ‘‘ES set without proliferation genes’’) had a significantly

shorter TTP than patients in the low risk cluster (n = 57, low

expression) (2.7 vs. 4.7 months; Log-rank P value = 0.014)

(Figure 2A). Notably, the overlap between ‘‘ES set without proliferation

genes’’ and our acquired resistance signature was still statistically

Table 3. Seventy-two Unique Genes Which Belong to ES cell-
related Gene Sets (‘‘ES Set without Proliferation Genes’’ and
MYC/SOX2-Target Genes) and Were Upregulated in the
Chemoresistant State at P,0.01.

Probeset Gene t-value1 Probeset Gene t-value

202840_at TAF15 5.2 200901_s_at M6PR 3.0

210350_x_at ING1 4.2 210416_s_at CHEK2 3.0

201247_at SREBF2 3.9 37950_at PREP 3.0

203391_at FKBP2 3.9 209134_s_at RPS6 3.0

218481_at EXOSC5 3.8 208619_at DDB1 3.0

210014_x_at IDH3B 3.7 33132_at CPSF1 3.0

208714_at NDUFV1 3.7 217792_at SNX5 3.0

204133_at RRP9 3.6 202857_at TMEM4 3.0

203103_s_at PRPF19 3.6 211595_s_at MRPS11 3.0

212563_at BOP1 3.6 209147_s_at PPAP2A 2.9

217874_at SUCLG1 3.5 200812_at CCT7 2.9

208676_s_at PA2G4 3.5 201039_s_at RAD23A 2.9

202339_at SYMPK 3.4 209029_at COPS7A 2.9

221809_at RANBP10 3.4 201391_at TRAP1 2.9

201487_at CTSC 3.4 200658_s_at PHB 2.9

211975_at ZNF289 3.4 212357_at KIAA0280 2.9

202072_at HNRNPL 3.3 218405_at ABT1 2.9

202649_x_at RPS19 3.3 200637_s_at PTPRF 2.9

209509_s_at DPAGT1 3.3 218049_s_at MRPL13 2.9

208907_s_at MRPS18B 3.3 212191_x_at RPL13 2.9

221669_s_at ACAD8 3.3 200695_at PPP2R1A 2.8

217940_s_at FLJ10769 3.3 201834_at PRKAB1 2.8

200980_s_at PDHA1 3.3 218866_s_at POLR3K 2.8

209196_at WDR46 3.3 213175_s_at SNRPB 2.8

210859_x_at CLN3 3.2 210027_s_at APEX1 2.8

202926_at NAG 3.2 218670_at PUS1 2.8

200824_at GSTP1 3.2 209669_s_at SERBP1 2.8

219979_s_at C11orf73 3.2 212032_s_at PTOV1 2.8

208101_s_at URM1 3.1 200022_at RPL18 2.8

208950_s_at ALDH7A1 3.1 200819_s_at RPS15 2.8

200874_s_at NOL5A 3.1 204175_at ZNF593 2.8

203039_s_at NDUFS1 3.1 209224_s_at NDUFA2 2.8

201732_s_at CLCN3 3.1 209148_at RXRB 2.8

202699_s_at TMEM63A 3.1 216105_x_at PPP2R4 2.8

200834_s_at RPS21 3.1 217753_s_at RPS26 2.8

201871_s_at LOC51035 3.0 221475_s_at RPL15 2.8

doi:10.1371/journal.pone.0016694.t003
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Figure 3. Hierarchical clustering analyses of pretreatment samples using the 72 genes. (A) Hierarchical clustering of the 101 gastric cancer
samples using the 72 genes that are upregulated at chemoresistant state (P,0.01) and belong to ‘‘ES cell-related gene sets’’. (B) Patients in high risk
cluster according to (A) (n = 51, high expression of 72 genes) had a significantly shorter time to progression (TTP) than patients in low risk cluster
(n = 50, low expression) (2.7 vs. 4.0 months; P = 0.025). (C) Patients in high risk cluster according to (A) (n = 51, high expression of 72 genes) had a
significantly shorter survival than patients in low risk cluster (n = 50, low expression) (6.8 vs. 9.2 months; P = 0.028).
doi:10.1371/journal.pone.0016694.g003
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significant (LS P value = 4.061023). Among individual stem cell

transcription factor target gene sets, target genes of MYC [16] and

SOX2 [17], which are known to be overexpressed in ES cells [13],

were enriched in the acquired resistance signature (LS P values,

1.061025 and 4.361024, respectively), while target genes of

NANOG or OCT4 were not (Table S6). Figure 2Ca depicts the

graphic representation of the coordinated over- or under-expression

of genes upregulated in the chemoresistant state in published

microarray data [14] for ES- and differentiated-cells, respectively.

We, therefore, wished to test a hypothesis that ES cell signatures

might actually represent a core set of genes associated with in the

acquired resistance. We focused on gene sets representing ES cell

signatures that significantly overlap with the acquired resistance

signature - i.e., ‘‘ES set without proliferation genes’’ and target genes of

MYC and SOX2 - (designated ES cell-related gene sets). Since these

gene sets are known to be overexpressed in ES cells13, we extracted

72 unique genes, which belong to these ‘‘ES cell-related gene sets’’ and

were upregulated in the chemoresistant state at P,0.01 (desig-

nated the 72-gene acquired resistance signature; Table 3), from 633

genes in the acquired resistance (P,0.01). Using this ‘‘72-gene

acquired resistance signature’’, hierarchical clustering was performed

using a separate set of 101 pretreatment gastric cancer samples

from patients who were subsequently treated with CF and were

not re-biopsied. This generated two main clusters (Figure 3A)

where patients in the high expression cluster exhibited more rapid

disease progression and poorer survival than patients in the cluster

with lower expression (Log-rank P values, 0.025 and 0.028)

(Figures 3B and 3C). The multivariable regression analyses

demonstrated that the 72-gene predictive index, as a continuous

variable, is an independent predictor for time to progression,

overall survival, and radiographic response, after adjusted for age,

sex, and performance status (Table 4). Prominent among these 72

genes are anti-apoptotic genes (TRAP1 [29], CLD3 [30]) and DNA

repair (RAD23A [31], DDB1 [32]) and detoxifying enzymes

(GSTP1 [33,34]), which are associated with chemotherapy

resistance in vitro. Notably, 50 out of these 72 genes are MYC

target genes [26]. MYC is sufficient to reactivate an ES cell-like

gene expression program in normal human cells and human

cancer cells [35]. MYC overexpression has been shown to lead to

cisplatin resistance in several in vitro models [36–39].

Discussion

A major finding of this study is the identification of a gene

signature that emerged in association with tumor resistance to CF

therapy in patients who initially benefited from CF therapy. Prior

genomic predictors for the chemotherapy response, which were

developed using pretreatment tissue samples, have demonstrated a

mixed performance [1,2]. Here we demonstrate that the posttreat-

ment samples collected at the time of acquired resistance, although

difficult to obtain clinically, contain unique genomic information

that can be used to predict the initial response to cytotoxic

chemotherapy. No prior studies have explored acquired resistance

using genome-wide analysis of clinical samples, although 2 prior

studies evaluated the gene expression pattern in residual disease

after the completion of neoadjuvant chemotherapy [40,41]. Lee,

et al. demonstrated that postchemotherapy tumor gene signatures

outperforms baseline signatures and clinical predictors in predicting

for pathological response and progression-free survival [42],

although these investigators collected posttreatment breast tumors

3 weeks after chemotherapy, not at the time of progressive disease as

in our study. Our data is consistent with the aforementioned study

[42] that comparing postchemotherapy and prechemotherapy gene

expression signatures might be a feasible approach to the

identification of predictive signatures. Also, our data provides the

first genomic evidence in clinical samples supporting a conventional

model for the emergence of acquired resistance whereby resistance

emerges through a selective, clonal outgrowth of small populations

of pre-existing, chemoresistant tumor cells [3].

While the ‘‘72-gene acquired resistance signature’’ was developed

mainly for potential clinical utility, it contains several overexpressed

genes that have been shown to lead to chemoresistance. TRAP1

overexpression leads to 5-fluorouracil-, oxaliplatin- and irinotecan-

resistant phenotypes in different neoplastic cells [29]. Silencing of

hHR23A, a nucleotide excision repair (NER) enzyme, decreases the

nuclear DRP1 level and cisplatin resistance in lung adenocarcinoma

Table 4. Multivariable Regression Analyses of the 72-gene Predictive Index in 101 Separate (Non-rebiopsied) Gastric Cancer
Patients.

Time to progression1 Overall survival1 Radiographic response2

P HR3 (95% CI4) P HR (95% CI) P OR5 (95% CI)

72-gene predictive index6 0.011 1.01 (1.001–1.009)7 0.034 1.004 (1.000–1.008) 0.036 1.008 (1.001–1.016)

Poor performance status

(ECOG PS8 2–3)9 0.048 2.31 (1.009–5.266) 0.049 2.240 (1.005–4.992) 0.452 1.847 (0.373–9.139)

Age10 0.268 0.99 (0.965–1.010) 0.953 0.999 (0.976–1.023) 0.215 0.974 (0.934–1.015)

Female 0.100 1.57 (0.917–2.675) 0.156 1.462 (0.865–2.469) 0.564 1.370 (0.470–3.995)

1Result of the Cox regression analysis performed for 101 patients.
2Result of the ordinal logistic regression analysis performed only in 88 patients with measurable disease, using 3 categories of the dependent variable (PR, SD, and PD).
3Hazard ratio.
4Confidence interval.
5Odds ratio.
6Weighted linear combination of log signal values of 72-gene acquired resistance signature. The univariate t-statistics for comparing the acquired chemoresistant state
with the pretreatment state were used as the weights.

7Hazard ratio for each unit increase in 72-gene predictive index, which ranges from 1,783 to 2, 075 (i.e., the highest predictive index (2,075) and median predictive index
(1,945) are associated with hazard ratios of 4.3 ( = 1.005292) and 2.2 ( = 1.005162), respectively, compared with a hazard ratio of 1.0 with the lowest predictive index
(1,783) of all 101 samples).

8Eastern Cooperative Oncology Group Performance Status.
9as compared with ECOG PS 0 or 1.
10Hazard ratio for each year increase in age.
doi:10.1371/journal.pone.0016694.t004
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cells [31]. DDB1, which is also involved in NER, is overexpressed in

cisplatin resistant cancer cell lines [32]. Elevated glutathione S-

transferase P1 expression has been associated with resistance to

cisplatin-based chemotherapy in several cancer cell lines [33,34].

Our gene set comparison analyses demonstrate a significant

overlap between the ES cell signatures and our chemotherapy

resistance signatures. No prior studies have demonstrated the

enrichment of ES cell signatures in clinical samples collected at the

time of acquired resistance to cytotoxic chemotherapy. Accumu-

lating evidence suggests an association between a stem cell

phenotype and intrinsic chemoresistance [43–45]. Animal studies

have suggested that the cell population exhibiting cancer stem cell

characteristics is enriched in xenograft tumors following chemo-

therapy [46,47]. While ES cell signatures may not perfectly reflect

the phenotype of gastric cancer stem cells (which have not been

defined yet), the enrichment of ES cell signatures in chemoresis-

tant tumors may reflect the survival advantage of tumor cells

expressing stem cell regulatory networks. This was validated by

our finding that 72 genes shared by the acquired resistance and ES

cell signatures were sufficient to predict the initial response to CF.

This study has identified a molecular signature for acquired

resistance to CF therapy in gastric cancer patients. This signature

is able to identify patients likely to have a short or longer term

response to CF suggesting it reflects the molecular profile of

chemoresistant clones and not non-specific drug effects. Genes

contained within this signature, such as Akt/mTOR pathway

genes, TRAP1, RAD23A, and GSTP1, may be potentially useful

targets for treating tumors resistant to CF therapy. Future studies

will be required to confirm these results and to determine whether

our novel approach to develop an acquired resistance signature

that predicts the therapeutic response of patients to specific

chemotherapies is applicable to other types of cancer.
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