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Abstract

Mitochondria are major players on the production of energy, and host several key reactions involved in basic metabolism
and biosynthesis of essential molecules. Currently, the majority of nucleus-encoded mitochondrial proteins are unknown
even for model plant Arabidopsis. We reported a computational framework for predicting Arabidopsis mitochondrial
proteins based on a probabilistic model, called Naive Bayesian Network, which integrates disparate genomic data generated
from eight bioinformatics tools, multiple orthologous mappings, protein domain properties and co-expression patterns
using 1,027 microarray profiles. Through this approach, we predicted 2,311 candidate mitochondrial proteins with 84.67%
accuracy and 2.53% FPR performances. Together with those experimental confirmed proteins, 2,585 mitochondria proteins
(named CoreMitoP) were identified, we explored those proteins with unknown functions based on protein-protein
interaction network (PIN) and annotated novel functions for 26.65% CoreMitoP proteins. Moreover, we found newly
predicted mitochondrial proteins embedded in particular subnetworks of the PIN, mainly functioning in response to diverse
environmental stresses, like salt, draught, cold, and wound etc. Candidate mitochondrial proteins involved in those
physiological acitivites provide useful targets for further investigation. Assigned functions also provide comprehensive
information for Arabidopsis mitochondrial proteome.
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Introduction

Mitochondrion is a semi-autonomous organelle controlled by

two genomes - its own and that of the nucleus. The plant

mitochondrial proteome might contain as many as 2,000–3,000

different gene products, but only a few proteins, rRNAs and

tRNAs are encoded by the Arabidopsis thaliana mitochondrial

genome. Therefore the majority of mitochondrial proteins are

encoded by the nuclear DNA, coordinated by the gene expression

between the two genomes precisely. Besides the production of

ATP in the process of oxidative phosphorylation and the

tricarboxylic acid (TCA) cycle, mitochondria also play pivot roles

in signal transduction processes and pathway of communication

between mitochondria and the nucleus, produce the biosynthetic

precursors , such as the synthesis of nucleotides, amino acids,

lipids, and vitamins [1,2,3], and actively participate in regulation

of programmed cell death (PCD) [4,5,6]. In addition, they are also

involved in the execution of adaptive response in response to

increased oxidative stress levels, aspects of cytoplasmic male

sterility and behaviors of ionic homeostasis as well [7].

Arabidopsis thaliana genome has been sequenced by the Arabidopsis

Genome Initiative (AGI) [8] and scientists have experimentally

verified about 1,300 distinct Arabidopsis thaliana proteins, which are

distributed among different compartments, with most of the

proteins localized to mitochondria (36%), followed by other three

major compartments: nucleus (28%), plastid (17%), and cytosol

(13.3%), respectively [9]. However, a majority of mitochondrial

proteins and their functions are still poorly understood. Curation

and analysis of the Arabidopsis genome by The Institute for

Genomic Research (TIGR) [10] and The Arabidopsis Information

Resource (TAIR) [11] have generated an annotated genome with

high quality, but verified localization of proteins in Arabidopsis

mitochondria is not much. Meanwhile, Arabidopsis mitochondria

proteins deposited in SwissProt are also limited (,227 proteins).

This situation stimulates the development of subcellular

proteomics, a strategy that provides encouraging advances towards

to the goal that directly contributes to protein annotations, since

detecting the protein subcellular localizations is an important step

to understand protein function and cell behaviors. As one of major

advanced technologies in post-genomic biology, subcellular

proteomics has higher capability in discovering protein functions

systematically from spatial and time scales.

In order to identify protein subcelluar localization, purification

methods, such as density gradient centrifugation [12,13,14,15,

16,17,18], immunoisolation [17], and free-flow electrophoresis

[19], have been developed and shown improved effects in
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identification of more specific subcellular proteins. Recently, many

other novel experimental tools and analysis strategies have been

introduced in advancing plant mitochondrial proteomics research.

Random and directed epitope-tagging techniques have been used

as proteome-scale analysis in yeast [20]. Two-dimensional

electrophoresis (2D-PAGE) studies have defined the size of

Arabidopsis mitochondrial proteome in two systematical studies

[21,22]. Additionally, the combination of three different gel

electrophoresis procedures (three-dimensional gel electrophoresis)

has been also used for subdivision of Arabidopsis mitochondrial

proteome [23]. Meanwhile, various mass spectrometry techniques

become the most frequently employed approaches to identify the

components of mitochondrial proteomes of plants, due to their

sensitive, selective, and relatively unambiguous nature. A direct

sample analysis by liquid chromatography and tandem MS (LC-

MS/MS) on Arabidopsis mitochondrial proteomics have obtained

a set of ,400 proteins with 20% of them unknown function [24].

An alternative strategy to subcellular proteomics is GFP technique

which provides a direct way to confirm subcellular location for a

protein. The GFP gene is frequently used as a reporter of

expression and is normally in frame linked to the studied gene

[18]. In cells where the analyzed gene is expressed, and the tagged

protein is produced, GFP is generated at the same time. Then, the

GFP can be observed under fluorescence microscopy, which is the

indicator for the expression of the target gene and the location of

its protein. Analysis of such time lapse movies has redefined the

understanding of many biological processes including protein

folding, protein transport, and protein sub localization [25]. High

through-put GFP screening of protein subdivision has already

been on the way for Arabidopsis [26,27,28]. The data on subcellular

localizations of Arabidopsis mitochondrial proteins based on GFP

image and MS/MS can be queried in SUBA database [29].

On the other hand, many bioinformatics tools, such as

TargetP[30], MitoProt [15], iPSORT [31], WoLF PSORT[32],

and Predotar [33], etc., have been developed for predicting the

protein subcellular locations within cells. The principles of those

tools are usually based on identification of sequence features from

amino acid compositions by various machine learning algorithms,

including neural networks [34], Hidden Markov Models (HMMs)

[35], Support Vector Machines (SVMs) [12,36] and Nearest

Neighbors [37,38], etc.

Integrating information from disparate types of genomic data to

understand cellular functions have been emphasized recently

[39,40,41,42]. Each emerged approach may have its own bias on

mitochondrial localization detection, be a lack of evaluations with

a common benchmark and finally cause more confusing

interpretations on mass published datasets by direct comparisons.

The aim of our study is to identify more comprehensive and

reliable genes encoding the mitochondrial proteins and finally

analyze their biological functions. Firstly, we describe an

application of integrative genomic-scale methodology to identify

a set of reliable nuclear-encoded mitochondrial proteins in plant

Arabidopsis. This approach not only systematically expands the

catalog of mitochondrial proteins in the model plant Arabidopsis,

but also gives a systematical assessment on fourteen genomic-scale

predictors for identifying mitochondria proteome. Those predic-

tive features come from gene co-expression profiles, protein

domains, orthologous group mappings and some popular

programs. A statistical approach, named Naı̈ve Bayesian Network,

integrated such disperse genomic-scale predictors and gained a

more comprehensive and reliable set of core mitochondrial

proteins, named CoreMitoP, by joining experimentally verified

ones and excluding false predicted ones. Particularly, as for those

proteins in CoreMitoP with unknown functions, we applied a

network-based approach to search functionality of newly predicted

proteins according to its positions in protein interaction network

(PIN), considering the functionality of its direct and indirect

neighborhoods.

Methods

Arabidopsis datasets and Training Sets for assessing
localization predictions

30,480 peptide sequences of Arabidopsis were downloaded from

TAIR [11]. Mitochondrial genome and chloroplast genome

encoded proteins are excluded in this analysis. IPI database

(EBI) (www.ebi.ac.uk/IPI/) was adopted to provide a convenient

identifier conversion among SwissProt, NCBI and other reference

database. Uniformly, we used plant standard AGI symbols, the

same as TAIR.

GSPmito dataset. Gold-standard positives or gold-standard

mitochondrial proteins possess experimentally observed evidences

and are recorded in SUBA database [29]. We collected total 894

experimental verified mitochondrial proteins encoded by nuclear

genome from five resources, including GFP assay (151 proteins),

MS/MS assay (501), TAIR(415), AmiGO (97) and UniProt (112).

To guarantee training accuracy, the proteins with MS records that

target to nonmitochondria compartments have been removed and

806 proteins were finally determined as GSPmito for training

(Data S5). Otherwise, GSN,mito dataset: Gold-standard non-

mitochondrial proteins GSN,mito is generated from SwissProt

(Data S5). SwissProt contains 2,374 clearly well defined non-

mitochondrial proteins, including proteins localized at cell plate,

cytoskeleton, cytosol, endoplasmic reticulum, extra cellular, Golgi,

nucleus, peroxisome, plasma membrane, plastid and vacuole.

Then, we mapped SwissProt accession numbers to AGI symbols,

and got 1,464 nonmitochondrial proteins and ensured that there is

no intersection with GSPmito.

Fourteen predictors for Bayesian Network integration
s1 refers to predictions by MitoProtII [15] that uses discriminant

analysis to indicates the presence or absence of N-terminal

mitochondrial targeting sequence. s2 refers to predictions by

iPSORT (http://hc.ims.u-tokyo.ac.jp/iPSORT/), with plant pro-

tein option selected. As the first comprehensive localization

prediction method to be developed for plant, iPSORT can reflect

various characteristics of the sequence and give out final predictive

conclusions through the k-nearest-neighbor classification tech-

nique [31]. s3 is computed by TargetP software (http://www.cbs.

dtu.dk/services/TargetP), which applies neural network [30,34] to

classify proteins into two classes of mitochondrial and non-

mitochondrial types. Default parameters are chosen for plant

option. s5 feature is conducted by Predotar on web server (http://

www.inra.fr/Internet/Produits/Predotar). Predotar is particularly

good at distinguishing mitochondrial and plastid targeting

sequences as previously reported [33]. Here, Predotar version

1.03 was chosen to be applied on Arabidopsis proteome with plant

sequences selected;

s6 is computed by protein domain method, which indicates the

presence or absence the Pfam domain occurrence patterns and the

amino acid compositional differences that the presence of protein

domains found to be exclusively mitochondrial, exclusively non-

mitochondrial or shared based on the SwissProt annotation of all

eukaryotic sequences. We attained 3,839 proteins with SwissProt

identifiers corresponding to confidences . = 85%. Then we

mapped these proteins to 2,614 Arabidopsis proteins with AGI

identifiers.

Identification of Plant Mitochondrial Proteome
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s7 comes from loctree, a hierarchical system combining support

vector machines (SVMs) and other prediction methods. LOCtree

predicts the subcellular compartment of a protein by mimicking

the mechanism of cellular sorting and exploiting a variety of

sequence and predicted structural features in its input [43].

s8 is provided by WoLF PSORT (http://wolfpsort.seq.cbrc.jp).

Its prediction accuracy is updated by applying feature selection

and simple k nearest neighbor classifier for classification [32] with

plant option and prediction score . = 4 that are used to determine

localization (the top prediction , = 3 were designated as

unknown). S9 is generated by MultiLoc, a tool with the intention

to predict all of the main subcellular location [44]. Several

additional features have been incorporated in order to facilitate for

the extended number of localizations to be discriminated.

Furthermore, a subprediction method (SVMSA) for detecting

signal anchors (SAs) is used.

Ideally, localization is an evolutionarily conserved trait,

homologues in different organisms tend to localize at the same

sub-compartment in a cell [45]. Phylogenetic studies of the S.

cerevisiae and C. elegans mitochondrial proteome have shown a

complex evolutionary scenario[46]. This allows the transfer of

function or annotation based on sequence-similarity; if a query

protein displays significant similarity to a known (or confidently

predicted) mitochondrial protein, the chance is that the query

sequence is also a mitochondrial protein. Mitochondria are

commonly known as the result of the endosysmbiosis by an

ancestral cell, Rickettsia prowazekii [47]. It could be expected that

mitochondria utilize the machinery inherited from their bacterial

progenitor. Thus, s10 is obtained by ancestry transfer method that

measures the Arabidopsis sequence similarity to Rickettsia prowazekii

proteomes, the closest living bacterial relative of plant mitochon-

dria. Rickettsia prowazekii totally contains 835 proteins in NCBI.

Through BLASTP program detection, Arabidopsis has 1,960

Rickettsia prowazekii homologs according to the filtering criterion

(E, = E-15, coverage . = 85%), as Arabidopsis mitochondrial

proteins. Otherwise, Human orthologs (s11), Mouse orthologs

(s12) andYeast orthologs (s13) indicate the existence or absence of

Arabidopsis orthologs in mitochondrial proteomes of Homo sapiens,

Mus musculus and Saccharomyces cerevisiae by experimental approa-

ches or manual mining literatures. Using the Mitochondrial

Proteome Database (http://141.39.186.157:8080/mitop2/),

which (2006 version, 2006-11-07) lists 521 yeast mitochondrial

proteins, 1,019 human mitochondrial proteins and 731 mouse

mitochondrial proteins manually annotated by the MitoP2 team

according to the published experimental data. We identify

potential Arabidopsis orthologs through orthologs transfer between

species. Eukaryotic Ortholog Groups were downloaded from the

Inparanoid eukaryotic ortholog database (http://inparanoid.sbc.

su.se/). It uses BLAST scores to measure relation of proteins and

detect complex orthologous relationships between species. An

Arabidopsis protein was assigned a categorical score of 1 if

Arabidopsis orthologs of the human, mouse or yeast mitochondrial

protein exists or assigned a score of 0 otherwise. Through proper

identifier conversion between databases, we got 659 Arabidopsis

proteins, the genes of which have orthologous relationship in 1,019

human mitochondrial reference set with experimental evidence

collected from MitoP2. Similarly, unique 705 Arabidopsis orthologs

in mouse mitochondrial proteins and 652 Arabidopsis orthologs in

yeast mitochondrial proteins were identified.

s14 is obtained through Gene coexpression analysis. Iintegrative

gene expression profiles are downloaded from TAIR FTP site

(ftp://ftp.arabidopsis.org/home/tair/Microarrays/) (See Data S3)

which are designed through an international effort to develop a

gene expression atlas of Arabidopsis which has been under way since

fall 2003. This project, called AtGenExpress, provides the

Arabidopsis community with access to a large set of Affymetrix

Microarray data. These comprehensive datasets focus on different

tissues and different developmental stages and treatments

(environment stress or mutants). The datasets were preprocessed

and normalized by using RMA method [48] embedded in Affy

package downloaded from Bioconductor (www.bioconductor.org/

), and then we utilized N50 metric strategy for mitochondrial

protein prediction [49]. Since the neighborhood metric can score

each gene’s coexpression with known mitochondrial genes, the

principle of N50 metric is to count each gene’s coexpression with

known mitochondrial genes. The number of GSPmito genes within

a gene’s 50 closest neighbors (Euclidean distance) was generated

for each profile. We obtained twenty-four N50 count vectors from

total 1,027 microarrays for 22,180 probesets. Then, we used

decision tree applied in Weka (http://www.cs.waikato.ac.nz/ml/

weka/) to train such twenty four N50 vectors and conducted

predictions for mitochondrial proteins with J48 (C4.5) algorithm

([weka.classifiers.trees.J48 -C 0.25 -M 2] (Test mode: 10-fold cross-

validation). Consequently, we obtained 1,727 putative Arabidopsis

mitochondrial proteins on the whole genome-wide scale with

88.19% correctly classified instances.

Naı̈ve Bayesian Network
Bayesian networks have several advantages for our integration

task here: They allow for combining different types of data (i.e.,

numerical and categorical), converting them to a common

probabilistic framework. Bayesian networks are readily interpret-

able as they represent conditional probability relationships among

information sources and formal representation of such relation-

ships between features. The Bayesian network should ideally be

independent from the data sources serving as evidence, sufficiently

large for reliable statistics [50,51,52].

So, we proposed this approach for integrating mitochondrial

protein information for Arabidopsis. The basic idea is to assess each

source of evidence for protein subcellular localizations by

comparing it against samples of known (‘‘gold-standards’’) positives

(GSPmito) and negatives (GSP,mito), yielding a statistical

reliability. We predicted the chance of possible mitochondrial

localization for every protein by combining each independent

evidence source according to its reliability.

Conditional independence means that the information in the N

datasets is independent given that a protein is either positive

(GSPmito) or negative (GSN,mito). Bayesian networks are a

representation of the joint probability distribution among multiple

variables (which could be datasets or information sources).

Formally, they can be described as follows: We define ‘positive’

proteins as GSPmito that are located in the mitochondria and

‘negative’ proteins as GSN,mito that are located in the non-

mitochondrial organelles. Given the number of positives among

the total number of proteins, the ‘prior’ odds of finding a positive

are:

Oprior~
P(GSPmito)

P(GSN
~mito)

~
P(GSPmito)

1{P(GSNmito)

In contrast, the ‘posterior’ odds are the odds of finding a positive

after we consider N datasets with values s1 … sN:

Opost~
P(GSPmitojs1:::sN )

P(GSN
~mitojs1:::sN )

, in which numerator is

P(GSPmitojs1,:::,sN )~
P(GSPmito)P(s1,:::,sN jGSPmito)

P(s1,:::,sN )

Identification of Plant Mitochondrial Proteome
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(The terms ‘prior’ and ‘posterior’ refer to the situation before

and after knowing the information in the N datasets, e.g., s1… sN)

Then, we reformulate the model using Bayes’ theorem to make the

joint probability in the numerator more tractable. then the

‘posterior’ odds is derived as:

Opost~
P(GSPmitojs1:::sN )

P(GSN
~mitojs1:::sN )

~
P(GSPmito) P

n

i~1
P(sijGSPmito)

P(GSN
~mito) P

n

i~1
P(sijGSN

~mito)

~
P(GSPmito)

P(GSN
~mito)

P
n

i~1

P(sijGSPmito)

P(sijGSN
~mito)

It is mitochondrial protein if Opost~w1, otherwise it is classified

as non-mitochondrial protein.

Since Opost~L(s1:::sN )Oprior, in which, Oprior~
P(GSPmito)

P(GSN
~mito)

~
P(GSPmito)

1{P(GSNmito)
, L as a likelihood ratio that relates prior and

posterior odds according to Bayes’ rule can be simplified to

L(s1:::sN )~
P(s1:::sN jGSPmito)
P(s1:::sN jGSN

~mito)
~P

N

i~1
L(si)~P

N

i~1

P(sijGSPmito)

P(sijGSN
~mito)

,

assuming that the features are independent.

In our binary classification practice, L(s1:::sN ) can be computed

from all model (s1,…,sn) parameters (e.g., class priors and feature

probability distributions) approximated with relative frequencies

from the training set (e.g., GSPmito and GSN
~mito), such as:

P(sijGSPmito)~
P(si\GSPmito)

P(GSPmito)
and P(sijGSN

~mito)~
P(si\GSN

~mito)

P(GSN
~mito)

.

Here, we defined ArathMitoP set as integrated mitochondrial

protein set generated from 14 predictors by using Naı̈ve Bayes

Network and defined the ArathMitoP set score for a protein as

logLR. The likelihood ratio (LR) indicates a correlation between

the feature and the class. The greater the LR is, the more reliable

the performance of the classification is.

Prediction performance metrics
For a particular classifier, various standard performance metrics

can be summarized based on the confusion matrix to compare

model prediction performance. The Confusion Matrix is repre-

sented with the form in Table 1. Sensitivity is a measure of actual

positives correctly identified and the specificity measures the

proportion of negatives correctly identified: The false discovery

rate (FDR) is the proportion of all predictions that are false,

estimated from gold-standard negative and positive training sets

(e.g. GSPmito or GSN,mito).

Sensitivity ~ TP =AP ~ TP = TP z FNð Þ

Specificity ~ TN =AN ~ TN = TN z FPð Þ

False positive rate FPRð Þ~FP=PP~ FP = TPzFPð Þ

Accuracy~ TPzTNð Þ= TPzFPzFNzTNð Þ

There is a trade-off between sensitivity and specificity, making

models difficult to compare on the basis of these performance

metrics. In contrast, such measures as accuracy, the proportion of

correct predictions, and the ROC (receive operating characteristic)

curve enable a single parameter comparison of performance of

binary classification models. The ROC curve can provide a

graphical representation of the relationship between the true-

positive and false-positive prediction rate of a model, and evaluate

the metrics of its performance.

The greater the sensitivity value is at high specificity values (i.e.

high y-axis values at low x-axis values), the better the model is.

Clearly, the ROC curve for a good classifier will be as close as

possible to the upper-left corner of the chart,that is where we have

the highest number of true positives and at the same time the

smallest number of false positives. Some authors emphasize the

importance of quality (higher accuracy amounts to more correct

predictions) over quantity (a higher number of predictions), we

used ROCR package in R language environment to accomplish

this computation [53] and gave out a proper logL threshold for

both of the two metrics (e.g. FPR and sensitivity).

Inferring Protein functionality using PIN-based approach
The prediction for protein functionality is applied by evaluating

the similarity of topological properties between itself and its level-

1(direct) or level-2 (indirect) neighbors in protein interaction

networks (PIN) [54]. Following the original method, the functional

similarity of two proteins, u and v, is evaluated using the

Czekanowski-Dice distance (CD-Distance). The CD-distance

between two proteins u and v is given by

S(u,v)~
jNuDNvj

jNu|NvjzjNu\Nvj
;

where Np refers to the set that contains p and its level-1 neighbours

and NuDNv refers to the symmetric difference between two sets Nu

and Nv; Then, we only considered the transitive functional

association model. That is if protein u is similar to protein w, and

protein w is similar to protein v, proteins u and v may show some

degree of similarity. We used this transitive functional association to

estimate the functional similarity between u and v by the product of

the functional similarity between u and w, and that between w and v.

STR(u,v)~max(S(u,v), max
w[Nu

S(u,w)S(w,v))

Using the functional similarity as measure, we applied averaging

method to predict the function of a protein based on the functions

of the level-1 and level-2 neighbours. The probability that a

protein p has a function x is estimated by

FunScore(u,x)~
1

Z
½lrintpz

X

v[Nu

(STR(u,v)d(v,x)z
X

w[Nv

STR(u,w)d(w,x))�;

and Z~½1z
X

v[Nu

(STR(u,v)z
X

w[Nv

STR(u,w))�

d(w,x) = 1 if p has function x, rint is defined as the fraction of all

interaction pairs that share some function; l = 1; p is the frequency

Table 1. Confusion matrix used for evaluating predictive
performance.

Total Samples (TS) Actual Positives (AP) Actual Negatives (AN)

Predicted Positives (PP) True Positives (TP) False Positives (FP)

Predicted Negatives (PN) False Negatives (FN) True Negatives (TN)

doi:10.1371/journal.pone.0016022.t001
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of function x in annotated proteins representing the contribution

of background frequency to the score; Z is used for normalizing

the probability FunScore(u,x).

For Arabidopsis, 28,091 reliable protein–protein interactions were

downloaded from updated AtPID [55]. Currently available

functional annotation for Arabidopsis genome come from GO

(www.geneontology.org/) and were formatted as form of 46,696

protein-function pairs containing 1,381 functionality for total

18,039 proteins. Particularly, the Arabidopsis function categories

are confined to level 4 and 5 according to GO tree structure. This

restriction is needed for capturing relatively higher frequencies for

those specific and interested function categories, because super-

abundant categories like (1) ubiquitous function categories with

very high frequency or (2) very specific function categories with

very low frequencies can both cause global function frequency

very low and ubiquitous or very specific functions are not

necessary to predict here. Otherwise, another criterion to choose

or define function categories is that most of proteins are recorded

within such GO levels (14,246 proteins for Level 4, and 13,406

proteins for Level 5)(Data S6).

By searching PIN structure and known protein function

categories, we evaluated each function x for each unknown

protein in CoreMitoP (p) based on its frequency of the protein’s

neighborhoods, FunScore(p,x). Meanwhile, to validate the effec-

tiveness of the method for function enrichment, the proteins in

PIN with known functional categories were applied by the same

PIN-based prediction procedure and we obtained corresponding

4,621 protein-function pairs containing total 2,274 proteins and

221 relative functional categories (GO terms). The FunScore for

proteins with the real function categories are all above 0.03 by

conducting network-based protein function prediction, and Fun-

Score. = 0.03 provides a preliminary filtration for significant

protein-function pairs (Data S6). Further, 10,000 permutations

for global protein functional categories were performed and null

distribution of FunScore for each protein-function pair computed

based on the same procedure of PIN-based method can be

obtained for evaluating its p value.

Results

Fourteen predictors for mitochondrial localization
We constructed fourteen genomic-wide predictors for Arabi-

dopsis before integration (indexed by s1,…,s14), each of the

predictors is currently available or extensively analyzed on the

whole 30,480 peptide sequences from TAIR (June 19, 2009

release) that together provides the most comprehensive Arabidopsis

genome annotation (Data S1). Firstly, we applied nine existent

bioinformatics approaches, they are: MitoProtII (s1), Ipsort (s2),

TargetP (s3), SubLoc (s4), Predotar (s5), Protein domain

(MitoPred) (s6), Loctree (s7), WoLF Psort (s8) and Multiloc(s9),

all of which indicate the presence or absence of an N-terminal

mitochondrial targeting sequence and other sequence character-

istics that directs protein importing into the mitochondria by

utilizing multiple chemical and physical properties of proteins for

classification of mitochondrial components through various

machine learning algorithms. These nine predictors provide

genomic-wide predictions for mitochondrial protein localization,

which containing 1,000,5,000 predictive proteins with 70%

average accuracy tested on the gold standard datasets (Figure 1A,

Figure 1B, and Table 2). Particularly, four programs, including

(s1)MitoProtII, (s2)Ipsort, (s3)TargetP, and (s5)Predotar, share the

most with 615 predictions in common, those overlapping

predicted proteins are included in the final core mitochondrial

set (CoreMitoP).

Secondly, we used evolutionary conserved sequence features to

predict mitochondrial proteins. The ancestry predictor (s10)

measured the presence or absence of Arabidopsis mitochondrial

homologs in Rickettsia prowazekii and returned 1,960 sequences

from BLAST program with E, = 1e-15, consequently. Mean-

while, other three predictors (s11–s13) generated from eukaryotes

ortholog mappings have also capabilities to assess Arabidopsis

mitochondrial proteome. Orthologs were determined through

high-stringency sequence homology matching using the program

INPARANOID [56].This program searches for high stringency

orthologous clusters between two protein sets, providing clusters of

paralogs within species and orthologs across species. The potential

Arabidopsis mitochondrial proteins are matched putative orthologs

from human, mouse and yeast proteins those all localize at

mitochondria and are verified experimentally. Arabidopsis homo-

logs from mitochondrial proteome of human, mouse and yeast are

considered as complementary phylogenetic hints., In consequence,

the four predictors (s10–s13) based on phylogenetic studies are

independently integrated.

Gene expression profiles were also used as an evidence for

inferring protein subcellular localization because genes with

similar expression patterns or relatively high correlation coefficient

are potentially within the same cellular compartments or

pertaining to relational functionality [57]. The coexpression

method (s14) measures transcriptional coexpression with known

mitochondrial genes, using a genomic-scale RNA expression data

across diverse tissues and conditions. We collected twenty-four

comprehensive expression datasets from AtGenExpress [58]

(Data S2) designed for Arabidopsis and applied a neighborhood

metric (Materials and Methods), N50 metric, to score each gene’s

coexpression strength with Arabidopsis mitochondrial genes (golden-

standard positive dataset) and obtained 1,727 predictions with

82.64% accuracy.

Predictive power of individual predictor and the
statistical integration

To improve prediction accuracy, we integrated the results

obtained from the 14 genome-wide predictors using a Naı̈ve

Bayesian Network, and generated a new catalog of putative

mitochondrial proteins (called ArathMitoP set), statistically. Corre-

spondingly, the 14 predictors were considered individually. We

evaluated the performance of each method with large ‘gold

standard’ training sets: 894 mitochondrial proteins (GSPmito) from

SUBA and 1,464 nonmitochondrial proteins (GSN,mito) annotated

with localizations at other cellular compartments (Materials and

Methods, Data S3). Specifically, for each Arabidopsis gene product

p, we assigned a score Si (p) (i = 1,…,14), as a likelihood of

mitochondrial localization by comparing performance on GSPmito

with performance on GSN,mito at a range of Likelihood Ratio (LR),

and gained ArathMitoP LR for each protein by summing the each

log-LR of the fourteen predictors (Materials and Methods, Data S3).

Using a conservative threshold of 1.37, obtained ArathMitoP set

contains 2,311 potential mitochondrial proteins properly predicted

with 82.74% accuracy and 2.66% false positive rate (Fig. 1A, and
Table 2). It also generated 1,029 proteins not in the training dataset

GSPmito. Meanwhile, predictive performances of the 14 predictors

were also evaluated against the same training datasets (GSPmito and

GSN,mito) and we found that most of the predictors by

bioinformatics tools (s1–s9) and predictors based on phylogenetic

studies (s10–s13) perform at ,70% accuracy, and less than 50%

specificity. Interestingly, the predictor s14 by coexpression method

achieves 82.64% accuracy and 1.64% FPR. So, integrated

ArathMitoP set improves the quality and relative quantity of

mitochondrial proteins with better predictive performance.
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Alternatively, because some predictors have certain similarity in

training, we also assessed whether the minified predictors may

affect the predictive power. We used two strategies to surrogate

whether different types of merged predictors have great variance

on predictive power: (1) directly merge predictors; (2) indirectly

merge predictors. Firstly, we directly merge s1–s9 predictors into

Group 1, which contains total 13,312 proteins; and merge s10–s13

proteins into Group2, which containing 2.778 proteins. Remained

s14 is defined as Group3. Then, we used the same workflow of

Bayesian network to predict results. We obtained 1,052 predictions

above LR threshold with 80.57% accuracy, 46.8% sensitivity and

3.32% FDR. All three metrics (accuracy, sensitivity and FDR (false

discovery rate)) of integration power from minify groups are all

obviously lower than performances of the former universal

integration. Secondly, we used indirectly merge strategy, which

means we count the record times by predictors within a grouped

predictors (e.g Group1 = {s1,…s9}, Group2 = {s10…s13}, and

Group = s14) and then conduct training of such records for each

protein on GSP and GSN and choose an appropriate record

threshold, and finally use the threshold to predict results. For

Group1 and Group2, we chose 4 and 2 records as their thresholds,

respectively. Then, Group1 predicted 2,064 proteins with 43.55%

sensitivity, 1.98% FPR, and 78.68% accuracy and Group2

predicted 706 proteins with 35.11% sensitivity, 2.32% FPR and

Figure 1. Performance evaluation metrics of mitochondrial prediction methods. (A) Sensitivity and false positive rate of Arabidopsis
mitochondrial prediction methods. Using training data sets of 894 known Arabidopsis mitochondrial proteins (GSPmito) and 1,464 non-mitochondrial
proteins(GSN,mito), we estimated the sensitivity (percentage of GSPmito correctly predicted) and false positive rate of each prediction method. The
accuracies of the thirteen individual data sets (s1,s14) are shown at specific thresholds, while ArathMitoP set is drawn as a colorful ROC curve and
the chosen threshold is noted with a red circle, at which we can obtain a good balance between the two performance metrics (i.e. FPR and
sensitivity)…black circles indicate other s1–s14 predictive powers. (B). ROC curve of predictive powers for indirectly merged predictors, s1–s9. Blue
circle indicates the threshold for indirectly merged s1–s9 predictors (named Group1); red circle indicates the power for ArathMitoP predictions, black
circles indicate other s1–s14 predictive powers. (C). ROC curve of predictive powers for indirectly merged predictors, s10–s13; blue circle indicates the
threshold for indirectly merged s10–s13 predictors (named Group2); red circle indicates the power for ArathMitoP predictions, black circles indicate
s1–s14 predictive powers. (D). ROC curve of predictive powers for integrated three groups generated under the indirectly merge strategy. blue circle
indicates the threshold for merged integration (named Merged Predictor); red circle indicates the power for ArathMitoP predictions, black circles
indicate s1–s14 predictive powers.
doi:10.1371/journal.pone.0016022.g001
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75.46% accuracy. Their predictive powers are shown in Fig 1B

and C. Latsly, we used the same Bayesian network to integrate

such three groups and obtain 515 proteins above the threshold. Its

integration performances is illustrated in Fig 1D. Obviously,

multiple types of merged integration powers are limited compared

with original universal integration. Thus, we took original

integrative results from all 14 predictors for following analysis.

The number of proteins uniquely predicted as mitochondrial by

each of the nine predictors (s1–s9) of bioinformatics tools ranged

from 1,000 to 5,000 (Table 2). Overall, these methods generally

predicted about 18% to 49% known mitochondrial proteins in

GSPmito. However, large numbers of predictions cause more

confusion and noises, while low-confidence predictions can be

partially attributed to the contradictions between sensitivity and

specificity of each predictor’s performance. Some researchers may

emphasize on the importance of correct predictions that amounts

to the sensitivity metric, while others pay more attention to a high

number of predictions that amounts to the specificity metric. The

nine programs can not obtain satisfied balances from the testing

against GSPmito and GSN,mito datasets. TargetP achieves 95.70%

specificity, but only 41.94% sensitivity, which gives rise to a 4.3%

false positive predictive rate. MitoProtII(s1), iPSORT(s2), Pre-

dotar(s5), WoLF PSORT(s8) and MitoPred (s6) [59] predictive

power are also restricted from views of specificity, sensitivity or

FDR requirements (Table 2).

To further assess the performances of those bioinformatics

programs in details, we considered the overlapping predictions by

the five normally used predictor programs (s1, s2, s3, s5 and s8).

Positive and negative prediction numbers were used to describe

comparisons among the predictor programs. Positive prediction

numbers indicate the number of proteins predicted as mitochon-

drial only by this predictor program compared with others.

Negative prediction numbers indicate the number of proteins

predicted as mitochondrial by all other predictor programs but not

by this predictor program. As the results, TargetP(s3) identified

3,179 proteins, 1,645 of which (51.75%) are included in

ArathMitoP set and 338 proteins in GSPmito (achieves 41.94%

sensitivity) are included in s3. That means 666 proteins in

ArathMitoP set have no recognizable targeting signals that show

the limitation for certain signal-based methods.

The predictor iPSORT(s2) shares the least similarity to the

other four predictors (s1, s3, s5, and s8). iPSORT (s2) holds 2,007

proteins, representing .40% of its total prediction set (4,972

proteins), which are not predicted to be mitochondrial by any

other programs. By contrast, the predictive set by Predotar (s5) had

the highest shared proteins with the other predictors, with only 35

proteins (3% of the total Predotar set) predicted by this program

alone. To evaluate the consistency, we calculated the proteins

uniquely predicted not to be localized to mitochondrion by a given

program while predicted to be as mitochondrial localization by the

other four programs. WoLF PSORT predictor (s8) displays a

significant uniqueness in its prediction inventory, with 360 proteins

uniquely predicted not to be mitochondrial, whereas the other four

programs were relatively in agreement. Totally, 8,158 predicted

proteins are designated to mitochondria by combined results from

those five programs and meanwhile, 615 proteins are shared by

Table 2. Fourteen genome-scale data sets used to predict mitochondrial localization.

Predictioin
methods Description for the genome-scale data set

Proteins
predicted Accuracy Sensitivity Specificity FPR FDR

(s1)MitoProtII predictions by MitoProtII (MG Claros, etc.1996) 4,222 72.51% 50.87% 84.43% 15.57% 35.74%

(s2)Ipsort predictions by Ipsort (Nakai K etc.1999) 4,972 75.33% 49.26% 89.69% 10.31% 27.55%

(s3)TargetP predictions by TargetP (Olof Emanuelsson, etc.2000) 3,179 76.61% 41.94% 95.70% 4.30% 15.71%

(s4)SubLoc SVM method based on amino acid composition
(Sujun Hua,etc 2001)

3,765 69.07% 37.10% 86.68% 13.32% 39.47%

(s5)Predotar predictions by Predotar (Small, I.,etc.2004) 1,142 75.11% 32.01% 98.84% 1.16% 6.18%

(s6)Protein domain Pfam domain Method by MitoPred Algorithm
(Guda C etc.2004)

2,614 71.45% 25.19% 96.93% 3.07% 18.15%

(s7)Loctree A novel system of SVMs (Rajesh Nair and Burkhard
Rost, 2005)

3,320 70.84% 27.54% 94.67% 5.33% 26.00%

(s8)WoLF Psort predictions by WoLF Psort (Paul Horton etc.2006) 1,036 70.53% 18.86% 98.98% 1.02% 8.98%

(s9)Multiloc A SVM-based approach, which integrates N-terminal
targeting sequences, sequence motifs, and amino
acid composition (Annette Höglund, etc., 2006)

3,284 73.74% 36.23% 94.40% 5.60% 21.93%

(s10)Ancestry R. prowazekii homologs (Andersson SG, 1998)
The genome sequence of Rickettsia prowazekii
and the origin of mitochondria. Nature. 1998 Nov
12;396(6707):109–10.

1,960 68.63% 30.40% 89.69% 10.31% 38.13%

(s11)Human ortholog orthologs of Homo sapiens mitochondrial 659 74.85% 32.63% 98.09% 1.91% 9.62%

(s12)Mouse ortholog orthologs of Mus musculus mitochondrial 705 73.92% 29.40% 98.43% 1.57% 8.85%

(s13)Yeast ortholog orthologs of S. cerevisiae mitochondrial 652 74.63% 31.89% 98.16% 1.84% 9.51%

(s14)Coexpression Coexpression with known mitochondrial genes in
Arabidopsis

1,727 82.64% 54.09% 98.36% 1.64% 5.22%

ArathMitoP set Integration by Naı̈ve Bays Network (LR.1.37) 2,311 84.67% 61.41% 97.47% 2.53% 6.95%

Fourteen individual predictors and an integrated predictor (named ArathMitoP set) were conducted to predict mitochondrial localization of all 30,480 Arabidopsis
proteins in TAIR. Performance evaluation metrics on genome-wide, such as sensitivity, specificity, false positive rate and false discovery rate, were estimated based on
large gold standard training data. (FPR: false positive rate; FDR: False discovery rate).
doi:10.1371/journal.pone.0016022.t002
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the four commonly used predictor programs (i.e. TargetP,

MitoProtII, iPSORT and Predotar) and all are included in

ArathMitoP set. Similar relational searches were also investigated

previously [60], but their analysis generates an enriched

mitochondrial inventory that excluded many real mitochondrial

proteins with genuine evidence from experiments (GSPmito).

Therefore, it shows that only one or two programs can not

substantially conclude the proteins that are likely to be

mitochondrial destination, because each bioinformatics method

can highly influence the predictive set. Besides these comparisons,

direct overlaps among the nine predictors are shown in Fig. 2. The

correlations of each two predictors are also computed for

evaluating their independences.

Complementarily, we also made use of Arabidopsis homologs of

the ancestry and orthologs of eukaryotic mitochondrial proteins

and, found that phylogenetical clues have certain limitation for

inferring protein localization. Previous researchers analyzed

proteins’ localization in a cell according to their phylogenetic

profiles. Application of the method reveals that nucleus-encoded

proteins previously known to be destined for mitochondria fall into

three groups: prokaryotic-derived, eukaryotic-derived, and organ-

ism specific [61]. It has been suggested that a large proportion of

mitochondrial proteins evolved from prokaryotic lineages (50 to

60%), with the remaining proteins consisting of an eukaryotic subset

(20 to 30%) and a speculative species-specific subset (20%). Here, we

utilized ancestry and eukaryotic mitochondrial proteins of model

species extracted from SwissProt as reference datasets and

transferred the protein localizing annotations through the ortholo-

gous or homologous relationships to Arabidopsis proteins. A total of

1,960 Arabidopsis mitochondrial proteins were identified as putative

homologs of 834 proteins encoded by R. prowazekii 1.1-MB

genomes. Similar comparisons with human, mouse and yeast

mitochondrial proteome identified 659 putative orthologs to human

mitochondrial proteins, 705 putative orthologs to mouse mitochon-

drial proteins and 652 putative orthologs to yeast mitochondrial

proteins within Arabidopsis. The putative orthologs derived from

these four comparisons has a strict common overlap of 144 proteins,

91 of which are included in ArathMitoP set. False discovery rate of

Ancestry homologs predictor (s10) archives 36.12% in accordance

with the previous estimation that 50% or more of the genes that

encode for the modern mitochondrial proteome originated directly

from the host nuclear genome by the duplication and divergence of

existing genetic material, rather than indirectly through gene

transfer from the endosymbiont genome [62].

Through high-throughput microarray technique, we can

monitor gene coexpression trends across various conditions,

treatments, or samples from abundant gene expression profiles

(Data S3) because different subcellular compartments often show

distinct subcellular environments and proteins found within the

same localization play similar function roles on time synchroni-

zation [57]. A compendium of gene-expression datasets were

extracted from AtGenExpress, including 459 biosamples and

1,027 slides on Affymetrix platform (ATH1) (based on Feb. 20th,

2007) for the whole Arabidopsis genomes. Through classification

training on such comprehensive gene-expression profiles by using

the decision tree method (Materials and Methods), we successfully

predicted 54.09% of known Arabidopsis mitochondrial proteins and

1,291 potential novel mitochondrial proteins with 5.22% false

discovery rate achieved by training on the GSP and GSN via the

decision tree classifier with 10-fold cross-validations.

Finally, we used ROC curves to illustrate the predictive power

of individual approach and Bayesian Network integration

performance (Materials and Methods). A good feature with high

predictive power should have a large number of true positives and

a small number of false positives simultaneously. In this case, the

ROC curve climbs rapidly away from the origin (lower left hand

corner of the graph). The steeper the slope of ROC curves is, the

better the approach is. There exist prominent differences between

the features in terms of the comparison with the positive and

negative gold-standard datasets. Through multi-predictors’ inte-

gration, our synthesized ArathMitoP set properly includes most of

known mitochondrial proteins (61.41%) than other predictors with

less FDR (6.95%) (Fig. 1A). Obviously, the benefit of genomic-

wide integration is the substantial improvement in coverage of true

positives and the decrease of false positives. Alternative predictions

from minified integration were also evaluated (Fig. 1B–D), but it

has limited accuracy and sensitivity. Thus, we chose the better

predictions from ArathMitoP set that expends the catalog of

Figure 2. The coverage of 14 individual predictors and the ArathMitoP set with GSPmito and GSN,mito. The number of overlapped
proteins between si (i = 1,…,14) and training data sets is shown individually. Green bars indicate the intersection between si and GSPmito, while grey
bars indicate the intersection between si and GSN,mito.
doi:10.1371/journal.pone.0016022.g002
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nucleus-encoded mitochondrial proteins to 2,311 with relatively

high confidence on the same evaluation framework (e.g.,

GSPmito and GSN,mto). Moreover, by joining experimentally

verified ones with ArathMitoP and excluding false positives, we

got a set of 2,585 nonredundant mitochondrial proteins, named

CoreMitoP, including 456 proteins identified by mass spectrom-

etry and 615 overlapped proteins from four bioinformatical

predictors (s1, s2, s3, and s5) (Data S4). Such CoreMitoP set can

be queried from our Arabidopsis protein interaction database

(http://www.megabionet.org/atpid/webfile/) [55] and provides

rich information to facilitate the researches for better under-

standing of mitochondrial functions.

The Selection of LR Threshold and Cross-validation
Here, the threshold of ArathMitoP LR (Likelihood Ratio) is set

at 1.37, so that the integrated predictions achieve the least false

positives rate (2.53%) and the largest coverage of true predictions

(84.67%) based on the comparison with GSN,mito and GSPmito at

the same time (Fig. 1, and Fig. 2). Interestingly, determining the

prior odds Oprior is somehow arbitrary that it requires an

assumption about the number of positives (mitochondrial

proteins). Meanwhile, experimental approaches have also sought

to define the size of the mitochondrial proteome. Two-dimen-

sional electrophoresis studies indicate that mitochondrial samples

from plants can be resolved into 500 to 1,500 protein spots

[21,22,63,64]. Based on previous estimation, we considered that

,1,500 positives is a conservative lower bound for the number of

mitochondrial proteins (or gold standard positives). Given that

there are approximately 30,480 nucleus-genome encoded proteins

in total, the prior odds would then be about 1 in 19, we have set

the summed log LR .1.27 to guarantee Opostw1 (See Method
and Materials). Therefore, logLRo = 1.37 as threshold may

effectively provide better selection for ArathMitoP as shown on

ROC curve (Fig. 1A and Fig. 1B).

To assess the robustness of Bayes integration, we carried out 5-

fold and 10-fold cross-validation (5CV and 10CV) test for Bayes

integration. Firstly, we constructed training and testing datasets

from original positive and negative gold-standard datasets with

Bayes integrated log LR. The gold-standard positives and

negatives are divided into N equally sized parts. Then, each of

the (N-1) sets was used as training set and aside another part as a

testing set. Consequently, 5CV got 75.7% specificity, 91.4%

specificity and 85.5% accuracy; 10CV got 75.7% specificity,

91.9% specificity and 85.8% accuracy. The results demonstrate

that Bayes network for mitochondrial protein integration is robust.

Functionality Enrichment of Arabidopsis Mitochondrial
proteomics

CoreMitoP is more reliable and complete dataset for

mitochondrial proteome currently. We categorized their biolog-

ical function by using Gene Ontology annotation. Most of

proteins in CoreMitoP have been annotated with relative

functions, while other 559 proteins are completely novel. we

can classify all proteins in CoreMitoP into broad functional

divisions (Figure 2 and Data S5) referring to Arabidopsis

annotations from SUBA Database [29]and Gene Ontology.

Most of these involve mainly in several functional groups, such as

energy (6.57%), metabolism (9.43%), RNA processing (6.03%),

protein fate (5.42%), protein synthesis (4.29%), cellular commu-

nication/signal transduction (4.29%), cellular transport/transport

mechanisms (3.40%) and transcription (2.36%), In addition, 31

proteins involve in the process of defense stress and detoxification

and 14 proteins act in cellular structure organization. Other 9

proteins participate in cell death and 6 proteins are relative to

miscellaneous functions. The function categories for individual

predictors (s1,s14) are shown in Fig. 3. Metabolisms, transport,

protein fate and protein synthesis each occupy large portions of

protein functions with similar percentage. Meanwhile, the

composition of function categories in ArathMitoP set and GSP

dataset are also illustrated in Fig. 4.

Protein function inferring from Protein interaction
network

ArathMitoP set contains 2,311 integrated mitochondrial

proteins from fourteen genome-wide predictors and the assembled

CoreMitoP contains 2,585 potential mitochondrial proteins. We

assigned 14 function categories defined by Gene Ontology to each

protein in ArathMitoP set and CoreMitoP set, respectively.

However, 559 proteins in CoreMitoP have no any clear

functionality yet (Data S5). In an attempt to resolve this issue,

we conducted protein functionality prediction by evaluating the

similarity of topological properties between the protein and its

level-1(direct) or level-2 (indirect) neighbors in protein interaction

networks (PIN). Since the characters of the genes and cellular

events exerted by protein function mostly depends on the

underlying networks in form of protein interactions, and protein

functionality can be deduced from the relationships between

interactors and characters of their topological structure of the PIN

(Materials and Methods).

New functionalities for predicted proteins were assigned by

transfers of functions from its neighborhood according to Gene

Ontology (GO) annotations. It provides an alternative avenue of

systematical discovery of protein functions from innovative

molecular network perspective. Originally, a subnetwork consist-

ing of CoreMitoP proteins was reconstructed from global

Arabidopsis PIN. Then, 14 different functional categories have

been assigned to each protein in the mitochondrial PIN.

Meanwhile, 28,091 reliable Arabidopsis protein–protein interaction

pairs by our previous research were available from AtPID [55].

The Arabidopsis PIN consists of 24,418 predictive PIN pairs

generated from ortholog interactome, microarray profiles coex-

pression, GO annotation enrichment, and conserved domain and

genome contexts like gene fusion method. The rest 4,695 pairs

with 1,875 proteins involved were manually curated from the

literatures and databases (e.g. BIND, InAct and TAIR), as well as

other 800 pairs reconstructed from enzyme complexes in KEGG.

Otherwise, protein function categories adopted here are from

Gene Ontology annotation for Arabidopsis. Particularly, we focused

on the 559 proteins in CoreMitoP that have no any clear

biological functions. In the principle of network-based search for

protein function, in fact, only part of interested proteins in

CoreMitoP proteins can be deduced with multiple significant

functionalities from global Arabidopsis PIN.

As expected, according to FunScore cutoff ( = 0.03) that was

trained from other known protein-function pairs (Data S6), we

preliminarily choose 425 more reliable function categories for 148

mitochondrial proteins within CoreMitoP. After 10,000 random

permutations for Arabidopsis functional categories to obtain null

distribution for each protein-function FunScore, we gained 416

significant potential functions (p,0.05) for the 148 proteins,

covering 26.7% of total 559 unknown core mitochondrial proteins

(Data S7).

Mitochondrial stress response in Arabidopsis
In past two decades, the knowledge about responses of plant

Arabidopsis to environmental stresses has been accumulated

dramatically. Confirmatively, mitochondria tightly contribute to

this process. Besides cell-specific and treatment-specific studies by
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Figure 3. The enrichments of major functional categories for proteins generated from the fourteen genome-wide predictors (s1–
s14). Fourteen major Gene Ontology categories were assigned to each genome-wide predictor and each functional category’ enrichment for each
predictor is shown in different colored bars. Grey bars indicate the proteins with unknown functions. Because of the relative quantity of predictors
from s1–s9 generated by bioinformatics tools are large containing thousands of proteins, the percentage of unknown proteins is larger than that of
other predictors. Predictors using homolog or orthologs methods have little unknown proteins. Meanwhile metabolism, energy, protein synthesis,
transport functional categories are enriched in all predictors. However, DNA Synthesis and Processing are enriched only in predictors of s1,s9, s13
and s14. Signaling transductions and cellular communications are not enriched in predictors like s11, s12, and s13, but enriched in other predictors.
doi:10.1371/journal.pone.0016022.g003

Identification of Plant Mitochondrial Proteome

PLoS ONE | www.plosone.org 10 January 2011 | Volume 6 | Issue 1 | e16022



mutagenesis strategy, to identify genes of potential importance to

stresses stimulates investigators to utilize high-throughput tech-

niques of global expression profiling which can reveal transcrip-

tional changes on a genome-wide scale [65]. A global overview of

mitochondria responses to stress has been reported [66]. Since the

dynamics of proteins can be observed in multiple aspects, such

as various cellular localizations in spatial scale, transcriptional

changes in gene expression level, and post-transcriptional

mechanisms or protein-protein interaction forms, we indeed

require understanding a plant’s response to a stress with

comprehensive evaluation of stress-induced changes in gene

expression and also need to capture the relationships of proteins

or its genes and well-organized functional modules or pathways of

them involved in the responses.

In an attempt to explore the behavior of mitochondria in

response to stress, 2,649 induced or repressed genes showing

greater than 2-fold change in response to salt, cold, osmotic and

draught stresses were collected from previous study [67] (Data
S8). Using global Arabidopsis 28,091 PINs, we reconstructed a stress

protein interaction network, named SPIN, which containing 6,891

interaction pairs involving 4,823 proteins (Data S9). There are

1,497 stress-related proteins/genes and total 503 defined core

mitochondrial proteins participating in the SPIN. In particular,

147 mitochondrial proteins represent differential changes on gene

expression level (Data S10) and their functionalities are annotated

from Gene Ontology (Data S11). We can observe that

mitochondrial proteins (blue) are interweaved with other proteins

coming from other localizations in response to stress. It suggests

that more dynamical communications and transportations exist

among mitochondria and other organelles.

We assessed the overrepresentation of GO categories in SPIN

and obtained several functional modules that correlating with

plant stress responses with self-consistency (Data S12). Hypergeo-

metric test and multiple testing corrections using Benjamini&-

Hochberg (FDR) approach was conducted by BINGO plugin [68]

embeded in Cytoscape software [69]. In SPIN, many functional

modules act in responses to abiotic stimulus (pval = 2.36e–54),

oxidative stress (pval = 8.76e–41), osmotic stress (pval = 3.50e–15),

cold (pval = 7.07e–13), salt stress (pval = 2.23e–12), and water

deprivation (pval = 3.49e–11) (Data S12). In plant cells, calcium

plays roles as a universal transducer coupling a wide range of

extracellular stimuli with intracellular responses and abundant

MAPK signaling cascades [70] [71,72]. Different extracellular

stimuli trigger specific calcium receptors. SOS pathway function-

ing in response to calcium- and salt-stress signaling in plants might

have general implications and plays important role in plant growth

and development. Calcium permeable ion channels, Ca2+/H+
antiporters and Ca2+-ATPases, are responsible for drought stress

signal transduction directly or indirectly. Some proteins of

CoreMitoP in SPIN show response to cadmium ion, such as

NTRA, ASP1, GDH2, CAT3, etc. GLY3, GDH2, and STRS2

etc., also function in response to salt tolerance (Data S9). Several

proteins of CoreMitoP participate in ATP binding with ATPase

activity, like BCS1, NFS1, CLPX, etc. Otherwise, the stresses also

affect the cellular gene expression machinery and it is possible that

molecules involved in nucleic acid metabolism including helicases

are likely to be affected [73]. PMH1, STRS2, PMH1 and other

newly predicted ones (e.g., AT1G02370, AT1G61640,

AT3G18970, and AT2G27800) act in ATP-dependent helicase

activity and others from core mitochondrial set like MYB28 and

SCA3 behavior transcription factor activities. Meanwhile,

AT2G27330 related to nucleic acid binding and AT5G65360

correlated with nucleosome assembly suggests that the active

transcriptional events will occur during the stress response.

Furthermore, protein phosphorylation in mitogen-activated

protein kinase (MAPK) pathways transfers signal from sensors to

exert significance to plant stress tolerance. MAPK cascade

minimally consists of a MAPKKK– MAPKK–MAPK module that

is linked in various ways to upstream receptors and downstream

targets [74]. Several functionalities of CoreMitoP proteins inferred

Figure 4. Major function categories of proteins within ArathMitoP Set, CoreMitoP and GSPmito. Twelve protein functional divisions are
considered and used for function assignment to proteins in ArathMitoP, CoreMitoP and GSPmito with Gene Ontology annotation. Several major
functions exerted by mitochondria include 1) cellular Communication/Signal Transduction, 2) Cellular Structural Organization, 3) Cellular Transport
and Transport Mechanisms, 4) Defense stress and detoxification, 5) DNA Synthesis and Processing, 6) Energy, 7) Metabolism, 8) Miscellaneous
Function, 9) Protein Fate, 10) Protein Synthesis, 11)RNA Processing, 12) Transcription and unclassified ones.
doi:10.1371/journal.pone.0016022.g004

Identification of Plant Mitochondrial Proteome

PLoS ONE | www.plosone.org 11 January 2011 | Volume 6 | Issue 1 | e16022



from network correlates with kinase activity and protein amino acid

phosphorylation and these proteins may act in this sort of processes.

Specifically, PUMP1 participates in oxidative phosphorylation

uncoupler activity and AT2G18890 involves in protein amino acid

phosphorylation as previous reported. (Data S7).

Besides protein phosphorylation and transcription, other post-

translational modification like ubiquitination regulates the activa-

tion of pre-existing molecules to ensure a prompt response to stress.

As we have known, in stress-induced ethylene signaling pathway,

CTR signaling cascades and joint kinase cascases, the downstream

regulator, EIN3, accomplishes stability by F-box–containing

proteins that participate in the formation of a SKP1/cullin/F-box

complex that targets proteins for degradation by the proteasome

[75]. 3 CoreMito proteins predicted from PIN may involve in the

formation of ubiquitin ligase_complex. Two of them, AT1G52620

and AT5G02860, are both characterized by pentatricopeptide

repeat (PPR) tandem of a degenerate 35 amino acid motif. Most of

PPR proteins have roles in mitochondria or plastid [76]. Some of

these proteins have been shown to play a role in post-transcriptional

processes within organelles and they are thought to be sequence-

specific RNA-binding proteins [77,78,79]. Another CoreMito

protein, AT5G02700, contains cyclin-like F-box domain. The F-

box domain was first described as a sequence motif found in cyclin-F

that interacts with the protein SKP1 [80,81]. This relatively

conserved structural motif is present in numerous proteins and

serves as a link between a target protein and an ubiquitin-

conjugating enzyme. The SCF complex (e.g., Skp1-Cullin-F-box)

plays a similar role as an E3 ligase in the ubiquitin protein

degradation pathway [82,83]. Different F-box proteins as a part of

SCF complex recruit particular substrates for ubiquitination

through specific protein-protein interaction domains.

Additionally, cross-connections exist among diverse signaling

pathways, clearly demonstrating further and superimposed com-

plexity levels in the response to environmental changes [72]. Besides

in response to salt, cold and draught/osmotic stress, we found that

many mitochondria proteins in SPIN versatilely act in functions of

apperceiving extracellular stimulus (e.g., jasmonic acid(JA), cytoki-

nin, auxin, abscisic acid (ABA), ethylene, and salicylic acid(SA)),

bacterium, fungus and incompatible interaction, heat, hypoxia,

oxidative_stress, wounding, blue light/red or far red light.

Practically, the reactions in plant to salt stress may trigger diverse

signaling pathways and biosynthesis pathways, such as ABA

signaling, JA synthesis and signaling pathways, as well as auxin

and SA reactions. The cross-talks interweave and constitute the

complicated plant response mechanism to stresses. All subnetworks

of SPIN in response to various abiotic and biotic stresses are listed in

Data S10 with the participated components. The discovery of novel

genes function also reveals the diversity of mitochondrial protein

functions about plant’s adaptation in stress environment. PIN-based

approach indeed provides the basis of effective engineering

strategies leading to our clear understanding of their roles in stress.

Discussion

Correlation and statistical dependence among fourteen
Genome-wide predictors

Since we implement Narive Bayes Network to integrate

fourteen genome-wide predictors, it’s necessary to investigated

whether the correlation and dependencies existed among predic-

tors. We firstly calculated the Pearson correlation coefficients

(CCs) [84] between each two predictors (Table 3). None of the

features exhibit significant large correlation, except for the

situations for several predictors from the phylogenetic approaches

(s11–s13). There is a small correlation scale (corr = 0.01,0.42)

among predictors s1–s9, while a larger correlation scale

(corr. = 0.20,0.66) among predictors s10–s13. Predictor s14 from

co-expression method has a smaller correlation scale

(corr. = 0.03,0.16) with all other predictors. As expected, some

of the 14 predictors used similar algorithms or pattern informa-

tion, From s1 to s9, the predictors were trained or based on the

amino acid features; the methods of s10 to s13 are based on

conserved sequence features or orthologous mapping.

Table 3. Pearson correlation coefficients and overlaps between genomic predictors.

Overlap (b)
CC (a) s1 s2 s3 s4 s5 s6 s7 s8 s9 s10 s11 s12 s13 s14

(s1)MitoProtII 1 2077 1577 893 928 986 772 641 1567 658 302 295 322 458

(s2)Ipsort 0.3624 1 1981 880 912 1121 897 629 1708 547 274 228 297 433

(s3)TargetP 0.3575 0.429 1 626 872 964 635 608 1486 379 228 197 235 323

(s4)SubLoc 0.1138 0.0793 0.0819 1 312 564 564 274 884 419 234 251 225 344

(s5)Predotar 0.387 0.3417 0.4273 0.093 1 430 328 361 734 236 181 151 187 215

(s6)Protein domain 0.2163 0.2254 0.2688 0.091 0.2072 1 527 336 839 226 120 104 140 217

(s7)Loctree 0.1014 0.1081 0.1048 0.0554 0.1159 0.0959 1 218 723 235 157 202 191 244

(s8)WoLF Psort 0.2632 0.2282 0.2982 0.0835 0.3084 0.1621 0.0641 1 508 142 113 103 104 157

(s9)Multiloc 0.3452 0.3408 0.3995 0.1593 0.3425 0.2148 0.1294 0.2338 1 349 207 242 241 307

(s10)Ancestry 0.154 0.0874 0.0805 0.0764 0.1167 0.0315 0.0137 0.0579 0.0637 1 313 245 259 330

(s11)Human ortholog 0.1399 0.1043 0.1196 0.1069 0.1868 0.0532 0.064 0.114 0.1012 0.2502 1 459 305 201

(s12)Mouse ortholog 0.1272 0.0697 0.0905 0.1111 0.1445 0.0362 0.0901 0.0965 0.1191 0.1792 0.6663 1 253 183

(s13)Yeast ortholog 0.1543 0.1196 0.126 0.1019 0.1953 0.0701 0.0896 0.1036 0.127 0.2021 0.4541 0.3596 1 190

(s14)Coexpression 0.0942 0.0631 0.0702 0.0606 0.1144 0.0385 0.0296 0.0791 0.0593 0.1294 0.1612 0.1366 0.1516 1

aPearson Correlation coefficients.
boverlaps between the two genome-wide predictors.
Calculated correlation coefficients between genomic predictors are used to overview the statistical dependence that is required for Naı̈ve Bayes integration. The direct
comparison and overlaps among predictors reveal the similarity of the predictions performed by such 14 genome-wide predictors.
doi:10.1371/journal.pone.0016022.t003
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Alternatively, direct comparisons between each two predictors

were performed for obvious sense of similarity of each two

methods in results. We noticed that there may exist contradiction

that the independency among diverse predictors required by the

Naı̈ve Bayesian approach may cause less consistency among

various predictors. However, through Bayes integration proce-

dure, complementary evidences across various systems or

predictors can possibly meet the common sense of researchers

because Bayes Network can mostly extended the predictions on

one benchmark applied by relatively large sets of GSP and GSN.

Phylogenetic evidence of the mitochondrial proteome
This is fundamental and prerequisite for understanding the role

of organelles through comparative analysis with the functions of

the same organelles in other species. Nucleus-encoded proteins

destined for different subcellular locations have measurable

distinct phylogenetic distributions of homologs that can be

described with a phylogenetic profile that specifies the pattern of

occurrence of a given protein among completed sequenced

organisms. This allows the BLAST-based transfer of annotation.

Based on genome contexts of various species, proteins

pertaining to mitochondria have been identified. The common

set of the four features (s10–s13) are only skewed towards to the

function category of energy, with some members from the

metabolism and protein fate categories (Fig. 3). However, a few

putative proteins are classified into mitochondria-cellular interac-

tion (transcription, DNA synthesis and processing and RNA

binding/processing). Thus, although the major functions of

mitochondria are conserved, mitochondria may recruit novel

proteins to play roles in the communication and regulation

between the mitochondrion and intracellular environment.

Integration of broad microarray data resources for
mitochondrial protein prediction

Gene-expression profiling has historically been applied to elucidate

the mechanisms underlying biological pathways and to reveal protein

subcellular compartments. Many gene-expression experiments en-

visage their usage as means to catalog the biological responses to a

large number of diverse perturbations. We hypothesized that

perturbations in plant cells might also provide an approach that

reveals protein spatial properties systematically and biologically.

Conceivably, a large number of variables would need to be

considered, including cell lines, tissue, concentration, and treatment

duration. In plant, previous researches have shown that mitochon-

drial functions coordinated with other organelles in the cell can be

elucidated by several potential modes, such as retrograde regulation

(refers to the regulation of nuclear gene expression by metabolic

changes or signals originating in the organelle) that plays a role in

controlling synthesis of mitochondrial proteins in plants, and

common transcription responses to external stimuli. Therefore,

besides microarrays under normal conditions, gene expression

profiles focusing on stress time courses, including cold ,osmotic,

drought, heat, salt, wounding and oxidative stress, can also be very

informative for the mitochondrial protein identification. Chemical

compounds (e.g. ABA, ACC, IAA, Methyl Jasmonate, GA3 and

Cytokinin et al.) and environmental stimuli (e.g., UV-B and light

treatments) screens can probably also profile a subset of functions

related to mitochondrial proteins.

Meanwhile, one would generate profiles in a wide diversity of

established genotypes. So, we pursue to take consideration of diverse

mutants for compensation. They can be partial evidence to infer

mitochondrial proteome through gene coexpression N50 metric

here (Materials and Methods). Especially for various mutants, we

expect that even if knock up/down or mutant genes can influence

normal gene expression profiles, the proteins affected by them may

still involve in similar stringent pathways and hold similar co-

expression trends or patterns. Thus, expression changes of the genes

in response to the stimuli (/mutants) can also be used to infer gene

effects through the simultaneous adjustments of other genes and

may be detected by using conventional measures of correlation,

such as the Pearson correlation coefficient.

Additionally, the 725 proteins in the CoreMitoP list for which

mass spectrometry evidence exists for subcellular location, about

500 are found in mitochondria and 256 are experimentally found

elsewhere (ranging from plastid to nuclear to Golgi and plasma

membrane), hence only 62% of these proteins are mitochondrial.

The situation is similar if we consider GFP image evidence for

location, there are 226 of the CoreMitoP set for which GFP data

are available, 150 are in mitochondria, and 73 are confirmed in

another location. However, the protein dynamics have already

convinced us that most mitochondrial proteins have multiple

compartment targets, besides mitochondria, in available GFP and

MS supports in training dataset (GSPmito). So, the training set

remains the potential multiple-target pattern for predicting. Even

though current experiments have no supports for such predictions

targeting to mitochondria now, that won’t be proper to lead to the

conclusion that there doesn’t exist multiple targets for such

proteins because we may disregard the dynamic properties of

them. Otherwise, we have noticed that mitochondrial proteins

actively relate to proteins from other organelles. Hence, it

implicates that the proteins dynamics make the protein fate and

subcellular target complicated and the experimental evidence

supports has limited power to validate the computed predictions.

The predictive power of network-based protein function
annotation

Besides predicting core mitochondrial proteins (CoreMitoP),

unknown proteins have also been investigated, as well as other

CoreMitoP proteins with current known functions, based on PIN.

The network-based strategy for inferring protein functions does

not rely on traditional ways, like gene sequence or protein

structure homologies, and it can be applied to any organism and a

wide variety of experimental data sets with the vast accumulating

resources of PIN for model species. So, it may provide a novel

perspective for protein function prediction from statistically.

In fact, the predictive power of network-based protein function

annotation is restricted to the quality and quantity of the reliable

Arabidopsis PIN. Currently, 51.01% of 2,686 CoreMitoP proteins

have interaction records in AtPID. In details, the abundance of

latest Gene Ontology version for Arabidopsis on level–5 and level–4

coverage 58.53% and 57.61% proteins in Arabidopsis PIN,

respectively. Hence, it is reasonable to obtain limited power for

predicting unknown functions for CoreMitoP proteins labeled by

grey color in mitochondrial PIN. We believe that future resources

for reconstructing PIN will facilitate post-genome research more,

especially about protein functions analysis.

Conclusions
Subcellular proteomics is an attractive way of presaging complex

systems in biology. Understanding the subcellular compartment in

which a protein is likely to reside can facilitate the proteomics analysis

and protein isolation experiments. In this study, we have obtained a

reliable set of mitochondrial proteins encoded in Arabidopsis nuclear

genome by using an integrative approach. In contrast to previous

methods that rely on target sequence properties, we applied

additional clues from broad co-expression profiles, ancestry homologs

and eukaryotic orthologs and improved the predictive performances

for deducing mitochondrial proteins, although systematic research on
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mitochondrial subcellular location is not first proposed here and

many algorithms have been deliberately devised for this task. More

precise predictions and assessment for Arabidopsis mitochondrial

proteomics from diverse methodologies or datasets have not been

considered yet. In this study, Bayesian Network has also assess the

large dispersed datasets under the same probabilistic benchmark, in

which each genome-wide predictor can individually contribute to the

total integration power. The CoreMitoP we defined, by combining

verified mitochondrial proteins with ArathMitoP set and excluding

false positives provides more reliable and comprehensive catalog of

mitochondrial proteome. Besides the current function annotation to

CoreMitoP proteins, we exploited Arabidopsis protein interaction

network to assign functionality to unknown proteins, through

considering its neighbors and position in topological structures.

Then, mitochondrial functions in stress responses are queried and

related functional modules in SPIN convinced us that CoreMitoP

proteins participate in multiple stress responses, besides salt, cold and

drought. Newly predicted functionalities for CoreMitoP based on

network (PIN) have large relevance to diverse cross-talks among

signaling transduction, transcriptional changes and post-reputational

controlling in response to environmental changes. We hope statistical

integration and systematical inferring about protein function facilitate

the discovery of molecular mechanisms related to mitochondria.

Supporting Information

Data S1 Likelihood Ratio (LR) table for all Arabidopsis
proteins and integration process using 14 predictors.
This file contains a table, named as ArathMitoP_LR, which

includes each predictor’s LRs evaluated using GSPmito and

GSN,mito training data (shown in s1,s14 columns), and the

final integrated LRs for Arabidopsis proteins are listed in LR

Column.

(XLS)

Data S2 AtGenExpress microarray profiles for co-
expression inferring. Twenty-four datasets containing 1,027

AtGenExpress microarray profiles were used for the analysis of

gene co-expression that as a predictor s14.

(XLS)

Data S3 Gold-standard positives (GSPmito) and gold-
standard negatives (GSN,mito) information. This file

contains GSPmito dataset and GSN,mito dataset. Gold-

standard positives (GSPmito) were generated from five experi-

mental sets, including AmiGO, GFP assay, MS_MS assay, TAIR,

and UniProt. Meanwhile, Gold-standard non-mitochondrial

proteins GSN,mito was generated from SwissProt, including

proteins localized at cell plate, cytoskeleton, cytosol, endoplasmic

reticulum, extra cellular, Golgi apparatus, nucleus, peroxisome,

plasma membrane, plastid and vacuole. All original downloaded

and collected data sets have been verified through TAIR

annotation manually.

(XLS)

Data S4 Protein list of ArathMitoP set and CoreMitoP.
The proteins of ArathMitoP set and the newly integrative

CoreMitoP proteins defined in this paper with high confidence

through the integration procedure are listed in this file.

(XLS)

Data S5 CoreMitoP protein functions annotated by
using twelve functional categories. A table listing the

Arabidopsis CoreMitoP proteins in twelve functional divisions

separately, according to the SUBA database collections.

(XLS)

Data S6 FunScores for validation datasets. So called

Validation datasets are the protein-function pairs those having

been annotated by Gene Ontology. In attempt to choose proper

FunScore computed by network-based method and filter out less

reliable protein-function pairs, we inquired the FunScore of

validation pairs and used 0.03 as preliminary threshold. All

validation pairs and their FunScores are listed in this file.

(XLS)

Data S7 Significant functionalities for the unknown
CoreMitoP proteins. Based on network protein function

analysis and using randomizations for functional categories,

significance of each filtered functionality for unknown CoreMitoP

proteins is individually evaluated and corresponding p value and

functional categories are listed in this table.

(XLS)

Data S8 Differentially expressed genes of Arabidopsis
in response to salt, cold and osmotic/draught stresses.
(XLS)

Data S9 Arabidopsis Stress response protein interac-
tion network (SPIN).
(XLS)

Data S10 CoreMitoP proteins involved in SPIN.
(XLS)

Data S11 Functional annotation of CoreMitoP proteins
involved in SPIN.
(XLS)

Data S12 Significant subnetworks from Arabidopsis
SPIN in response to stress tolerance. 42 significant sub-

modules and networks related to diverse stress responses are

detected. Reconstructed modules are illustrated in figures.

(XLS)

Author Contributions

Conceived and designed the experiments: JC TS. Performed the

experiments: JC. Analyzed the data: JC. Contributed reagents/materi-

als/analysis tools: JC JL YL. Wrote the paper: JC.

References

1. Gueguen V, Macherel D, Jaquinod M, Douce R, Bourguignon J (2000) Fatty

acid and lipoic acid biosynthesis in higher plant mitochondria. J Biol Chem 275:

5016–5025.

2. Bartoli CG, Pastori GM, Foyer CH (2000) Ascorbate biosynthesis in

mitochondria is linked to the electron transport chain between complexes III

and IV. Plant Physiol 123: 335–344.
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19. Fölsch H, Guiard B, Neupert W, Stuart RA (1996) Internal targeting signal of
the BCS1 protein: a novel mechanism of import into mitochondria. EMBO J 15:

479–487.

20. Kumar A, Agarwal S, Heyman JA, Matson S, Heidtman M, et al. (2002)
Subcellular localization of the yeast proteome. Genes Dev 16: 707–719.

21. Kruft V EH, Jansch L, Werhahn W, Braun HP (2001) Proteomic approach to
identify novel mitochondrial proteins in Arabidopsis. Plant Physiol 127:

1694–1710.

22. Millar AH, Sweetlove LJ, Giege P, Leaver CJ (2001) Analysis of the Arabidopsis

mitochondrial proteome. Plant Physiol 127: 1711–1727.

23. Werhahn W, Braun HP (2002) Biochemical dissection of the mitochondrial

proteome from Arabidopsis thaliana by three-dimensional gel electrophoresis.
Electrophoresis 23: 640–646.

24. Heazlewood JL, Tonti-Filippini JS, Gout AM, Day DA, Whelan J, et al. (2004)
Experimental analysis of the Arabidopsis mitochondrial proteome highlights

signaling and regulatory components, provides assessment of targeting

prediction programs and points to plant specific mitochondrial proteins. Plant
Cell 16: 241–256.

25. Moller IM (2001) PLANT MITOCHONDRIA AND OXIDATIVE STRESS:
Electron Transport, NADPH Turnover, and Metabolism of Reactive Oxygen

Species. Annu Rev Plant Physiol Plant Mol Biol 52: 561–591.

26. Liu Z, Butow RA (2006) Mitochondrial retrograde signaling. Annu Rev Genet

40: 159–185.

27. Tian GW, Mohanty A, Chary SN, Li S, Paap B, et al. (2004) High-throughput

fluorescent tagging of full-length Arabidopsis gene products in planta. Plant
Physiol 135: 25–38.

28. Koroleva OA, Tomlinson ML, Leader D, Shaw P, Doonan JH (2005)

Highthroughput protein localization in Arabidopsis using Agrobacteriumme-
diated transient expression of GFP-ORF fusions. Plant J 41: 162–174.

29. Heazlewood JL, Verboom RE, Tonti-Filippini J, Small I, Millar AH (2007)
SUBA: the Arabidopsis Subcellular Database. Nucleic Acids Res 35(Database

issue): D213–218.

30. Emanuelsson O, Nielsen H, Brunak S, von Heijne G (2000) Predicting

Subcellular Localization of Proteins Based on their N-terminal Amino Acid
Sequence. J Mol Biol 300: 1005–1016.

31. Bannai H, Tamada Y, Maruyama O, Nakai K, Miyano S (2002) Extensive
feature detection of N-terminal protein sorting signals. Bioinformatics 18:

298–305.

32. Horton P, Park KJ, Obayashi T, Nakai K (2006) Protein Subcellular

Localization Prediction with WoLF PSORT. In Proceedings of the 4th Annual

Asia Pacific Bioinformatics Conference APBC06. pp 39–48.

33. Small I, Peeters N, Legeai F, Lurin C (2004) Predotar: A tool for rapidly

screening proteomes for N-terminal targeting sequences. Proteomics 4:
1581–1590.

34. Reinhardt A, Hubbard T (1997) Using neural networks for prediction of the
subcellular location of proteins. Nucleic Acids Res 26: 2230–2236.

35. Yuan Z (1999) Prediction of protein subcellular locations using Markov chain
models. FEBS Lett 451: 23–26.

36. Cai YD, Liu XJ, Xu XB, Chou KC (2000) Support vector machines for
prediction of protein subcellular location. Mol Cell Biol Res Comm 4: 230–233.

37. Huang J, Shi F (2005) Support Vector Machines for Predicting Apoptosis

Proteins Types. Acta Biotheoretica 53: 39–47.

38. Cai YD, Chou K (2003) Nearest neighbour algorithm for predicting protein

subcellular location by combining functional domain composition and

pseudoamino acid composition. Biochem Biophys Res Commun 305: 407–411.

39. Pavlidis P, Weston J, Cai J, Noble WS (2002) Learning gene functional

classifications from multiple data types. J Comput Biol 2002. J Comput Biol 9:

401–411.

40. Drawid A, Gerstein M (2000) A Bayesian system integrating expression data
with sequence patterns for localizing proteins: comprehensive application to the

yeast genome. J Mol Biol 301: 1059–1075.

41. Drawid A, Jansen R, Gerstein M (2000) Genome-wide analysis relating

expression level with protein subcellular localization. Trends Genet 16: 426–430.

42. Prokisch H, Scharfe C, Camp DG, 2nd, Xiao W, David L, et al. (2004)

Integrative analysis of the mitochondrial proteome in yeast. PLoS Biol 2: e160.

43. Nair R, Rost B (2005) Mimicking cellular sorting improves prediction of

subcellular localization. J Mol Biol 348: 85–100.
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