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Abstract

This proposed research aims to use novel nanoparticle sensors and spectroscopic tools constituting surface-enhanced
Raman spectroscopy (SERS) and Fluorescence Lifetime imaging (FLIM) to study intracellular chemical activities within single
bioremediating microorganism. The grand challenge is to develop a mechanistic understanding of chromate reduction and
localization by the remediating bacterium Shewanella oneidensis MR-1 by chemical and lifetime imaging. MR-1 has attracted
wide interest from the research community because of its potential in reducing multiple chemical and metallic electron
acceptors. While several biomolecular approaches to decode microbial reduction mechanisms exist, there is a considerable
gap in the availability of sensor platforms to advance research from population-based studies to the single cell level. This
study is one of the first attempts to incorporate SERS imaging to address this gap. First, we demonstrate that chromate-
decorated nanoparticles can be taken up by cells using TEM and Fluorescence Lifetime imaging to confirm the
internalization of gold nanoprobes. Second, we demonstrate the utility of a Raman chemical imaging platform to monitor
chromate reduction and localization within single cells. Distinctive differences in Raman signatures of Cr(VI) and Cr(III)
enabled their spatial identification within single cells from the Raman images. A comprehensive evaluation of toxicity and
cellular interference experiments conducted revealed the inert nature of these probes and that they are non-toxic. Our
results strongly suggest the existence of internal reductive machinery and that reduction occurs at specific sites within cells
instead of at disperse reductive sites throughout the cell as previously reported. While chromate-decorated gold
nanosensors used in this study provide an improved means for the tracking of specific chromate interactions within the cell
and on the cell surface, we expect our single cell imaging tools to be extended to monitor the interaction of other toxic
metal species.
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Introduction

Chromium (Cr) is an important industrial metal used in the

fabrication of a wide range of products and applications including

alloys, leather tanning, textile processing, electroplating, printing

inks, refractories and several other industries [1]. Due to its

widespread use in industry, chromate [hexavalent chromium,

Cr(VI)] has become a pervasive contaminant in the environment,

making it a serious public health and environmental concern [2].

Chromium (Cr) can exist in valence states ranging from 22 to +6,

of which Cr(VI) and Cr(III) are the most stable forms [3].

Chromium (III) is an essential nutrient used by the human body in

processing sugar, protein, and fat [4]. Hexavalent chromium

[Cr(VI)], on the other hand, is a known ‘‘human carcinogen’’ [5]

whose inhalation has been linked to lung cancer according to the

International Agency for Research on Cancer. Cr(VI) is readily

soluble in alkaline environments [6], posing a threat to ground

water quality as it can mobilize and spread quickly. For these

reasons, the U.S. EPA (Environmental Protection Agency) has

designated chromium as a ‘‘priority pollutant’’ [7] and consider-

able measures have been taken to effectively remediate and safely

detoxify chromium-polluted soil and aquatic environments.

Bioremediation is a promising approach for cheap, effective, and

rapid in situ remediation of polluted environments [8]. Bioreme-

diation offers multiple advantages over competing technologies by

way of in situ decontamination, utilization of natural processes that

are specific to the target contaminant [9], and significant reduction

of additional environmental stresses [10]. Although bioremedia-

tion has vast potential in dealing with intractable environmental

problems, much of this promise has yet to be realized. Specifically,

much needs to be learned about what drives remediating

microorganisms and their interactions with their surrounding

chemical and biological environment [9].

Hexavalent chromium has been linked not only to cancer,

respiratory and skin irritation, but has been shown to adversely

affect bacterial survival and vitality of soil microbial communities

[11,12,13]. Chromium remediation in particular is challenging as

it is present in more than half of all the U.S.-EPA designated toxic

superfund sites [14]. Several microorganisms are known to be

capable of reducing toxic forms of chromium, but few are capable

of reducing multiple metallic and organic contaminants typically

present in contaminated sites. Based on its diverse repertoire of
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metal reduction and metabolic capabilities [15], Shewanella

oneidensis MR-1 is considered as a model organism for metal

reduction and is a vital tool in the potential remediation of waste

sites contaminated with toxic materials such as uranium,

vanadium, chromium, and radionuclides [16,17,18]. The signif-

icance of this strain is further reflected in the formation of the

‘‘Shewanella Federation’’, a large, Department of Energy (DOE)-

funded collaboration that applies bioinformatic, genomic, and

proteomic techniques to define the systems biology of Shewanella

[16,19,20] in cell populations.

Bioreduction of chromate to the less soluble and less toxic

trivalent chromium is one mechanism microorganisms may use to

alleviate the toxicity of hexavalent chromium. However, the

enzymes and molecular mechanisms involved in the bioreduction

of chromate are not completely understood. In strain MR-1 alone,

there is evidence of multiple reduction mechanisms [21,22,23].

Some bacterial strains can reduce chromate through soluble

proteins [24,25,26], and chromate reduction has also predomi-

nantly been shown to occur at the surface of other bacteria

[27,28]. In the case of S. oneidensis MR-1, chromate reduction may

occur within the cytoplasm as well as at the cell surface; however,

the degree and location of chromate reduction appeared to be

dependent on culture conditions [29]. The observations presented

in the study by Middleton et al [29] relied upon identifying

electron dense regions by TEM (Transmission Electron Micros-

copy) and electron energy loss spectroscopy to infer the cellular

location of chromium. The methods used in these prior studies

were rather nonspecific and showed diffuse patterns of chromium

throughout the cell [29]. Chromate-decorated gold nanosensors

used in this study provide an improved means for the tracking of

specific chromate interactions within the cell and on the cell

surface. Our research focuses on chromate reduction by S.

oneidensis MR-1 as a means to explore and develop nanotools for

mapping intracellular processes at single-cell resolution. We

present a unique approach of using chromate-gold nanosensors

to detect the cellular chromate reduction sites in Shewanella

oneidensis MR-1. Inert chromate-gold nanoparticle sensors were

fabricated [30] and used as probes to monitor metal reduction

processes in single cells. Finally, we demonstrate a Raman

chemical imaging strategy utilizing nanoparticles as a first step

towards exploring the intracellular reduction of environmentally

toxic metals such as chromate by metal-reducing bacteria.

The proposed single cell investigation constitutes the first step

toward defining a pathway to map metal reduction sites to better

understand the mechanisms involved in the reduction of Cr(VI) to

Cr(III). Our targeted approach with Cr-decorated gold nanopar-

ticles allows for a more definitive analysis of Cr localization and

speciation within Cr-reducing cells, with the potential for adaptation

to other toxic metal species. The ability to map processes through

the use of sensitive spectroscopic tools is a significant step and

complements existing molecular approaches by defining not only

what processes are occurring within a cell, but where they are

occurring at single-cell resolution. Nanoparticles have predomi-

nantly been used for biosensing and in biomedicine to detect

biomolecular targets [31,32]. The present work integrates surface-

enhanced Raman spectroscopy (SERS) with multifunctional

nanomaterial to monitor biomolecular interactions in bacterial

cells, and points to a more fundamental application of nanotech-

nology in understanding cellular processes. SERS, a surface

sensitive technique, generates large amplifications of the laser field

driven by local plasmon resonances resulting in enhancement of

Raman scattering of molecules that are either attached to metal

surfaces or held at close proximity [33]. Owing to its single molecule

sensitivity [34] and inherent molecular specificity, SERS has been

very effective in delivering valuable chemical fingerprint informa-

tion in biological systems [35,36]. Several SERS substrates have

been developed for whole organism fingerprinting of bacteria useful

for detection and identification of several strains of bacteria [36].

While numerous studies have been able to get intracellular SERS in

mammalian cells, there are considerably fewer reports on

Intracellular SERS in bacteria [37]. To our knowledge, this is the

first report of the detection of chromate reduction and chromium

speciation using SERS imaging.

Results and Discussion

Fabrication and Characterization of chromate-coated
gold nanoprobes: Cr-AuNp

As illustrated in Figure 1, in order to track the cellular sites of

reductive reactions, chromate-coated gold nanoparticles (Cr-

AuNps) 3.5 and 13 nm in diameter [38] were fabricated. The

negatively charged gold nanospheres were first stabilized with

multifunctional PEG (Polyethylene glycol) molecules (SH-PEG-

NH2), which have dual functionality with gold-binding thiol groups

as well as surface accessible amine groups.These probes were first

incubated in MES (Morpholineethanesulfonic acid) buffer to

activate the amine groups, followed by prolonged interaction with

chromate molecules to form a uniform layer of chromate on the

nanoparticle surfaces. The electrostatic interaction between chro-

mate (oxyanion) and amine groups on the particles form a strong

linkage to hold chromate onto the surface of the particles. Cr-

AuNps were found to be highly stable based on their zetapotential

values (,32 mV), indicative of the strength of the colloidal

suspension. Ultimately, the Cr-AuNp probes were purified using

multiple centrifugation steps to remove free chromate in the

suspension before the probes could be used for cellular studies.

Evaluation of the effect of Cr-AuNP on growth and
chromate reduction by S. oneidensis MR-1

A detailed investigation of cell viability was conducted to ensure

that gold nanoparticles and the chromate-coated nanoprobes are

not toxic to cells as shown in Figure 2. Either 3.5 nm (closed

symbols) or 13 nm (open symbols) Cr-AuNPs were added to the

wells at volumes of 0, 5, 10, and 50 ml. There was no apparent

adverse effect on growth induced by either size Cr-AuNP in the

logarithmic phase, and each culture was able to attain similar

maximal OD600. Additional volumes of Cr-AuNPs yielded similar

results (data not shown).

In probing for cellular sites of Cr(VI) reduction, it was of utmost

importance to maintain the normal cellular physiology and growth

of the microorganisms. To monitor chromate reduction by S.

oneidensis MR-1, bacteria were incubated with Cr-AuNp in a

passive manner in the absence of any applied external force (such

as electroporation). This method enabled us to study the

parameters of chromate uptake by cells and to track Cr-AuNp

localization sites as depicted in the illustration (Figure 1). In the

presence of a range of dilutions of Cr-AuNps, there was no

difference in the ability of S. oneidensis MR-1 to reduce chromate

compared to the nanoprobe-free control (Figure 3). There was no

adverse effect on chromate reduction ability induced by the

nanoparticles (closed symbols). In addition, the nanoparticles did

not directly reduce chromate in the medium (open symbols). This

ensures that the reductive probing occurred under biomimetic

chromate-reducing conditions.

Passive uptake: Incubation with nanoprobes
Unlike mammalian cells, bacteria lack the endocytosis mecha-

nisms to uptake nanoparticles or biomolecules [39]. When S.

SERS Monitors Chromate Bioreduction in Bacterium
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oneidensis cells were incubated with untreated gold nanoparticles

(3.5 nm/13 nm) in LB broth (13 nm shown in Figure 4b), the

organisms did not internalize particles irrespective of the colloidal

concentration and the incubation time. When the particles were

functionalized with thiolated-PEG (SH-PEG, MW 5000), an

increase in stability of the probes was observed, but there was no

noticeable change in their uptake (data not shown). In addition, no

uptake of these particles was observed when incubated in the

presence of chromate in the incubating matrix (data not shown).

However, a drastic improvement in the uptake (internalization) of

the particles by cells was noted when Cr-AuNps were used as

shown in Figure 4c–f. S. oneidensis MR-1 internalized both 3.5 nm

Figure 1. Schematic Illustration. Representation of passive uptake of Cr-AuNPs by S. oneidensis MR-1 and subsequent Raman Chemical imaging
of cells to reveal the intracellular localization of reduced Cr(III) and unreacted Cr(VI).
doi:10.1371/journal.pone.0016634.g001

Figure 2. Effect of Cr-AuNPs on the growth of Shewanella oneidensis MR-1. Either 3.5 nm (closed symbols) or 13 nm (open symbols) Cr-
AuNPs were added to wells at volumes of 0, 5, 10, and 50 ml. Error bars represent the standard error from three independent cultures.
doi:10.1371/journal.pone.0016634.g002
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and 13 nm gold nanoparticles when decorated with chromate

(K2CrO4). In addition to 3.5 nm and 13 nm nanoprobes, we also

attempted uptake experiments with 40 nm sized chromate coated

probes. However, the bacterial uptake achieved with 40 nm

probes was considerably lower than that attained with the use of

3.5 nm or 13 nm particles. While we have not characterized the

transport mechanism responsible for this uptake, it is very likely

that the Cr-conjugated gold nanoparticles are taken up through

sulfate transport systems. It is accepted that bacterial chromate

uptake occurs through sulfate transporters due to the structural

similarity of chromate and sulfate ions. Competitive inhibition of

sulfate uptake by chromate has also been demonstrated [40,41];

however, internalization could possibly occur through dedicated

chromate receptors that are yet to be characterized. Multiple levels

of interaction ranging from mere physical binding to the cell

surface to complete internalization of Cr-AuNp probes into the

Figure 3. Effect of Cr-AuNPs on chromate reduction by S. oneidensis MR-1. Abiotic controls were included to rule out the reduction of
chromate by media components and the Cr-AuNPs (open symbols). There was no adverse effect on chromate reduction ability induced by the
nanoparticles (closed symbols). In addition, the nanoparticles did not directly reduce the chromate in the medium in the absence of cells (open
symbols). Error bars represent the standard error from three independent cultures.
doi:10.1371/journal.pone.0016634.g003

Figure 4. Thin-section TEM Images of S. oneidensis MR-1. A. without particles, B. plain 13 nm gold Nanoparticles, Fig. 4C–4D. Chromate coated
gold nanoparticles, Cr-AuNp:13 nm, (Fig. 4E–4F) 3.5 nm Cr-AuNp. Red arrows indicate extracellularly bound Cr-AuNp and green arrows/circle indicate
internalized particles. (Fig. 4G–4H) show 3.5 nm and 13 nm probes used in Cr-AuNp preparation.
doi:10.1371/journal.pone.0016634.g004
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bacterial cells could occur. Since the cells were thoroughly washed

prior to imaging, an almost complete removal of non-specifically

bound probes is assured.

Confocal Raman spectral evaluation
The SENTERRA confocal Raman system (Bruker Optics,

Billerica, MA) fitted with a 785 nm laser, and a 1006air objective

(N.A. 0.7) was used to study S. oneidensis cells associated with Cr-

AuNp. An integration time of 10–20 s and a laser power of

10 mW at the laser source were used to investigate the band shift

due to Cr-AuNp localization within the cell. Even though the

control samples (S. oneidensis without any gold nanoparticles) gave

rise to Raman spectra, the signal at these measurement parameters

was not sufficiently enhanced without gold nanoparticles. Raman

signal was observed from sites containing gold nanoparticles in the

vicinity. A Raman peak at 200–260 cm21 due to the presence of

gold nanoparticles in the focal volume was observed. This low-

frequency Raman peak is indicative of the plasmon-phonon

coupling effect resulting from acoustic vibrations of surface

characteristics selected by the resonant excitation of localized

plasmons [42]. The presence of this peak indicates the presence of

chromate-coated gold nanoparticles in the focal volume. TEM

images (Figure 4) clearly show the presence of aggregates rather

than, or in addition to, individual particles. Figure 5 illustrates a

sample spectrum obtained from S. oneidensis MR-1 with passively

internalized gold nanoparticles providing the necessary enhance-

ment for intracellular Raman mapping. Samples were optimized

for Raman mapping based on spectral acquisition and analysis on

single cells.

Raman spectra of potassium chromate (K2CrO4) were obtained

at the same experimental settings. Three major modes of

vibrations were observed in the Raman spectra of Cr(VI) at 341,

387, and 846 cm21. Raman spectra for Cr(III) (chromium oxide:

Cr2O3) revealed four sharp Raman bands at 281, 332, 545, and

606 cm21. This distinct difference in the Raman spectra of these

two forms of chromium has enabled us to speciate intracellular

chromium reduced by S. oneidensis MR-1. The major peaks

relevant to Cr(VI) and Cr(III) were identified in Cr-AuNp loaded

cells. A differential detection of Cr peaks in some cells were

observed showing peaks of either Cr(VI) or Cr(III), while other

cells did not show any Cr peak. This points to the fact that the cells

within a bacterial culture may co-exist in a range of physiological

states and do not reduce metal to the same extent. Such single-cell

interrogation helps to better assess the reductive state of individual

cells in a colony so that effective reduction capacities can be

estimated. With the appropriate integration of cell sorting tools,

organisms with superior reductive capacities can be isolated for

designing effective bioremediation strategies.

Figure 5. Raman Spectral Analysis. Single cell SERS spectra obtained from S. oneidensis MR-1 incubated with 3.5 nm gold nanoparticles depicting
the uptake of gold nanoparticles by this organism. chromium(VI) peaks are highlighted with red and the reduced chromium(III) peaks are marked in
green. Chromium(VI) –red and Chromium (III) – green spectra are aligned to show their peak positions in bacteria. Bulk Raman spectrum acquired
from a cluster of chromate reducing cells is also shown.
doi:10.1371/journal.pone.0016634.g005
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Raman Chemical Imaging
Different levels of interaction between the cells and the

chromate-decorated nanoparticles were noted. While some cells

showed only the phonon-plasmon peak without revealing any

biomolecular signatures, more cells revealed crucial vibrational

signatures of cellular constituents, implying the close association of

chromate coated nanoparticles with cells. When the interaction

between the cells and the probes is high, characteristic peaks

relevant to that of chromate as well as lipid/phospolipid or

membrane protein peaks were more obvious. Raman peaks

relevant to nucleic acids were also observed. It was important to

make use of this signal specificity to identify chromate reduction

sites within the cell. Confocal Raman mapping in single cells show

the distribution of Cr-AuNp within the cell as well as the spread of

Cr(VI) and Cr(III) molecules. A laser setting of 25 mW with 10 s

integration time was used to obtain a 466 mm2 area Raman image

by constructing a 40 by 40 grid. The resulting Raman image is a

plot of signal intensity of a specific wavenumber region generated

from the acquisition of 1600 spectra over the 466 mm2 spatial grid

constructed in this particular case. Since the spatial resolution of

the instrument with the 1006objective is ,1 mm2, a considerable

overlap in the signal collection was necessary; however, spectral

processing was accomplished to remove the overlapping region.

The integrated contour plots for specific peak positions of the

resulting Raman maps are shown in Figure 6(a, b, c & d). Raman

maps for the cells were generated by integrating specific peak

intensity over the mapped area. A broad wavenumber region 162–

1953 cm21 encompassing most of the cellular constituents were

obtained to create a Raman chemical image of the cell (a). The

dashed line boundary depicts the periphery of the cell. When the

phonon-plasmon peak region 207–297 cm21 (b) was integrated,

the position of gold nanoparticles within the cell could be located.

Similarly, integration of the signal intensity over the 837–

873 cm21 and 531–567 cm21 revealed intracellular localization

of Cr(VI) and Cr(III), respectively. While the contour plots

revealed a considerable spread of gold nanoparticles throughout

the cell, there is a considerable overlap of Cr(VI) with gold

nanoparticles. The individual pixel-based grid map shown in

Figure 4 accurately tracks the respective overlap into a narrow

four pixel region of an area of approximately 60 nm2. While this is

slightly larger than the area occupied by one Cr-AuNp, indicating

that the signal obtained might originate from a cluster or

aggregates of the probes resulting in a SERS hot spot. This

spatial overlap in signal helps us to confirm not only the cellular

internalization of gold nanoprobes, but also the oxidative state of

chromate coated on the internalized probes. It is to be noted that

the chromate was functionalized to gold nanoparticles based on

the electrostatic interaction between the positive amine groups and

the negatively charge oxyanionic CrO4
22. However, when the

cells reduce Cr(VI) to Cr(III), cationic Cr(III) can no longer bind

directly to gold probes due to electrostatic repulsion with the

positively charged gold probes. Nevertheless, we still see Cr(III)

signal within cells as shown in Figure 6-d which matched well with

the plasmon-phonon peak depicting the presence of gold

nanoparticles which acts as a SERS substrate to enhance the

signal of Cr(III) within the effective SERS range that is most

effective within 1–10 nm [43,44] of the metal surface and decays

exponentially, reaching 40% of the enhancement maximum when

the distance between the target and the SERS substrate is ,30 nm

[45]. Thus, by Raman chemical imaging, we identify chromate

reduction pockets in a bacterium.

Fluorescence Lifetime single cell Imaging
Confocal Fluorecence Lifetime Images were obtained using

Green Fluorescence Protein (GFP) expressing S. oneidensis MR-1

incubated with Cr-AuNp under pre-determined conditions

Figure 6. Confocal Raman Mapping. Raman Intensity Maps averaged over a wide wavenumber region (162–1953 cm21) covering most of bio-
molecular components in cells to obtain a Raman chemical image of the cell (A), Phonon Plasmon peak (207–297 cm21) originating from gold
depicting the presence of Cr-AuNps (B), Cr(VI) - hexavalent chromium (C, 837–873 cm21), reduced non-toxic trivalent Cr(III) (D, 531–567 cm21).
Raman images in grid format, Fig. 6E and 6F are representations of 6B and 6C respectively. 6-E* and F* represent magnified pixel plots to
demonstrate the overlap in signal of Au and Cr(VI) peaks within cells.
doi:10.1371/journal.pone.0016634.g006
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(Figure 7- a, b c & d) to validate the Raman chemical images.

Fluorescence lifetime images were obtained from the lifetime of

each pixel as determined by tD (fluorescence lifetime). Fluores-

cence lifetime imaging (FLIM) permits the visualization of contrast

between materials at different fluorescence decay rates present in a

confocal volume. The average lifetime of the peaks from FLIM is

characteristic of the exponential decay of the fluorophore. As

observed in Figure 7-a,c (3.5 nm Cr-AuNP), there is an uneven

distribution of fluorescence lifetime (lifetime of GFP is ,2.1 ns) in

single cells compared to the control (with plain AuNP) that has an

even distribution of GFP. In the confocal volume, when the cells

are associated with gold, which has a very low lifetime (,0.4 ns)

decay, the average lifetime within the pixel reduced significantly,

leading to a scattered bluish green lifetime distribution within the

cell. Similar results were observed within cells incubated with

13 nm particles. FLIM imaging is effective in mapping the regions

associated with gold within cells. In some samples, it was easy to

determine the localization of the gold nanoparticles either within

or at its periphery (Figure 7-c,d).

Inductively Coupled Plasma Mass Spectrometry
Further confirmation studies to quantitate intracellularly

trapped Cr(VI) and Cr(III) as well as validate their presence

within cells were performed by Inductively Coupled Plasma Mass-

Spectrometry (ICP-MS) in cell populations. A dynamic reaction

cell (DRC) mediated sample chamber was employed to eliminate

polyatomic interferences (40Ar12C+, 1H35Cl16O+, 40Ar13C+ and
37Cl16O+) and an amino-propyl coated silica based ion-exchange

column was used to achieve Chromate speciation [46]. The

calibration curve for Cr quantification is shown in Figure 8a.

Figure 8b indicates the presence of intracellular Cr(VI) and Cr(III)

both at the beginning of the reaction and after an incubation

period of 12 h. We can observe that at t = 0, the intracellular

Cr(VI) is higher than Cr(III) and after prolonged incubation, the

intracellular Cr(VI) quantities decrease, while Cr(III) values show

an increase.

In this work, we have developed and demonstrated a chemical

imaging platform to monitor chromate reduction in S. oneidensis

MR-1 at the single-cell level using chromate-coated gold

nanoparticles. Cr-AuNp internalization was confirmed with thin-

section TEM and Fluorescent lifetime imaging. Bacterial SERS

spectra were acquired and characterized for chromate reduction.

Single-cell Raman chemical imaging was optimized and used for

studying intracellular chromate reduction to identify both forms of

chromium at nanometer-scale resolution. The spectral and

mapping information confirms specific intracellular chromate

reduction and localization sites within cells. The ease of probe

preparation and subsequent imaging provides an effective means

to circumvent the use of synchrotron based X-ray techniques.

SERS and FLIM-based approaches could be used to further

characterize chromate and other metal reduction sites and rates in

live S. oneidensis MR-1 exposed to environmentally relevant

conditions.

Materials and Methods

Fabrication of Cr-AuNp- 3.5 nm/13 nm
Spherical gold nanoparticles of sizes 3.5 nm and 13 nm were

used as the primary substrates for chemical functionalization.

13 nm sized gold nanoparticles were synthesized using the

standard citrate mediated reduction of HAuCl4. 3.5 nm gold

nanoparticles were synthesized based on the NaBH4 activated

citrate mediated reduction of HAuCl4 to obtain citrate capped

3.5 nm stable nanocolloids [38]. The surfaces of these bare

nanoparticles are negatively charged, which were functionalized

with multifunctional PEG molecules containing a thiol group

(-SH) at one end and an amino group (-NH2) on the other.

Thiolated end of the PEG molecules can bind to surfaces of gold

Figure 7. Confocal Fluorescence Lifetime Imaging. S. oneidensis MR-1 incubated with 3.5 nm (Fig. 7A & 7C) and 13 nm (Fig. 7B & 7D) Cr-AuNp
probes show scattered low-lifetime (blue) distribution indicating the presence of gold nanoparticles (both internalized and externally bound)
compared to the control incubated with plain gold nanoparticles (inset - 7A).
doi:10.1371/journal.pone.0016634.g007

SERS Monitors Chromate Bioreduction in Bacterium
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nanoparticles with amino groups exposed to the solvent. These

amino groups were activated in MES buffer before incubation

with K2CrO4 solution for 24 h to form Cr(VI) coated gold

nanoprobes.

Toxicity studies by monitoring growth curves
Growth of Shewanella oneidensis MR-1 was followed through

stationary phase in the presence of increasing concentrations of

chromate conjugated gold nanospheres (Cr-AuNPs) to determine

their effects on bacterial growth. An overnight culture of strain

MR-1 in Luria Broth (LB) diluted to an approximate optical

density (Optical Density- OD600) of 0.02 was used as a starting

culture and distributed into 200 ml aliquots in a 96-well plate.

Either 3.5 or 13 nm Cr-AuNPs were added to wells at volumes of

0, 5, 10, 20, 30, 40, 50 and 100 ml. All assays were performed in

triplicates. Turbidity measured at 600 nm periodically on a Perkin

Elmer 1420 microplate reader was plotted.

Monitoring Chromate reduction by S. oneidensis MR-1
The chromate starter cultures with O.D600,0.2 from an

overnight culture of MR-1 were challenged with 0.3 mM

K2CrO4 to monitor the effect of Cr-AuNp on bacterial chromate

reduction. Cr-AuNps were added to the above cultures in three

concentrations: 0, 0.1 ml (Low), 0.25 ml (Medium) and 0.5 ml

(High). Abiotic control sets with similar concentrations of Cr-

AuNps were prepared. Cultures constituted samples obtained at 0,

1, 3, 6 and 24 hours for Cr(VI) concentration using the

ChromaVer-3 (Diphenylcarbazide, DPC) assay [47].

Confocal Raman Imaging and spectroscopic
measurements

A SENTERRA confocal Raman system (Bruker Optics,

Billerica, MA) fitted with a 785 nm laser, and a 1006air objective

(N.A. 0.7) was used to study S. oneidensis cells associated with Cr-

AuNp. An integration time of 1–20 s and a laser power of 1–

25 mW at the laser source was used to investigate the band shift

due to Cr-AuNp localization within the cell. A specific z-plane was

selected for confocal imaging. A 666 mm2 grid (area) was chosen

around the target cell, and the number of grids was selected

anywhere between 100–1600 resulting in a 10610 to 40640 grid

on the cell and a relevant step size in nanometer range with

individual grid size of ,0.02 mm2.

Construction of GFP and YFP-expressing Shewanella
oneidensis MR-1 strains

Plasmids p18 and p19 carrying genes for EGFP and YFP

(Yellow Fluorescent Protein) expression, respectively, were ob-

tained from the laboratory of Jennifer Morrell-Falvey of Oak

Ridge National Laboratory. Electrocompetent S. oneidensis MR-1

cells were obtained by washing 100 ml of mid-logarithmic phase

Figure 8. Inductively Coupled Mass-Spectrometry. A. ICP-MS Calibration curve for Cr quantification. B. Intracellularly trapped Cr(VI) and Cr(III)
at time t = 0 and t = 12 h after Cr-AuNp treatment.
doi:10.1371/journal.pone.0016634.g008
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cells three times in sterile, chilled distilled water and once in sterile,

chilled 10% glycerol. The cell pellet was resupsended in 500 ml

10% glycerol. Electrocompetent cells were quickly frozen on dry

ice and stored at 280uC. Approximately 20 ng of plasmids p18-

EGFP and p19-YFP were mixed with 300 ml electrocompetent

cells. Transformation was carried out using the Nucleofector II

device (Amaxa, Inc., Koeln, Germany) with bacterial setting AG.

Transformants were selected on Luria Agar plates supplemented

with 10 mg/ml gentamycin.

Confocal Fluorescence Lifetime Imaging Instrumentation
Fluorescence Lifetime measurements were performed on a

time-resolved scanning confocal microscope (Microtime 200,

Picoquant GmbH, Berlin, Germany); 465 nm pulse laser was

used to excite the GFP-expressing S. oneidensis MR-1. The laser

beam was focused onto the sample through an apochromatic 606,

1.2 NA water immersion objective, and the emitted fluorescence

was acquired using the same objective. The excitation beam was

subtracted using a dual band dichroic (z467/638rpc, Chroma). A

50 mm pinhole was used to reject the off-focus photons from the

excitation volume, and the overall fluorescence was collected and

separated accordingly using a dichroic beam splitter (600 dcxr,

AHF, Chroma) and filtered by emission filters before being

detected by two single photon avalanche photodiodes (SPAD)

(SPCM-AQR, PerkinElmer Inc.).

ICP-MS/Chromate Quantification
Inductively Coupled Plasma – Mass Spectrometer (ICP-MS)

measurements were done using a quadrupole ELAN DRC-e

spectrometer (PerkinElmer SCIEX, Ontario, Canada), integrated

with a Dynamic Reaction Cell (DRC) to quantify the initial

concentration of Cr(VI) and the reduced Cr(III). The sample

delivery system consisted of a PerkinElmer auto sampler model

AS-93 Plus tray, peristaltic pump and a cross-flow nebulizer with a

double pass spray chamber. The same instrumental conditions

were used for quantification of both Chromium Cr(VI) and

Cr(III). Chromabond NH2/3 mL/500 mg columns (i.e. Amino-

propyl phase with a 3 mL volume and 500 mg of sorbent) were

obtained from Macherey-Nagel (Duren, Germany). These col-

umns were activated and used for speciation of Cr(III) from Cr(VI)

both in the cells and the supernatant [46].
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