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Abstract

In the somatosensory domain it is still unclear at which processing stage information reaches the opposite hemispheres.
Due to dense transcallosal connections, the secondary somatosensory cortex (S2) has been proposed to be the key
candidate for interhemispheric information transfer. However, recent animal studies showed that the primary
somatosensory cortex (S1) might as well account for interhemispheric information transfer. Using paired median nerve
somatosensory evoked potential recordings in humans we tested the hypothesis that interhemispheric inhibitory
interactions in the somatosensory system occur already in an early cortical processing stage such as S1. Conditioning right
S1 by electrical median nerve (MN) stimulation of the left MN (CS) resulted in a significant reduction of the N20 response in
the target (left) S1 relative to a test stimulus (TS) to the right MN alone when the interstimulus interval between CS and TS
was between 20 and 25 ms. No such changes were observed for later cortical components such as the N20/P25, N30, P40
and N60 amplitude. Additionally, the subcortically generated P14 response in left S1 was also not affected. These results
document the existence of interhemispheric inhibitory interactions between S1 in human subjects in the critical time
interval of 20–25 ms after median nerve stimulation.
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Introduction

One of the basic principles in the organization of the human

brain is that each cerebral hemisphere processes information from

the opposite side of the body. Based on animal experiments, there

is convincing evidence that callosal projections contribute to

interhemispheric integration and transfer of information. That

such projections can convey information between the hemispheres

in human subjects is suggested by e.g. the detection of evoked

potentials over primary motor cortex (M1) following electrical or

magnetic stimulation of the contralateral M1 (for review see [1]).

Maladaptive functioning of interhemispheric interactions such as

alterations in interhemispheric inhibition (IHI) has been described

in chronic stroke and is thought to be one of the key candidates for

motor impairments in these patients [2]. For example, an

abnormally high interhemispheric inhibitory drive from M1 of

the intact to the lesioned hemisphere has been shown to be

associated with poor motor performance [3].

Compared to the findings in the motor cortex, evidence for the

existence of interhemispheric transfer in other modalities such as

the somatosensory system still remains elusive. There is some

evidence that interhemispheric information transfer may be an

exclusive attribute of the secondary somatosensory cortex (S2),

which receives extensive interhemispheric projections from the

contralateral body part [4,5]. Evidence for interhemispheric

transfer of tactile information in human subjects comes from

patients that underwent resection of the posterior half of the

corpus callosum [6,7]. These studies demonstrated that bilateral

activation of S2 requires the integrity of the posterior body of the

corpus callosum. Furthermore, it has been shown that the size of

the intermediate callosal truncus contributes to the timing and

amplitude of the ipsilateral S2 source activity [5]. The transcallosal

conduction time between homologous S2 was estimated in

previous studies and is supposed to range between 10–20 ms [5,8].

Recent animal studies indicate that also parts of the primary

somatosensory cortex (S1) such as area 2 have relatively dense

callosal connections while areas 3b and 1 have only few

connections. This in turn provides another potential substrate

for interhemispheric transfer of tactile information (for review see

[9,10]). Therefore, it is reasonable to assume that normal

interhemispheric transfer of tactile information might take place

not only between S2 but also at an earlier sensory processing stage

such as between S1 [11,12,13,14,15]. For example, Hlushchuk

and colleagues (2006) found that unilateral touch of fingers is

associated, apart from activation in contralateral S1, with a

deactivation of the ipsilateral S1 [16]. They suggest that the

observed ipsilateral S1 deactivation might result from transcallosal

inhibition between both S1.

Assuming that interhemispheric information transfer in humans

occurs already between S1, it remains to be determined which

critical time window contribute to interhemispheric transfer of

sensory information. Furthermore, it is still unclear whether
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interhemispheric communication in S1 relies predominately on

inhibitory or excitatory interhemispheric interactions. Based on

these considerations we hypothesized the existence of interhemi-

spheric inhibitory interactions linking the two S1 in humans at an

early stage of somatosensory processing.

Materials and Methods

Experimental procedures
Subjects. We studied twelve healthy volunteers between 22

and 32 years of age (26.862.9 years (SD); 4/12 females). They

gave written informed consent to participate in the experiment

according to the declaration of Helsinki and the ethics committee

of Leipzig approved the study. Prior to participation, all volunteers

underwent a comprehensive neurological examination and were

without acute or chronic medication. According to the Oldfield

questionnaire for the assessment of handedness [17], all subjects

were right-handed (laterality score: +100611 (median 6 range)

over a range of 2100 (fully left-handed) and +100 (fully right-

handed)).

Main Experiment
Interhemispheric interactions between homologous primary

somatosensory cortices (S1) were studied using a novel paradigm

consisting of paired median nerve somatosensory evoked potential

recordings (PMNSEPs) at suprathreshold (1.6060,79 V for left

median nerve, 1,4660,49 for right median nerve (mean 6 stdev.))

intensities. In the paired median nerve paradigm, peripheral

stimulation of the left median nerve (MN) served as conditioning

stimulus (CS) and always preceded right MN stimulation (test

stimulus (TS)) by 5–30 ms while recording somatosensory evoked

potentials (SEPs) over the left (target) S1. Additionally, SEP

responses to a CS (left MN) and TS (right MN) alone were

recorded over left S1 (see Fig. 1). Using this design, we were able to

study possible interhemispheric interactions from right to left S1.

Changes in early SEP components in the PMNSEPs relative to TS

alone would give information about interhemispheric facilitation

or inhibition between right and left primary somatosensory

cortices.

Using a visual analogue scale (VAS), healthy volunteers rated

their attention level toward the task (range 1–10; 1 = no attention,

10 = high attention), their perception of fatigue (range 1–10;

1 = strong fatigue, 10 = no fatigue) as well as their discomfort

(range 1–10; 1 = no discomfort, 10 = strong discomfort) twice

during the experiment (before and after the PMNSEP recordings).

Paired median nerve somatosensory evoked potential
recordings (PMNSEPs)

SEPs were recorded after paired electrical median nerve

stimulation of the right and left hand (PMNSEPs). Electrical

pulses were generated and triggered using Spike2 software package

(Version 5.04, Cambridge Electronic Design, Cambridge, UK)

together with a CED Power 1401 interface (Cambridge Electronic

Design Ltd., UK) and presented to the subjects using a DS5

isolated bipolar constant current stimulator (Digitimer Ltd,

Welwyn Garden City, Hertfordshire, UK). For PMNSEP

Figure 1. Experimental design of the paired median nerve somatosensory evoked potential recordings (PMNSEPs). (A)
Interhemispheric interactions between homologous primary somatosensory cortices (S1) were studied using paired median nerve somatosensory
evoked potential recordings (PMNSEPs). In the paired median nerve paradigm, suprathreshold peripheral stimulation of the left median nerve (MN)
served as conditioning stimulus (CS) and always preceded right MN stimulation (test stimulus (TS)) by 5–30 ms while recording SEPs over the left
(target) S1. Additionally, SEP responses to a CS (left MN) and TS (right MN) alone were recorded over left S1 (for details see text). Analysis of PMNSEPs
was performed at electrode CP3. (B) Example traces of an individual subject illustrating the subtraction method used. In brief, the response of a left
MN CS alone stimulation (middle trace) over left S1 was subtracted from the raw CS+TS response over left S1 (upper trace). Final analysis of the
PMNSEP data was performed on the CS+TS SEPs (CS+TS raw data – CS alone, lower trace). For details see text. Amplitudes of interest (P14, N20, N20/
P25, N30, P40, N60) are marked on the lower trace.
doi:10.1371/journal.pone.0016150.g001
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recordings, standard block-electrodes were placed to the right and

left median nerve (MN) at the level of the wrist (cathode proximal).

MN stimulation was performed using a pulse width of 100 ms and

a repetition rate of 2 Hz. Electrical stimulation intensity was

adjusted for the the left and right MN individually to produce a

small but visible muscular twitch in the thumb (1.6060,79 V for

left MN, 1,4660,49 for right MN (mean 6 stdev.). The chosen

stimulation intensity was not perceived as uncomfortable or

painful by the subjects.

PMNSEP recordings were performed using a MR compatible

electroencephalogram (EEG) system (Brainvision (UK) Ltd.,

BrainAmp MR plus) from 32 scalp positions evenly distributed

over both hemispheres according to the International 10–20

system. During recordings, the midfrontal electrode (FPz) was used

as reference and an electrode at the sternum served as ground

electrode. The skin electrode impedance was always kept below

5 kV. PMNSEPs were acquired with a band-pass filter between

0.1 and 1000 Hz and digitized with a sampling rate of 5000 Hz

(sampling interval 200 ms) in epochs from 100 ms before and

400 ms after the stimulus pairs.

During PMNSEPs, left MN stimulation always proceeded right

MN stimulation using 6 different interstimulus intervals (ISIs,

CS+TS) ranging from 5–30 ms in 5 ms steps (see Fig. 1A). The

choice of ISIs was motivated by previous studies showing

transcallosal conduction times in the somatosensory system (S2)

ranging between 10–20 ms [8]. Since transcallosal conduction

times between homologous S1 might slightly differ as compared to

S2 we therefore tested a broader range of ISIs (5–30 ms).

Additionally, a test stimulus (TS alone, right MN) as well as a

control stimulus (CS alone, left MN) was applied while recording

PMNSEPs over the left (target) hemisphere. The order of the

conditions (CS+TS (5–30ms), TS and CS alone) was pseudo-

randomized during the experiment. A total number of 1200

stimulus related epochs were recorded with 150 epochs for each

condition (6 ISIs (CS+TS), TS alone and CS alone).

PMNSEPs were analyzed offline using a custom built program

running under Matlab environment (Mathworks, Sherborn, MA,

USA, Version 7.7). Epochs were digitally filtered using a standard

3rd order band-pass Butterworth filter (1–200 Hz) and each

condition was averaged. Analysis was performed on electrode CP3

over the left (target) hemisphere.

A potential problem using the PMNSEP technique is that after

paired-pulse stimulation (CS+TS) the response to the second (test)

stimulus (TS) might be influenced by an ipsilateral response

component (rather than the transcallosal effect to be tested) of the

first (conditioning) stimulus (CS). Therefore, the response of a left

MN CS alone stimulation over left S1 was subtracted from the raw

CS+TS response over left S1. We used the following procedure for

subtraction: In a first step, the average SEP response at electrode

CP3 (left S1) was calculated for each condition (6 ISIs (CS+TS raw

data)) and for CS alone stimulation (left MN). Subsequently, the

resulting SEP (epoch from 100 ms before and 400 ms after MN

stimulation) for the CS alone stimulation was subtracted from each

of the 6 CS+TS raw conditions (ISI 5–30 ms, see also Fig. 1B).

Final analysis of the PMNSEP data was performed on the CS+TS

SEPs (CS+TS raw data – CS alone).

For all subjects, the following SEP amplitudes with cortical

origin were analyzed separately: N20, N20/P25 complex, N30,

Figure 2. Example traces of a single subject PMNSEP response at electrode CP3 for all CS+TS conditions (5–30ms, red trace) relative
to TS alone (blue trace). Please note that the PMNSEPs for all CS+TS conditions are superimposed (shifted) on the N20 onset of the TS alone
condition for display purpose only. For average group data please see Table 1.
doi:10.1371/journal.pone.0016150.g002
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P40 and N60. The subcortical P14 component [18] was

additionally assessed but could only be reliably identified in 8

out of 12 subjects. The N20 amplitude was assessed as the

difference between the onset (around 14–16 ms) and the first

negative peak usually ranging around 17–22 ms after stimulus

onset (see also [19]). In case the P14 could be detected in some

subjects, the N20 response was measured from the peak of the P14

to the peak of the N20. The amplitude of the N20/P25 complex

was measured as the difference between the N20 peak and

maximum subsequent positivity. The N30 amplitude was

measured as the difference between the N20/P25 complex peak

and maximum subsequent negativity, the P40 amplitude as the

difference between the N30 peak and maximum subsequent

positivity as well as the N60 amplitude as the difference between

the P40 peak and maximum subsequent negativity. The

subcortical P14 component was assessed, if possible, as the

difference between the baseline and the first positive peak ranging

around 12–17ms post stimulus onset.

Statistical analysis
Data were analyzed using the PASW software package for

Windows version 18. For statistical analyses, we first used two-way

repeated measures ANOVA (ANOVARM, if necessary corrected

for non-sphericity) with factor AMPLITUDE (N20, N20/P25,

N30, P40 and N60) and ISI (TS alone, 5, 10, 15, 20, 25, 30 ms). In

a second step, we performed six one-way ANOVARM with factor

ISI for all amplitudes tested. Subsequently, post-hoc tests

(Bonferroni-corrected) were performed to identity differences in

specific PMNSEP amplitudes of each ISI compared to TS alone.

For post-hoc tests, the significance level was set to p = 0.008 to

correct for multiple comparisons. All figures represent group data.

Error bars refer to the standard error (s.e.m.) of the measurements.

Results

There was no statistically significant change in our assessment of

attention (pre: 8.2560.51, post: 8.0060.42; p.0.05; range 1–10;

1 = no attention, 10 = high attention), fatigue (pre: 7.8760.48,

post: 7.8760.45; p.0.05; range 1–10; 1 = no fatigue, 10 = strong

fatigue) or discomfort (pre: 1.0060.00, post: 1.0060.00; p.0.05;

range 1–10; 1 = no discomfort, 10 = strong discomfort) before (pre)

and after (post) the experiment. None of the subjects reported any

discomfort during the paired median nerve somatosensory evoked

potential (PMNSEP) recordings.

A two-way ANOVARM revealed a significant effect of

AMPLITUDE (N20, N20/P25, N30, P40 and N60:

F(4,44) = 5.031; p = 0.031) and ISI (TS alone, 5–30 ms CS+TS:

F(6,66) = 3.746; p = 0.027) on PMNSEP.

Conditioning the right S1 by electrical median nerve stimula-

tion of the left MN (CS) resulted in a significant reduction of the

N20 response to right MN stimulation in the target (left) S1 (one-

way ANOVARM with factor ISI (TS alone, 5–30ms):

F(6,66) = 3.951; p = 0.031, see Figures 2 and 3). No such changes

could be observed for the other amplitudes tested (N20/P25:

F(6,66) = 2.380; p = 0.085; N30: F(6,66) = 0.847; p = 0.458; P40:

F(6,66) = 0.920; p = 0.463; N60: F(6,66) = 2.691; p = 0.066).

Post-hoc analysis revealed that the N20 response of the left S1

(relative to TS alone) was inhibited from 1.6660.33 mV (TS alone)

to 1.2260.38 mV at a CS+TS ISI of 20 ms (CS+TS/TS ratio:

38.9868.20%, paired T-Test: p = 0.0038). We also found an

inhibition of the N20 response at a CS+TS ISI of 25 ms from

1.6660.33 mV (TS alone) to 1.2860.35 mV (CS+TS/TS ratio:

34.1568.41%, paired T-Test: p = 0.0013; see Figures 2 and 3 and

Table 1). No such changes on other PMNSEP components were

observed for CS+TS ISIs of 5, 10, 15 and 30 ms (p.0.05, see

Table 1).

To investigate if the attenuated effect on the N20 component

(CS+TS ISI 20 and 25 ms) of the left S1 occurred already at a

subcortical level, amplitude changes of the subcortically generated

P14 component of left S1 for all CS+TS conditions were identified

and analyzed in 8 out of 12 subjects. We found that the P14

component did not change in response to the CS+TS ISIs relative

to TS alone (one-way ANOVARM with factor ISI (TS, 5–30ms):

F(6,42) = 1.051; p.0.05, see Table 1).

Discussion

Our results demonstrate that a conditioning stimulus reaching the

right S1 attenuates the early cortical N20 response in the left S1

activity at interstimulus intervals of 20 and 25 ms, providing direct

evidence for transcallosal information transfer at an early stage of

cortical processing in the human somatosensory system. Previous

work reported that transcallosal information transfer of propioceptive

information from distal body parts can take place in the secondary

somatosensory cortex (S2) [10,20]. The bilateral activation of S2

following unilateral sensory stimulation has been related to the

presence of dense transcallosal connections between both S2 [21].

Early tracer injection studies in animals indicated that callosal

connections between the postcentral gyri exist for face and trunk

areas [22]. More recently, it has been shown that homologous

representations in the postcentral gyrus in Brodman areas (BA) 1, 2

and 3b are directly or indirectly connected via callosal fibers

Figure 3. Effect of conditioning the right S1 on N20 response of
the contralateral (left) S1. Conditioning the right S1 by electrical
median nerve stimulation of the left MN (CS) resulted in a statistically
significant reduction of the N20 response in the target (left) S1 relative
to a test stimulus to the right MN (TS) alone when the interstimulus
interval between CS and TS was between 20 and 25 ms. (A) Non-
normalized N20 amplitudes for all conditions tested (Ts alone, 5, 10, 15,
20, 25 and 30 ms) (B) Normalized N20 amplitudes of the left S1 are
displayed as a ratio between the CS+TS conditions (5–30 ms ISI) relative
to TS alone (CS+TS/TS ratio). Asterisks represent significant differences
relative to TS alone (significance level p,0.008, corrected for multiple
comparisons).
doi:10.1371/journal.pone.0016150.g003
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[10,23]. This is in line with previous findings showing that callosally

mediated ipsilateral potentials in the barrel cortex disappeared after

applying a lesion to the contralateral sensory cortex [12,24].

Furthermore, disruption of function in the postcentral gyrus (BA3)

by cooling resulted in an augmentation of activity and enlargements

of receptive fields of neurons in the homologous S1 suggesting that a

potential role of callosal fibers in S1 is to mediate inhibitory

information across hemispheres [11]. The latter finding is in line

with our results in human subjects. The reduced N20 component

seems best explained by an inhibitory drive from the right to the left

S1 when the peripheral conditioning stimulus (CS) to the right S1

was delivered either 20 or 25 ms before the peripheral test stimulus

(TS) to left S1. Since we did not find facilitation of SEP responses at

any other interstimulus interval between CS and TS, transcallosal

information transfer in early processing stages of the somatosensory

system seems to be mainly inhibitory.

These findings are consistent with those of Werhahn et al.

(2002) who found that anaesthesia of one hand (resulting in

decreased input to the contralateral S1) resulted in a facilitation of

the opposite S1, as tested with early cortical components of the

somatosensory evoked potentials [13].

Functional MRI studies showed that unilateral stimulation of

fingers is associated with a blood oxygenation level-dependent

(BOLD) activation of contralateral S1 and S2 as well as a transient

deactivation in BOLD signal of the ipsilateral S1 and of the

primary motor cortex (M1) of both hemisphere [16]. While the

neuronal mechanisms behind negative BOLD signals in humans

are not well understood, animal data seems to indicate that it

could reflect neuronal inhibition [25].

The present study documents the existence and temporal

specificity of interhemispheric inhibitory influences between

human primary somatosensory cortices. Since the (reduced) N20

SEP response reflects activity in layer 4, the input layer of BA3b

[26,27], the transcallosal inhibition can be assumed to take place

at BA3b in a critical time window of 20–25 ms.

Given that the input layer of BA3b also receives thalamic inputs,

it is important to consider that the reduction of the N20 response

may be at least partially mediated by altered processing already in

subcortical regions such as the ventroposterior parietal nucleus

(VPL). Even though this possibility cannot be entirely ruled out by

our study, the fact that the P14 response, originated in VPL [18],

remained unchanged under all conditions tested rendering a

subcortical origin of inhibition in S1 unlikely.

Another potential interpretation of the present data is that the

inhibition of the N20 response in the left S1 by conditioning the

homologous S1 is mediated through modulation of both M1. Since

afferent inputs elicited by suprathreshold median nerve stimulation

not only reach S1 but also approximately 4 ms later the ipsilateral

M1 via direct corticocortical fibers [28] and somatosensory input

from one hand influences the ipsilateral motor cortex in humans it is

possible that the changes seen in the left S1 are a result of a

modulation of interhemispheric communication across homologous

M1, although this possibility is unlikely. Sensory information reaches

the opposite S1 approx. 20 ms after MN stimulation. After another

5 ms, sensory information is assumed to reach the ipsilateral M1

[28]. From the ipsilateral M1 it will take another 6–50 ms to inhibit

the opposite M1 (for review see [29]) which in turn will affect the S1

on the same hemisphere 5 ms later. Therefore it might take up to

36–80 ms for afferent inputs elicited by suprathreshold median

nerve stimulation of the left hand to reach and inhibit the opposite

S1 via S1-M1-M1-S1 connections. In the present study, however,

the most prominent ISI for inhibiting the N20 response in the left S1

was much shorter and ranged between 20 and 25 ms, suggesting the

operation of a more direct S1-S1 functional connection.

Finally, future studies might shed more light on the behavioral

relevance of interhemispheric inhibition in S1 not only in healthy

subjects but also in specific patient populations with altered sensory

perception such as chronic stroke, multiple sclerosis or dystonia.
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