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Abstract

This paper investigates the dependence of synchronization transitions of bursting oscillations on the information
transmission delay over scale-free neuronal networks with attractive and repulsive coupling. It is shown that for both types
of coupling, the delay always plays a subtle role in either promoting or impairing synchronization. In particular, depending
on the inherent oscillation period of individual neurons, regions of irregular and regular propagating excitatory fronts
appear intermittently as the delay increases. These delay-induced synchronization transitions are manifested as well-
expressed minima in the measure for spatiotemporal synchrony. For attractive coupling, the minima appear at every integer
multiple of the average oscillation period, while for the repulsive coupling, they appear at every odd multiple of the half of
the average oscillation period. The obtained results are robust to the variations of the dynamics of individual neurons, the
system size, and the neuronal firing type. Hence, they can be used to characterize attractively or repulsively coupled scale-
free neuronal networks with delays.
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Introduction

It is well known that synchronization in neuronal networks is

particularly relevant for the efficient processing and transmission

of information (see e.g. [1,2]). Experiments have shown that

synchronized states can occur in many special areas of the brain,

such as the olfactory system or the hippocampal region [3–5]. By

using functional magnetic resonance imaging (fMRI) to record

brain activity from both speakers and listeners during natural

verbal communication, a recent study has shown that speaker-

listener neural coupling underlies successful communication by

means of synchronization [6]. Theoretically, neuronal synchroni-

zation on complex networks has been explored in detail [7–13],

leading to several insights that have applicability on real problems

in neuroscience. For example, synchronization of gap-junction-

coupled neurons has been investigated [11], and by means of the

phase resetting curve, phase locking and synchronization in

neuronal networks have been investigated as well [14,15].

Moreover, noise-induced and noise-enhanced synchronization

have also been reported in realistic neuronal systems [16,17].

Interestingly, it was reported that chemical and electrical synapses

perform complementary roles in the synchronization of interneu-

ronal networks [18]. Indeed, synchronization, information trans-

mission and signal sensitivity on complex networks are currently

hot topics in theoretical neuroscience [19,20], as evidenced by

several recent studies that are devoted to the explorations of this

subject [21–32].

Previous research highlighted that information transmission

delays are inherent to the nervous system because of the finite

speed at which action potentials propagate across neuron axons, as

well as due to time lapses occurring by both dendritic and synaptic

processing [33]. It has been reported, for example, that the beta

frequency is able to synchronize over long conduction delays,

which corresponds to signals traveling a significant distance in the

brain [34]. Thus far, it has also been reported that different time

delay lengths can change both qualitative as well as quantitative

properties of the dynamics [35]. For example, delays can introduce

or destroy stable oscillations, enhance or suppress synchronization,

as well as generate complex spatiotemporal patterns on regular

neuronal networks. It has also been suggested that time delays can

facilitate neural synchronization and lead to many interesting and

even unexpected phenomena [36,37], including zigzag fronts of

excitations, clustering antiphase synchronization and in-phase

synchronization [38]. Most recently, the synchronizability thresh-

old for an arbitrary network incorporating delays and noise has

been derived, and additionally, by means of the scaling theory of

the underlying fluctuations, the absolute limit of synchronization

efficiency in a noisy environment with uniform time delays has

been established [39].

Both phase-attractive (which can be related to excitatory

synapses) and phase-repulsive (which can be related to inhibitory

synapses) coupling exists in realistic neuronal systems. Hence, it is

important to take this explicitly into account in theoretical studies.

Effects of phase-repulsive coupling on neuronal dynamics have

also been investigated in the past [40–42], where such coupling

was considered to be related to inhibitory synapses. For example, it

has been shown that a pair of excitable FitzHugh-Nagumo

neurons can exhibit various firing patterns including multistability
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and chaotic firing when elements interact phase-repulsively [40].

Moreover, the synchronization of nonidentical dynamical units

that are coupled attractively in a small-world network can be

improved significantly by the introduction of just a small fraction

of phase-repulsive couplings [42]. Dynamics of propagation in

coupled neuronal networks with excitatory and inhibitory synapses

has been investigated in detail by means of integrate-and-fire

neurons [43,44]. By analyzing a canard mechanism, it has also

been shown that synaptic coupling can synchronize neurons at low

firing frequencies [45]. However, synchronization on scale-free

neuronal networks with phase-repulsive coupling and delay has

not yet been investigated.

Here, we aim to extend the scope of research by studying the

dependence of synchronization transitions on the information

transmission delay over scale-free neuronal networks with

attractive or repulsive coupling, respectively. Since a power law

distribution of the degree of neurons has been found applicable for

the coherence among activated voxels using functional magnetic

resonance imaging [46], and moreover, the robustness against

simulated lesions of anatomic cortical networks was also found to

be most similar to that of a scale-free network [47], our study

addresses a relevant system setup which is still amenable to new

research. We report several non-trivial effects induced by finite

(non-zero) delay lengths, foremost the ability of its fine-tuning

towards highly synchronized fronts of excitations. We find that the

delay-induced synchronization transitions manifest as well-ex-

pressed minima in the measure for spatiotemporal synchrony.

Depending on the type of coupling, however, these minima appear

every integer multiple of the average oscillation period of bursting

oscillations in case of attractive coupling, or they appear every odd

multiple of the half of the average oscillation period for repulsive

coupling. The results are robust to variations of neuronal dynamics

and system size, and appear to be primarily due to the emergence

of phase locking between the delay and the time scales, which are

inherent to each individual neuron constituting the scale-free

network.

Results

Firstly, we present in Fig. 1 space-time plots to have a look at

characteristic synchronization transitions that can be induced by

different information transmission delays. To do so, we employ

attractive coupling as a case of example, but note that qualitatively

identical space-time plots can be obtained also for repulsive

coupling. We set a~2:3, for which individual neurons exhibit

simple single-burst excitations. Results presented in Fig. 1(a)

indicate that the spatiotemporal dynamics is synchronous if t~0,

which can be attributed to sufficiently strong attractive coupling.

However, if the information transmission delay is increased to

t~270 the synchrony deteriorates rather drastically, as can be

observed in Fig. 1(b). Interestingly, synchronization seems again

fully restored at t~850, as depicted in Fig. 1(c), but then again

disappears for t~1290 and reappears for t~1700, as shown in

Figs. 1(d) and (e), respectively. Indeed, we find that such a

succession repeats itself for higher values of t, from which we

conclude that the information transmission delay can either

promote or impair synchronization of neuronal activity on scale-

free networks. If inspecting the values of t warranting near-perfect

synchronization closely, we can observe that they equal roughly

integer multiples of 850, which hints towards an underlying

mechanism that can explain our observations.

In order to investigate the impact of different values of t
quantitatively, and separately for attractive and repulsive coupling,

we calculate the synchronization parameter s as defined by Eq.

(3). Results presented in Figs. 2(a) and (b) were obtained for

attractive coupling and three different values of a. It can be

observed that certain values of t significantly facilitate spatiotem-

poral synchronization of excitatory fronts on neuronal scale-free

networks. In particular, the three minima of s appear at

t&850~T , t&1700~2T and t&2550~3T if a~2:3. For

a~3:0, we can observe two minima of s appearing at

t&1200~T and 2400~2T . Furthermore, several more minima

can be observed for a~4:1 within the considered span of

information transmission delays, as depicted in Fig. 2(b). Again it

is clear that they appear at integer multiples of the first minimum.

This confirms the fact that delay-induced transitions to spatio-

temporally synchronized neuronal activity appear intermittently,

at integer multiples of a given value of t. On the other hand,

values of t outside these regions impair synchronization signifi-

cantly, as can be inferred from the rather sharp ascends towards

larger values of s beyond the optimal delays.

Performing the same analysis for repulsive coupling reveals

several similarities, but also significant differences. Results

presented in Figs. 3(a) and (b) indeed have a qualitatively identical

outlay with the minima of s appearing intermittently as t
increases, yet the precise values warranting optimal neuronal

synchrony are different if compared to the case of attractive

coupling. Specifically, the three minima of s appear at

t&425~T=2, t&1275~3T=2 and t&2125~5T=2 if a~2:3,

while for a~3:0 and a~4:1 we can observe similar variations with

odd integer multiples of half of T constituting optimal information

transmission delays where s is minimal. As for attractive coupling,

values of t outside these bounds impair synchronization

significantly and fast. Altogether, results presented in Figs. 2 and

3 indicate that simple scaling laws account for the description of

optimal information transmission delays that warrant near-perfect

synchronization of neuronal activity on scale-free networks. While

for attractive coupling integer multiples of a given constant period

are optimal, for repulsive coupling odd integer multiples of half of

the same period have the best effect. Irrespective of the coupling

type, delays outside the narrow optimal span impair synchroni-

zation significantly.

It is next of interest to explore and determine the mechanisms

behind these observations. We will do this by means of the

duration of bursting periods of individual neurons constituting the

scale-free network. The top three panels of Fig. 4 depict time

courses of the membrane potential x(i)(n) for the values of a we

have used in Figs. 2 and 3 above. It can be observed that,

depending on a, the duration of bursts within a given trace may

vary (chaotic bursting [48]), but also that the duration of bursts

changes due to different a values. This is highlighted by labels T1,

T2 and T3 (where applicable) in the top three panels of Fig. 4.

From this it is straightforward to determine the average oscillation

period of bursting T for each particular value of a, simply as the

average over a large enough ensemble L as T~L{1
P

i~1:::L Ti.

The bottom panel of Fig. 4 shows how the average period T varies

with a. It can be observed that upon exceeding the Hopf

bifurcation at a~2:0 the period T increases fairly linearly, but

then drops rather sharply when a exceeds 4:0.

Upon connecting the values of T with the optimal information

transmission delays observed in Figs. 2 and 3 for the corresponding

values of a, we can establish a good understanding of the

mechanism behind the observed synchronization transitions for

attractive as well as for repulsive coupling. In particular, from

results presented in Fig. 4 it follows that if a~2:3 then T&850,

which is exactly the value of t corresponding to the first minimum

of s for attractive coupling. Conversely, one half and three times

one half of T&850 correspond to the first and second minima of s

Synchronous Bursts on Scale-Free Neuronal Networks
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if a~2:3 and the coupling is repulsive. For the other two

considered values of a, namely 3:0 and 4:1, an identical linkage

can be established easily from the results presented in Figs. 2 and

3, depending on the type of coupling one is interested in, and the

bottom panel of Fig. 4. Apparently, the average period of

individual bursts determines the optimal information transmission

delay that warrants the best synchrony, i.e. minimal s, of neuronal

firings on the scale-free network. We therefore conclude that for

attractive coupling the delay-induced transitions to spatiotemporal

synchronization of neuronal activity are due to the locking

between t and the average oscillation period of individual neurons

constituting the scale-free network. Importantly, because the

repulsive coupling can pull adjacent neurons into antiphase

synchronization, the optimal delay warranting best synchroniza-

tion is not equal to full integer multiples of T . Thus, it is exactly

odd integer multiples of one half of the average oscillation period

of an individual neuron, where the phase locking between

antiphased bursts occurs.

Merging these observation into an overall insight about delay-

induced synchronization transition on scale-free networks with

attractive and repulsive coupling, we show in Fig. 5 contour plots

of s, which depend on the two main parameters a and t for the

Figure 1. Characteristic space-time plots of the fast variable x(i)(n) for different information transmission delays t. From left to right
the delay length is: (a) 0, (b) 270, (c) 850, (d) 1290 and (e) 1700. Notice the emergence of complete synchrony in panels (a), (c) and (e). The color coding
is linear, red and blue depicting {2 and 0:2 values of x(i)(n), respectively. Other system parameters are: D~0:01, a~2:3 and N~200.
doi:10.1371/journal.pone.0015851.g001

Figure 2. Quantification of synchronization for attractive coupling. Dependence of the synchronization parameter s on t for different values
of a, as denoted in the corresponding panels. The undulations of s are clearly visible and persist irrespective of a. While the minima shift for different
a, they always occur at integer multiples T , 2T , 3T of the average oscillation period of bursting oscillations, as denoted by the vertical arrows.
doi:10.1371/journal.pone.0015851.g002
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Figure 3. Quantification of synchronization for repulsive coupling. Dependence of the synchronization parameter s on t for different values
of a, as denoted in the corresponding panels. The undulations of s are clearly visible and persist irrespective of a. While the minima shift for different
a, they always occur at odd integer multiples T=2, 3T=2, 5T=2 of the half of the average oscillation period of bursting oscillations, as denoted by the
vertical arrows.
doi:10.1371/journal.pone.0015851.g003

Figure 4. Time series of the Rulkov map for different values of a and the determination of the average oscillation period of
bursting. Top three panels: From top to bottom we have a~4:1, 3:0 and 2.3, respectively. Evidently, the time between consecutive bursts changes
significantly, as denoted by T1 , T2 and T3 , respectively. Simultaneously, different values of a also affect the oscillation period. This gives vital clues as
to the location of minima of the synchronization parameter s depicted in Figs. 2 and 3. Bottom panel: Average oscillation period of bursting
oscillations T in dependence on a, determined as the average over T1,T2,T3, . . . ,TL. Here L is the total number of periods considered, which was
selected large enough to ensure convergence.
doi:10.1371/journal.pone.0015851.g004
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two types of coupling separately. The emergence of highly

synchronous tongue-like regions in the two-dimensional parameter

plane agrees perfectly with the reasoning we have outlined above.

As the information transmission delay increases the neuronal

activity enters and exits synchronous regions in an intermittent

fashion. Simultaneously, as a increases, the average period of

bursting increases nearly linearly according to the results presented

in the bottom panel of Fig. 4, thus giving an upward momentum to

the white regions. However, when aw4:0 the average oscillation

period drops sharply, which terminates the white ‘‘tongues’’ of

synchrony rather abruptly and shifts the optima toward much

smaller t. Altogether the presented results are in agreement with

those presented in Figs. 2 and 3.

In what follows, in order to test the generality of the above

results, we investigate the impact of different system sizes N and

different models of neuronal dynamics, including those of type I

and type II. Firstly, for different system sizes, results depicted in

Figs. 6(a) and (b) show clearly that the variations of N do not

notably influence the outcome of our simulations. In fact, the

minima of s remain located at about the same values of t
irrespective of N. In order to validate our conclusions for different

types of neuronal dynamics, we choose the famous Hodgkin-

Huxley model (type II) and the Morris-Lecar model (type I) to

describe the dynamics of individual network nodes (both models

are given in the Methods section under ‘‘Alternative models of

neuronal dynamics’’). Using these two models, we investigate the

synchronization transition when the delay is varied. It is shown in

Figs. 7 and 8 that irrespectively of the type of the governing

neuronal dynamics, intermittent synchronization transitions can

still be observed for both the attractive as well as repulsive coupling

when the delay is increased. More importantly, the phase locking

between the delay and the period of oscillators persists in a way

that is identical to what we reported above for the Rulkov model.

Hence, the obtained results are also deemed robust against the

variations of the neuronal dynamics.

Lastly, we construct a square lattice occupying 128|128
neurons, whose nodes are modeled by the Rulkov map. Here we

set the parameter a~1:99, so that every neuron operates in the

excitable regime. Starting with random initial conditions, the

results in Fig. 9(a) evidence that as the delay equals t~0, there is

no pattern formation observable and each neuron approaches its

excitable steady state value. On the other hand, however, Fig. 9(b)

features coherent waves of excitation that appear as the delay

equals t~50, which emerge due to the locking between the delay

length and the characteristic transient time of the local neuronal

dynamics. Hence, it can be concluded that appropriate informa-

tion transmission delays can also evoke ordered waves of excitation

in the spatial domain, thus adding to their importance for the

functioning of neuronal tissue.

Discussion

We have studied delay-induced synchronization transitions on

attractively and repulsively coupled scale-free neuronal networks

that were locally modeled by the Rulkov map. We have shown that,

irrespective of the type of couplings, information transmission delays

play a pivotal role in ensuring synchronized neuronal activity. By

attractive and repulsive couplings, the synchronization of bursting

oscillations was found undulating intermittently as the delay was

increased. However, while for attractive coupling the regions of high

synchronization appeared every integer multiple of the average

oscillation period, for the repulsive coupling they appeared every

odd multiple of the half of the average oscillation period. Aiming to

explain these observation, we have argued that by attractive

coupling the intermittent outlay of synchronized regions emerges

due to the locking between the delay length and the average

Figure 5. Two-parameter dependence of synchronization among neurons. Contour plots depict the synchronization parameter s in
dependence on a and t for attractive coupling (panel a) and repulsive coupling (panel b). Tongues of synchrony (white) emerge due to an intricate
interplay between the inherent dynamics of each neuron constituting the scale-free network and the locking between the information transmission
delay length and the oscillation period of bursting.
doi:10.1371/journal.pone.0015851.g005
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oscillation period of bursting oscillations of individual neurons

constituting the scale-free network. Conversely, by repulsive

coupling the emergence of antiphase synchronization indicates

locking between the delay and odd multiples of one half of the

average oscillation period. Our results indicate that information

transmission delays can either promote or impair synchrony among

neurons and can thus effectively supplement other mechanisms of

synchronization [49,50] on scale-free networks, which arguably

constitutes an important ingredient of interneuronal communica-

tion. These conclusions seem to be supported by actual biological

Figure 6. Dependence of the synchronization parameter s on t for different values of the system size N. (a) Attractive coupling. (b)
Repulsive coupling. Other system parameters are: D~0:01, a~2:3. It can be observed that the results vary fairly insignificantly as the system size
increases.
doi:10.1371/journal.pone.0015851.g006

Figure 7. Dependence of the synchronization parameter s on t for type II neuronal dynamics. (a) Attractive coupling. (b) Repulsive
coupling. Other system parameters are: D~0:02, I~10 and N~200. Presented results are qualitatively identical to those obtained with the Rulkov
map.
doi:10.1371/journal.pone.0015851.g007
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data, stating that conduction velocities along axons connecting

neurons vary from 20 to 60 m/s [51]. Real-life transmission delays

are thus within the range of milliseconds, suggesting that

substantially lower or higher values may be preclusive for optimal

functioning of neuronal tissue. Repulsive coupling, as we have

considered it in this study, is in fact an inherent ingredient of several

biological systems, in particular those that contain dynamical units

that are in ‘‘competition’’ with each other. Known examples are the

inhibitory couplings is present in neuronal circuits associated with a

synchronized behavior in central pattern generators or calcium

Figure 8. Dependence of the synchronization parameter s on t for type I neuronal dynamics. (a) Attractive coupling. (b) Repulsive
coupling. Other system parameters are: D~0:01, Iapp~14 and N~200. As in Fig. 7, the presented results are qualitatively identical to those obtained
with the Rulkov map, thus indicating their independence on the particularities of the governing neuronal dynamics.
doi:10.1371/journal.pone.0015851.g008

Figure 9. Delay-induced spatial pattern formation on the square lattice populated by diffusively coupled Rulkov neurons. Both
panels depict values of xi,j on a 128|128 square lattice at a given (representative) discrete time n. The information transmission delay t is equal to:
(a) 0, (b) 50. Coloring in both panels is linear, as depicted by the color strip in the middle, although the scale for the left panel was made much
narrower to make the small deviations from the steady state (before it was completely reached) visible. Other system parameters are: D~0:0025,
a~1:99. It can be observed (see panel b) that appropriate information transmission delays evoke ordered excitatory waves with a well-defined spatial
frequency.
doi:10.1371/journal.pone.0015851.g009
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oscillations in epileptic human astrocyte cultures [42]. We hope that

these results will foster our understanding of the observed neuronal

activity.

Methods

The map proposed by Rulkov [52,53] determines the dynamics

of individual nodes forming the scale-free network. It captures

succinctly the main dynamical features of the more complex time-

continuous neuronal models, but simultaneously allows an efficient

numerical treatment of large systems [54]. Accordingly, the

spatiotemporal evolution of the studied network with information

transmission delay is governed by the following iteration equations

x(i)(nz1)~af ½x(i)(n)�zy(i)(n)zD
X

j

ei,j xj(n{t){xi(n)
� �

, ð1Þ

y(i)(nz1)~y(i)(n){bx(i)(n){c, i~1, . . . ,N, ð2Þ

where f (x)~
1

1zx2
is a nonlinear function warranting the essential

ingredients of neuronal dynamics, x(i)(n) is the membrane potential

of the i-th neuron and y(i)(n) is the variation of the ion

concentration, the two representing the fast and the slow variable

of the map, respectively. The slow temporal evolution of y(i)(n) is

due to the small values of the two parameters b and c that are here

both set equal to 0:001. Moreover, n is the discrete time index, while

a is the main bifurcation parameter determining the dynamics of

individual neurons constituting the scale-free network. In [52] it was

shown that for av2:0 all neurons are situated in excitable steady

states ½x�~{1,y�~{1{(a=2)�, whereas if aw2:0 complex

oscillatory and bursting patterns can emerge via a Hopf bifurcation.

Importantly, we set the coupling strength equal to either D~0:01,

corresponding to attractive coupling, or D~{0:01, corresponding

to repulsive coupling. Parameter t is the information transmission

delay that together with a represents the two crucial parameters that

are varied in the realm of this study.

As the interaction network between neurons we use the scale-free

network generated via growth and preferential attachment as proposed

by Barabási and Albert [55], typically consisting of N~200 nodes or

more. Each node corresponds to one neuron, whose dynamics is

governed by the Rulkov map, as described above. In Eq. (1) ei,j~1 if

neuron i is coupled to neuron j and ei,j~0 otherwise. Following [55],

the preferential attachment is introduced via the probability P, which

states that a new node will be connected to node i depending on its

connectivity ki according to P(ki)~ki=
P

j kj . Here, ki is the degree

of node i (the degree of a node is the number of links adjacent to it).

This growth and preferential attachment scheme yields a network with

an average degree kav~

P
i
ki

N
, and a power-law degree distribution

with the slope of the line equaling &{3 on a double-logarithmic

graph. We will use Barabási-Albert scale-free networks having kav~4
throughout this work.

In order to study synchronization transitions quantitatively, we

introduce, by means of the standard deviation, a synchronization

parameter s (see e.g. [56]), which can be calculated effectively

according to:

s~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

T

XT

n~1

s(n)

vuut , s(n)~
1

N

XN

i~1

xi(n)
� �2

{
1

N

XN

i~1

xi(n)

" #2

: ð3Þ

In particular, s is an excellent quantity for numerically

effectively measuring the spatiotemporal synchronization of

excitations, hence revealing different synchronization levels and

with it related transitions. From Eq. (3) it is evident that the more

synchronous the neuronal network the smaller the synchronization

parameter s. Accordingly, in the event of complete synchrony we

have s~0. Presented results were averaged over 20 independent

runs for each set of parameter values to warrant appropriate

statistical accuracy with respect to the scale-free network

generation and numerical simulations.

Alternative models of neuronal dynamics
The full Hodgkin-Huxley model is given by the following

equations [57]:

C
dV

dt
~{gNam3h(V{VNa){gL(V{VL){gK XK n4(V{VK )zI ,

dm

dt
~am(1{m){bmm,

dh

dt
~ah(1{h){bhh,

dn

dt
~an(1{n){bnn,

where V is the transmembrane potential of the neuron, and m, h
and n are the corresponding gating variables (probabilities)

characterized by a two-state, opening or closing dynamics. The

voltage-dependent opening and closing rates are given explicitly by

the following expressions:

am~
0:1(Vz10)

1{exp {
(Vz40)

10

� � ,

bm~4exp {
(Vz65)

18

� �
,

ah~0:07exp {
(Vz65)

20

� �
,

bh~ 1zexp {
(Vz35)

10

� �� �{1

,

an~
0:01(Vz55)

1{exp {
(Vz55)

10

� � ,

bn~0:125exp {
(Vz65)

80

� �
:

Synchronous Bursts on Scale-Free Neuronal Networks

PLoS ONE | www.plosone.org 8 January 2011 | Volume 6 | Issue 1 | e15851



The membrane capacity C = 1 (mF/cm2), parameters gNa, gK

and gL are maximal sodium, potassium and leakage conductances,

gNa~120 mF/cm2, gK~36 mF/cm2 and gL~0:3 mF/cm2,

respectively, VNa, VK , and VL are the reversal potentials,

VNa~50 mV, VK~{77 mV, VL~{54:4 mV and I~10 m.

The dynamics of the type I Morris-Lecar neuron is described by

the following equations [58]:

C
dV

dt
~{ICa{IK{ILzIapp,

dv

dt
~

(v?{v)

t?(V )
,

ICa~gCam?(V )(V{VCa),

IK~gK v(V )(V{VK ),

IL~gL(V{VL),

where V is the cell membrane potential in mV, ICa is the

depolarizing calcium current, IL is the passive leak current,

respectively, v is the activation of the repolarizing potassium

current IK , t is time in ms, and Iapp~14 m A/cm2 is the applied

current. The remaining parameters are VCa = 120 mV,

VK~{84 mV, VL~{60 mV, gCa = 4 mS/cm2, gK = 8 mS/

cm2, gL = 2 mS/cm2. The steady state activation of the calcium

current is:

m?(V)~
1

2
1z tanh

Vz12

18

	 
� �
:

The potassium current activation amplitude and activation rate

are:

v?(V )~
1

2
1z tanh

Vz8

6

	 
� �
,

1

t?(V )
~

2

3
cosh

Vz12

18
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