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Abstract

Background: Metabolomics is the rapidly evolving field of the comprehensive measurement of ideally all endogenous
metabolites in a biological fluid. However, no single analytic technique covers the entire spectrum of the human
metabolome. Here we present results from a multiplatform study, in which we investigate what kind of results can presently
be obtained in the field of diabetes research when combining metabolomics data collected on a complementary set of
analytical platforms in the framework of an epidemiological study.

Methodology/Principal Findings: 40 individuals with self-reported diabetes and 60 controls (male, over 54 years) were
randomly selected from the participants of the population-based KORA (Cooperative Health Research in the Region of
Augsburg) study, representing an extensively phenotyped sample of the general German population. Concentrations of
over 420 unique small molecules were determined in overnight-fasting blood using three different techniques, covering
nuclear magnetic resonance and tandem mass spectrometry. Known biomarkers of diabetes could be replicated by this
multiple metabolomic platform approach, including sugar metabolites (1,5-anhydroglucoitol), ketone bodies (3-
hydroxybutyrate), and branched chain amino acids. In some cases, diabetes-related medication can be detected
(pioglitazone, salicylic acid).

Conclusions/Significance: Our study depicts the promising potential of metabolomics in diabetes research by identification
of a series of known and also novel, deregulated metabolites that associate with diabetes. Key observations include
perturbations of metabolic pathways linked to kidney dysfunction (3-indoxyl sulfate), lipid metabolism (glyceropho-
spholipids, free fatty acids), and interaction with the gut microflora (bile acids). Our study suggests that metabolic markers
hold the potential to detect diabetes-related complications already under sub-clinical conditions in the general population.
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Introduction

Type 2 diabetes mellitus is a complex disease [1], which is

characterized by abnormal hepatic glucose output, insulin

resistance and impaired insulin production [2,3]. It may be

assumed that in individuals with type 2 diabetes many metabolic

pathways are likely to be affected and presumably play a role in

their overall metabolic dysfunction. Thus, the identification of new

biomarkers and pathways can improve the characterization of

pathophysiological alterations associated with the disease condi-

tion [4]. Metabolomics is the rapidly evolving field of the

comprehensive measurement of ideally all endogenous metabolites

in a biological fluid [5,6,7,8,9,10]. Changes in metabolic profiles

are a potential source of such biomarkers [11,12,13,14]. We have

previously reported an analysis of targeted quantitative metabo-

lomics, where we have shown that many known and novel

observations of metabolic changes may be discovered using such a

metabolomics approach and that targeted quantitative metabo-

lomics provides a functional readout of the metabolic state of

diabetic mice under medication [15]. The method has the power

to identify perturbations of the body’s metabolic homeostasis and

thereby offers access to markers of metabolic pathways that are

impacted by the disease and/or medication. Such markers could

help physicians to identify patients at high risk for specific

complications, thereby allowing a personalized approach to

monitoring and preventing progression to costly co-morbidities.

The principal concept of metabolomics being able to find some

metabolites differing in a control and a type 2 diabetic group is

established. It is not our goal here to show this once again. The

questions we ask are rather ‘‘How well are different approaches

suited to attain this goal?’’ and ‘‘What are optimal settings under

which such studies can be successful?’’. Others have already

investigated these questions before [16,17,18]. However, we

believe that this topic is much too complex than to be answered

fully in a single study. For instance, the work described in the

recent paper in this journal by Lanza et al. [19] covers only a small

patient group of 7 cases and 7 controls. Our study, in contrast is

based on 40 cases and 60 controls from an epidemiological cohort.

Work reviewed recently by Madsen et al. [20] overlaps to some

extent with our study, but none of them address aspects related to

sub-clinical signals in a general population. Our focus is on

participants from epidemiological studies rather than on patients

under clinical conditions. Herein, we identify a series of diff-

erentially ‘‘expressed’’ metabolites that associate with diabetes

under sub-clinical conditions in the general population. This

question has not been addressed to this extent by any published

paper. In particular, we see our work as a pilot that bears the

potential of being scaled up to much larger sample sizes, since

population studies such as KORA eventually provide access to

much larger sample sizes, taken under rigorous standardized blood

sample collection conditions in dedicated study centers (e.g.

overnight fasting, standard protocol for serum and plasma

preparation, storage in liquid nitrogen until measurement). These

kinds of samples generally have not been available from clinical

studies until recently. It is in this light that we provide here a proof

of concept that metabolomics can uncover key metabolites

differing in a control and a type 2 diabetic group.

Obtaining the most comprehensive coverage of the metabolome

experimentally is key to identifying novel markers of diabetes using

the metabolomics approach [4,21,22]. Over the past two years we

have conducted experiments with three different fee-for-service

providers of quantitative metabolomics: Biocrates Life Sciences AG

(Austria), Chenomx Inc. (Canada), and Metabolon Inc. (USA) by

submitting to each of them blood samples from the same 100

participants of the population-based study KORA (Cooperative

Health Research in the Region of Augsburg) for metabolic

characterization. The methods and the metabolic profiling

platforms of the three companies are mostly complementary, but

also provide some overlap which allows for a certain level of cross-

validation. Biocrates and Metabolon apply tandem mass spec-

trometry (MS), whereas Chenomx specializes in nuclear magnetic

resonance (NMR) spectroscopy. Furthermore, Metabolon takes a

non-targeted approach, combining gas (GC) and liquid phase (LC)

chromatography; whereas, Biocrates applies targeted metabolo-

mics, based on pre-selected MRM pairs and isotope labeled

internal standards, with many of their methods being based on

rapid direct flow injection (FIA), however with capacity to carry

out multiple GC-MS and LC-MS protocols. NMR has the

advantage of leaving the sample intact, but requires much larger

(10-100x) sample volumes. FIA-MS is especially adapted to high-

throughput assays when large populations or time-series with

many data points are investigated. One example is newborn

screening for inborn errors of metabolism [23] where the power of

metabolomics has been shown for the early detection of many

monogenic disorders [24]. A combination of LC-MS and GC-MS

assures a maximum coverage of a wide metabolite spectrum, but is

more likely adapted to applications for metabolite biomarker

discovery studies [25]. The metabolic approaches used here are

thus technologically distinct but overlapping in targets identified.

Here we present the results from these studies, which implement

a case/control design in males aged over 55 years with type 2

diabetes. Because no single analytic technique covers the entire

spectrum of the human metabolome, we ask what kind of results

can presently be obtained in the field of diabetes research when

combining metabolomics data collected on a complementary set of

platforms in the context of the general human population. By

utilizing this comprehensive biochemical profiling approach, we

seek to identify metabolites with different concentrations in

patients with diabetes and in healthy controls, and thereby

allowing new insights into the pathophysiological progression of

this important metabolic disease under subclinical conditions.

Materials and Methods

Ethics statement
Written informed consent has been given by all participants.

This study has been approved by the ethics committee of the

Bavarian Medical Association (Bayerische Landesärztekammer).

Study population
The participants of this study were selected from the KORA F3

cohort study [26], which is an extensively phenotyped and

genome-wide genotyped sample from the general population,

conducted in 2004/2005. The total KORA F3 study (n = 3006)

comprises male and female individuals aged between 35 and 84

years, who are residents of the city and region of Augsburg,

Southern Germany. Standardized examinations and tests that

were applied to the study participants have been described in

detail elsewhere [27], including clinical biochemistry and extensive

coverage of different life-style parameters by questionnaires. To

reduce the degree of natural variation in the data-set, we limited

this study to the ‘‘male above 54 years’’ sub-population. 40

individuals with self-reported ‘‘type 2 diabetes’’, validated by a

physician diagnosis, and 60 randomly age matched healthy

individuals who were fasting at the time of blood collection were

selected from that sub-population as case/control groups for this

study. A comparison of the basic characteristics of the diabetes and

the control groups are presented in Table 1.

Metabolomics of Diabetes
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Sample collection
For collection of blood samples for metabolic analysis, F3 study

participants were invited again in 2006. To avoid variation due to

circadian rhythm, blood was drawn in the morning between 8 and

10 am after a period of overnight fasting. After venous puncture,

material was immediately horizontally shaken (10 min), and for

the serum tubes, followed by a 40 min resting period at room

temperature to obtain complete coagulation. After centrifugation

(2000 g; 4uC) serum was aliquoted and kept for 2–4 hours on ice,

after which it was flash-frozen to 280uC until analysis. EDTA-

blood was horizontally shaken (15 min) and thereafter centrifuged

at 4uC for 10 min at 2000 g. Plasma was transferred to new tubes

without aspirating blood cells. Aliquots were kept for 2–4 hours at

4uC and then stored at 280uC.

Metabolomics measurements
Metabolite detection and quantification was conducted by the

metabolomics providers Biocrates Life Sciences AG (Innsbruck,

Austria), Chenomx Inc. (Edmonton, Canada), and Metabolon Inc.

(Durham, USA). The companies had no access to phenotype

information that would have permitted any data pre-filtering other

than objective quality control for measurement errors based on

internal controls and duplicates. All metabolomics data was used

as received, no data correction was applied, and no data points

were removed. The quality control process applied by these

companies is described in Text S1.

Biocrates platform. A targeted profiling scheme was used to

quantitatively screen for known small molecule metabolites using

multiple reaction monitoring, neutral loss and precursor ion scans.

For the present study, a subset of the available analytical methods was

selected: 201 metabolites covering the compound classes amino acids,

biogenic amines and polyamines, reducing mono- and oliogo-

saccharides, glycerophospho- and sphingolipids, eicosanoids and

other oxidized polyunsaturated fatty acids were detected and

quantified. Absolute quantitation of the metabolites in the bio-

logical sample was achieved by reference to appropriate internal

standards which are structurally identical but labeled with stable

isotopes such as deuterium, 13C, or 15N. The method has been

proven to be in conformance with FDA-Guideline "Guidance for

Industry - Bioanalytical Method Validation (May 2001’’), which

implies proof of reproducibility within a given error range.

Concentrations of all analyzed metabolites are reported in mM

(except for eicosanoid concentrations which are reported in nM units

in the supplementary data files). This data set is a subset of another

data set that has already been analyzed in the context of a genome

wide association study [28], for the discovery of biomarkers of

smoking [29] and a metabolome wide association with coffee

consumption [30]. The full dataset comprises additional data from

healthy individuals who have not been analyzed on the two other

metabolomics platforms used here, and data for metabolites with a

high fraction of missing values (.10%) was excluded here to avoid

spurious associations due to small sample sizes.

Chenomx platform. Samples were prepared for NMR

analysis using Chenomx SOP (CMX002). This platform included

micro-filtration of samples using a 3 kDa MWCO filter and the

addition of (3-trimethylsilyl) propanesulfonic acid (DSS) as an internal

standard. Spectra were acquired on a 600 MHz Varian INOVA

spectrometer. Thirty-two transients were recorded at a temperature

of 298 K. Spectra were processed and CNX files were generated

using the Processor module in Chenomx NMR Suite 5.11.

Metabolites were identified and quantified using the Profiler and

Library Manager modules in Chenomx NMRSuite 5.11 (library

version: pH 6–8, containing 292 metabolites). The methods for

identification and quantification of the metabolites were determined

as previously described [31]. Altogether, 24 metabolites were

identified in the EDTA plasma samples, including alcohols, amides,

amines, amino acid derivatives, amino acids, aromatic compounds,

fatty acids, food/drug components, organic acids and sugars. For this

study, due to the fact that only 500 ml of prefiltered plasma were

available, samples had to be diluted by a minimum of 2 times its

original volume, thereby reducing the overall sensitivity of the

method and the number of detected metabolites.

Metabolon platform. Metabolon developed a platform that

integrates the chemical analysis, including identification and

relative quantification, data reduction, and quality assurance

components of the process. The analytical platform incorporates

two separate ultra-high performance liquid chromatography/

tandem mass spectrometry (UHPLC/MS/MS2) injections and

one GC/MS injection per sample. The UHPLC injections are

optimized for basic species and acidic species. This approach

permitted the detection of 257 small molecules, with total

instrument analysis time of 24 min (two injections at 12 min

each), while maintaining a median process variability for all

compounds of 9%. Metabolon also has the ability to measure

additional compounds that do not currently have a chemical

standard, but this was not done in this study. The resulting MS/

MS2 data were searched against an in-house generated authentic

standard library that included retention time, molecular weight

(m/z), preferred adducts, and in-source fragments, includingtheir

associated MS/MS spectra for all molecules in the library. The

library allowed for the rapid and high-confidence identification of

the experimentally detected molecules based on a multi-parameter

match basis without need for additional analyses. This integrated

platform enabled the high-throughput collection and relative

quantitative analysis of analytical data and identified a large

number and broad spectrum of molecules with a high degree of

confidence [25]. The Metabolon platform has, among other

studies, been successfully applied in the analysis of the adult

human plasma metabolome [32] identification of sarcosine as a

biomarker for prostate cancer [33], and biomarkers of insulin

resistance in a nondiabetic population [34].

Statistical analysis
The statistical analysis system R (Version 2.6.0, http://www.

r-project.org/) was used for metabolome-wide analyses and SPSS

Table 1. Characteristics** of the diabetic and the control
group.

Diabetes Non-diabetes p-value

N 40 60

Age range 55–79 55–79

Age (years) 67.7 [7.2] 65.6 [6.4] .0.05

Cholesterol (mg/dl) 197.17 [40.6] 219.17 [35.4] 0.0066

HDL (mg/dl) 50.50 [16.0] 56.71 [12.9] 0.041

LDL (mg/dl) 120.50 [37.5] 137.81 [35.4] 0.026

Triglycerides (mg/dl) 208.39 [258.3] 157.42 [106.4] .0.05

HbA1c (%)* 5.95 [0.72] 5.29 [0.37] 3.061028

BMI* 30.01 [3.6] 28.31 [3.4] 0.019

Waist-Hip-Ratio* 0.990 [0.049] 0.957 [0.054] 0.0021

*determined at baseline 2004/2005, about 1–2 years prior to sampling for
metabolomics.
**mean [standard deviation].
doi:10.1371/journal.pone.0013953.t001
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for Windows (Version PASW 17.0, Chicago: SPSS Inc.) was used

on a case-by-case basis. Statistical association queries with

phenotype ‘‘diabetes’’ were tested in a linear model using body

mass index (BMI) as a covariate. Partial eta-square values are

reported as a measure of effect size. To correct for multiple testing,

the positive false discovery rate was used by computing q-values

after Storey and Tibshirani [35]. Motivated by our previous

observations [15,28] that the use of ratios may lead to a strong

reduction in the overall variance, we computed and tested all

possible pairs of metabolite concentration ratios. A strong

reduction in p-value (p-gain) indicates that two metabolites may

be linked by a metabolic pathway that is impacted by the diabetes

state of the patients. Dependant variables (metabolite concentra-

tions and concentration ratios) were log-scaled prior to computing

the statistics. Note that testing ratios between two metabolites a

and b is independent of their order, as log(a/b) = 2log(b/a), which

halves multiple testing burden. For concentration ratios, only

statistically significant associations that display a p-gain greater

than 241 are further analyzed. This limit is considered as a

Bonferroni-type conservative cut-off for identifying those metab-

olite concentration pairs for which the use of ratios strongly

improves the strength of association. Un-scaled variables and a

parameter-free Kendall test were also used to confirm the

statistical robustness of the associations. P-values for these tests

are reported as supplementary data.

Covariates
In order to identify a metabolic signature associated with anti-

diabetic treatment at a statistically significant level, the sample size

of our study is still quite small. However, in order to test for

potentially confounding factors, we analyzed the impact of the

following diabetes-related treatments on our results: lipid-lowering

medication (excluding plant based), blood pressure lowering

medication, antidiabetic medication (insulin or oral), statin

treatment, insulin therapy, oral antidiabetic medication, calcium

antagonists, beta blockers, diuretics, and ACE inhibitors. We also

tested the influence of other factors, including age, smoking habits,

body mass index (BMI), waist-hip-ratio, alcohol consumption,

physical activity, and myocardial infarction. Finally, we tested the

effect of antidiabetic medication (insulin or oral), insulin therapy,

and oral antidiabetic medication on the metabolite spectrum for

the diabetic group alone. The details of these additional statistical

tests are provided as supplemental data.

Results

The metabolomic dataset
In the final data set, 482 distinct values of absolute (Biocrates

and Chenomx) or relative (Metabolon) metabolite concentrations

were available for analysis (Figure 1). 50 metabolites were

quantified on more than one platform: Ten metabolites were

measured on the Biocrates and the Chenomx platform, 39 on the

Biocrates and the Metabolon platform, 19 on the Chenomx and

the Metabolon platform, including 9 metabolites that were

measured on all three platforms. Thus, a total of 423 unique

metabolites were quantified on at least one platform. Comparisons

of the 68 duplicate measurements revealed that correlation

coefficients (R) between the platforms showed a median correla-

tion coefficient of 0.61 (Figure S1). In three cases no correlation

was found, indicating that the different techniques may be

measuring different metabolites here de facto. In other cases, very

strong correlation (up to R = 0.95) between at least two of the

platforms was observed, showing that in principle cross-platform

replication may be possible (Figure S2; data provided as Table S1).

Associations of metabolites with diabetes
Table 2 provides metabolites that display significant differences

between the case and the control group after controlling for

multiple testing using the positive false discovery rate [35]

(q-value ,0.05). In total, associations with 482 metabolites were

tested (423 unique), with 201 metabolites from Biocrates, 257 from

Metabolon, and 24 from Chenomx. 32 associations display a

positive false discovery rate that is smaller than 5%, and 114

associations are significant with a p-value smaller than 0.05 (data

provided in Table S2). Table 3 lists metabolite pairs that display

significant increase in the strength of association when using ratios

(p-gain.241), thereby indicating that these metabolite pairs are

possibly linked through some diabetes-related metabolic or

regulatory process. The full set of associations is provided in

Table S3.

In line with our expectations, the strongest positive associations

with diabetes are observed for the numerous sugar metabolites

that were observed on the three platforms. Concentrations of

glucose, mannose, desoxyhexose (primarily deoxyglucose), uronic

acid (primarily glucuronic acid), dihexose (primarily maltose), and

several products from the biosynthesis or the degradation of

glycosylated proteins or glycolipids (H3-HNAc2-NANA, HNAC,

HNAc-H2-dH) are all found increased by up to 90% in the

diabetes group (p = 1.361024 to 2.561029). Furthermore, there is

a significant decrease of average 1,5-anhydroglucitol concentra-

tions by 37.8% (p = 5.161026) in participants with diabetes when

compared to the control group (Figure 2).

Among the numerous glycerophospholipids that are determined

on the Biocrates platform, the phosphatidylcholines PC_aa_C34:4

(p = 6.561024) and the lyso-phosphocholine PC_a_20:4

(p = 1.461023) display marked negative associations with diabetes,

followed by many other PC-species with poly-unsaturated fatty acids

(PUFAs) in their lipid side chains, although with lower, but still

significant strengths of association (PC_ae_C40:1, PC_ae_C36:3,

Figure 1. Venn diagram showing the number of metabolites
common to all three platforms, to two platforms and
metabolites detected specifically by one platform. The identity
of the individual metabolites that are measured on each platform is
provided in Table S2. Note that the metabolites metabolites that are
quantified uniquely on the Biocrates platform carry specific information
on the lipid side-chain composition of the different phospholipid classes
(sometimes also referred to as lipidomics). The Metabolon platform, in
contrast, provides a wider non-targeted, but semi-quantitative coverage
of the general metabolome. NMR presently allows quantifying only a
smaller set of metabolites, but this at a much higher degree of
reproducibility, faster, and without specific sample preparation.
doi:10.1371/journal.pone.0013953.g001
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PC_ae_C38:5, …; see Table S2). On the other hand, phosphatidyl-

ethanolamines with similar lipid side chain compositions

(PE_aa_C34:2, PE_aa_C36:2, PE_aa_C38:4, …) display an increase

in the diabetes group. For example, statistically significant associa-

tions (p = 2.628.361025) are observed in particular when ratios with

beta-hydroxyisovalerate are considered. Concentrations of medium-

chain length fatty acids and arachidonate are on average lower in the

diabetes group, while other long chain fatty acids are higher,

including a number of PUFAs, such as the essential fatty acids linolate

and linolenate (Table 4). Note in particular that arachidonate is

incorporated into the lipid side chains of the above mentioned

(lyso)phosphatidylcholines PC_aa_C34:4 and PC_a_20:4.

The branched chain amino acids (BCAAs) leucine, isoleucine,

and valine as well as their gamma-glutamyl-derivates are all

increased in the diabetes group (Table 5). We observe highly

increased concentrations of the ketone body 3-hydroxybutyrate

(BHBA) in the diabetes group (+53.9% when measured on a MS

platform, +40.6% on the NMR platform). At the same time, the

acetate concentrations are lower, as indicated by the ratio between

acetate and BHBA (p = 1.161024). Association with acetate alone

was not significant. 3-indoxyl sulfate (IS) concentrations are on

average 42.8% higher in the diabetes group (p = 1.761024).

Additionally, creatinine concentrations are found to be increased

by over 16% in the diabetes group. The association of the cysteine

to creatinine ratio with diabetes (p = 1.161026) increases by a

factor of 289.5 when compared to the association of the single

metabolites alone, with cysteine concentrations found decreased in

the diabetes group and creatinine values increased. Similarly, the

association of ratios between cysteine and IS (p = 6.861027)

increases by a factor of 242.7.

Some metabolites were detected in only a limited number of

study participants. Salicyluric glucuronide was detected in 16 of 40

subjects with diabetes and in 8 of 60 controls (two-sided exact

Fisher test: p = 0.0037). In three patients with diabetes, both

pioglitazone and hydroxypioglitazone were detected, confirming

the intake of diabetes-specific medication; whereas none were

observed in the control group. Erythritol, a naturally-derived sugar

substitute, was found to be associated with diabetes in ratios with

Table 2. List of selected metabolites that associate with diabetes at q-values ,0.05 using log-scaled metabolite concentrations
and assuming a linear model; %change is the increase or decrease of the mean in the diabetes group with respect to the control
group; eta2 is the proportion of the total variance that can be explained by the factor ‘‘diabetes’’ in the linear model; N is the
number of valid data points that entered the analysis; the platform on which the corresponding metabolite was measured is
indicated by the first letter of the provider: B = Biocrates, C = Chenomx, M = Metabolon.

Metabolite Pathway %-change N p-value q-value eta2

1,5-anhydroglucitol [M] Sugar 237.8% 98 5.161026 3.261024 19.6%

desoxyhexose (DH) [B] Sugar 40.2% 99 1.361026 9.461025 21.6%

glucose [C] Sugar 39.3% 100 5.061028 7.461026 26.3%

glucose [M] Sugar 28.8% 99 2.561029 1.161026 30.8%

H3-HNAc2-NANA [B] Sugar 90.0% 99 2.461028 5.361026 27.6%

HNAC [B] Sugar 18.0% 99 6.261025 2.861023 15.3%

HNAc-H2-dH [B] Sugar 64.8% 99 8.261028 9.161026 25.8%

uronic acid [B] Sugar 45.8% 99 8.061024 1.761022 11.0%

dihexose (H2) [B] Sugar 65.2% 99 2.761025 1.561023 16.7%

mannose [M] Sugar 34.9% 99 2.461027 2.161025 24.2%

caproate (6:0) [M] Fatty acid, saturated, even 216.1% 99 1.561023 2.761022 9.9%

heptanoate (7:0) [M] Fatty acid, saturated, odd 215.4% 99 5.261024 1.361022 11.7%

pelargonate (9:0) [M] Fatty acid, saturated, odd 212.6% 99 1.961023 2.961022 9.5%

glycerophosphorylcholine [M] Glycerolipid 216.5% 98 4.261024 1.261022 12.2%

PC a C20:4 (alt) [B] Glycerolipid 219.1% 100 1.461023 2.761022 9.9%

PC aa (OH, COOH) C28:4 [B] Glycerolipid 216.4% 100 1.761023 2.861022 9.6%

PC aa C34:4 [B] Glycerolipid 226.0% 100 6.561024 1.561022 11.2%

SM C14:0 [B] Sphingolipid 218.7% 100 1.261023 2.361022 10.2%

SM C22:2 [B] Sphingolipid 216.3% 100 3.361023 4.661022 8.5%

creatinine [M] Creatine 19.4% 99 3.261024 9.661023 12.5%

glutamylvaline [M] Dipeptide 26.4% 99 2.961024 9.661023 12.7%

gamma-glutamylisoleucine [M] g-glutamyl 27.8% 92 6.761024 1.561022 12.1%

3-hydroxybutyrate (BHBA) [M] Ketone bodies 53.9% 99 1.961023 2.961022 9.5%

phenylacetylglutamine [M] Phenylalanine & tyrosine 76.5% 99 6.261025 2.861023 15.3%

phenylalanine [B] Phenylalanine & tyrosine 9.0% 100 2.461023 3.661022 9.0%

3-indoxyl sulfate [M] Tryptophan 42.8% 99 1.761024 6.161023 13.7%

kynurinine [B] Tryptophan 21.8% 100 5.061024 1.361022 11.7%

homocitrulline [M] Urea cycle; arginine-, proline-, 73.4% 85 3.161024 9.661023 14.6%

doi:10.1371/journal.pone.0013953.t002
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cysteine. Phenylacetate was detected in 29 of 40 participants with

diabetes and only in 31 of 60 controls (p = 0.041). Finally,

kynurenine levels are found to be 14.6%–21.8% higher in the

diabetes group. The bile acid cholate was detected in only 28 of 40

Table 3. List of selected metabolite concentration ratios that associate with diabetes at q-values ,0.05 and that display a
significant increase in the strength of association (p-gain.241) after Bonferroni correction; based on log-scaled metabolite
concentration ratios and assuming a linear model.

Lower in diabetes Higher in diabetes Pathway Pathway N p-value q-value eta2 p-gain

1,5-anhydroglucitol [M] desoxyhexose (DH) [B] Sugar Sugar 97 4.761029 9.061026 30.5% 271.6

1,5-anhydroglucitol [M] Dihexose (H2) [B] Sugar Sugar 97 2.061028 1.761025 28.3% 254.3

PC aa C34:4 [B] 3-indoxyl sulfate [M] Glycerolipid Tryptophan 99 2.161027 6.461025 24.3% 775.1

pro-hydroxy-pro [M] phenylacetylglutamine [M] Dipeptide Phenylalanine & tyrosine 99 2.561027 7.161025 24.1% 246.4

heptanoate (7:0) [M] glutamylvaline [M] Fatty acid,
saturated, odd

Dipeptide 99 4.061027 9.861025 23.4% 736.8

SM C14:0 [B] 3-indoxyl sulfate [M] Sphingolipid Tryptophan 99 5.361027 1.261024 22.9% 310.7

cysteine [M] glutamylvaline [M] Cysteine Dipeptide 95 6.661027 1.461024 23.4% 442.9

cysteine [M] 3-indoxyl sulfate [M] Cysteine Tryptophan 95 6.861027 1.461024 23.4% 242.7

caproate (6:0) [M] glutamylvaline [M] Fatty acid, saturated,
even

Dipeptide 99 7.261027 1.561024 22.5% 410.3

cysteine [M] creatinine [M] Cysteine Creatine 95 1.161026 2.161024 22.6% 289.5

cysteine [M] Uronic Acid [B] Cysteine Sugar 94 1.461026 2.461024 22.5% 572.3

cysteine [M] gamma-glutamylisoleucine [M] Cysteine g-glutamyl 88 2.761026 3.861024 22.7% 249.0

cysteine [M] erythronate [M] Cysteine Aminosugars 93 4.361026 5.361024 20.8% 901.2

cysteine [M] erythritol [M] Cysteine Sugar, sugar substitute,
starch

95 7.561026 7.961024 19.5% 656.4

cysteine [M] N-acetylalanine [M] Cysteine Valine & (Iso)Leucine 94 1.561025 1.361023 18.6% 379.9

arachidonate (20:4n6) [M] Isoleucine [C] Fatty acid, polyene Valine & (Iso)Leucine 99 2.061025 1.661023 17.2% 274.4

uridine [M] 2-methylbutyroylcarnitine [M] Pyrimidine Carnitine 87 2.561025 1.861023 19.0% 245.2

beta-hydroxyisovalerate [M] PE aa C34:2 [B] Valine & (Iso)Leucine Glycerolipid 60 2.661025 1.961023 26.5% 949.0

beta-hydroxyisovalerate [M] PE aa C36:2 [B] Valine & (Iso)Leucine Glycerolipid 60 4.561025 2.861023 25.2% 546.0

beta-hydroxyisovalerate [M] PE aa C38:4 [B] Valine & (Iso)Leucine Glycerolipid 60 8.361025 4.361023 23.6% 294.7

uridine [M] 3-methyl-2-oxovalerate [M] Pyrimidine Valine & (Iso)Leucine 99 9.461025 4.861023 14.6% 403.4

doi:10.1371/journal.pone.0013953.t003

Figure 2. 1,5-AG and glucose (measured on Metabolon
platform). Lower 1,5-AG concentrations at higher glucose levels in
participants with diabetes when compared to the control group display the
current role of 1,5-AG as a marker for glycemic control in patients with diabetes.
doi:10.1371/journal.pone.0013953.g002

Table 4. Medium chain-length fatty acids and arachidonate
are on average lower in the diabetes group, while long chain
fatty acids are higher; shown are all fatty acids that associate
with diabetes in at least one ratio pair combination with a
q-value ,5% and a p-gain .1.

Lower in diabetes Higher in diabetes

caproate (6:0) myristate (14:0)

heptanoate (7:0) palmitate (16:0)

pelargonate (9:0) 2-hydroxypalmitate

10-undecenoate (11:1n1) margarate (17:0)

arachidonate (20:4n6) 10-heptadecenoate (17:1n7)

stearate (18:0)

2-hydroxystearate

oleate (18:1n9)

linoleate (18:2n6)

linoleamide (18:2n6)

linolenate (18:3n3 or 6)

eicosenoate (20:1n9 or 11)

dihomo-alpha-linolenate (20:3n3)

adrenate (22:4n6)

doi:10.1371/journal.pone.0013953.t004
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subjects with diabetes and in 53 of 60 controls (two-sided

p = 0.036). Deoxycholate was found in 27 of 40 persons with

diabetes and only in 27 of 60 controls (p = 0.040). Gamma-

muricholate (hyocholic acid) was detected in only 4 of 40 patients

with diabetes and in 16 of 60 controls (p = 0.045).

Small peptides can be detected by the present technology when

present in sufficient concentrations. Fibrinogen alpha chain

peptides (ADpSGEGDFXAEGGGVR and ADSGEGDFXAE-

GGGVR) were found to associate with diabetes (p-value,0.05),

albeit at levels that were not significant after correcting for

multiple testing, and thus require future replication. However,

mentioning this marginal association here is noteworthy since

fibrinogen is a blood-borne glycoprotein. Various cleavage

products of fibrinogen regulate cell adhesion and spreading,

display vasoconstrictor and chemotactic activities, and are

mitogens for several cell types. There is evidence of increases in

fibrinogen peptide in the context of atherosclerotic plaque

progression [36,37].

Discussion

Before discussing the results, we should note the caveats of the

present study. These are mainly due to the history of how this

study was conducted. Consequently, we consider this work as a

pilot for future studies under more controlled conditions. Although

the concept of metabolomics as the science of measuring ideally all

small metabolites in a body fluid has been pioneered as early as

1971 by Linus Pauling [38], performing metabolomics in a high-

throughput setting is a relatively young science. One of our

objectives was therefore to evaluate its potential for use in larger

population studies [39]. Therefore, we submitted blood samples

that had been collected previously to different commercial

metabolomics providers in order to evaluate the signals that can

be detected when the data is compared to the different KORA

phenotypes [29,30]. Unfortunately, standard examinations and

collection of blood samples for metabolomics were separated by

about one to two years (see methods), introducing some

uncertainty with respect to parameters that were measured at

baseline only (e.g. body mass index, HbA1c, waist-hip-ratio,

questionnaires) and not at the time blood was sampled for

metabolomics. Some of these parameters, for instance ‘‘current

medication’’, are analyzed as covariates and results are provided as

Table S4, but should be interpreted considering this caveat.

However, blood lipid parameters were measured in the same

samples as were the metabolites.

Some of the metabolites measured on more than one platform

show only moderate levels of agreement (see results). It is not our

objective here to identify the exact reasons behind these

differences, as this would require access to proprietary information

of commercially operating companies. However, some hypothesis

on possible explanations for the less concordant measurements is

worth noting. Due to material availability serum samples had to be

used for MS, while only sufficient plasma samples were available

for NMR measurements; also the available sample volume was

suboptimal for NMR; the two MS platforms are not using

identical fractionation pattern for the identification of their

metabolites, nor do they use identical sample preparation

methods, so that dependent on the platform, in some cases ion

suppression or interference with signals from other metabolites

may occur. Finally, for funding reasons, we had to limit this study

to 100 male individuals aged above 55 years. Keeping these

caveats in mind, we will now discuss the results obtained in this

study (summarized in Table 6).

Differences in the clinical biochemistry parameters between the

diabetes and the control group are relatively modest (Table 1).

Cases with diabetes had a higher BMI and waist-hip-ratio than

control subjects. However, they did not exhibit strongly adverse

lipid profiles. Total cholesterol and LDL were actually lower in the

diabetes group, possibly a consequence of lipid lowering

medication. The average HbA1c value, albeit measured at the

base examination, was 5.95% in the diabetes group versus 5.29%

in the control group suggesting that the study participants

controlled their disease state relatively well. An important point

to note is that the metabolic signals that can be identified in such a

population study under non-clinical conditions could be expected

to be much more pronounced in a clinical setting and with

undiagnosed diabetes patients or poorly controlled diabetics.

Carbohydrate metabolism
Glucose and many related carbohydrate metabolites were

readily confirmed as a diabetes biomarker. Modified hexoses such

as N-acetylglucosamine, deoxyglucose and glucuronic acid were

all detected at higher serum concentrations in the diabetes group,

mirroring the increased supply of glucose as a precursor for their

biosynthesis. The same effect is observed by elevated maltose

levels. Alterations of glycolipid and glycoprotein biosynthesis and

degradation could possibly lead to increased serum concentrations

of complex sugars, containing N-acetylglucosamine and sialic acid

moieties. 1,5-anhydroglucitol (1,5-AG), the 1-deoxy form of

glucose is a short-term glycemic marker [40,41]. 1,5-AG is

currently used to monitor glycemic control in patients with

diabetes and is a good positive control of this study [42]. Its renal

loss, which is stimulated in hyperglycemic conditions by

glycosuria, results in lowered plasma concentrations. In agreement

with these observations we found a significant decrease of average

1,5-AG concentrations in participants with diabetes when

compared to the control group (Figure 2). A detailed analysis of

such a complex set of sugar metabolites may be combined in

future studies with additional phenotypic information, such as

lifestyle and nutrition pattern, to investigate the metabolism of

these sugar metabolites more specifically in the context of their

role in diabetic arteriosclerosis and hyperglycemia.

Table 5. Difference of average branched chain amino acids
(BCAA) concentrations between the diabetes and the control
group; a positive value %-change indicates higher
concentrations in the diabetes group; where metabolites that
were measured on more than one platform, results from these
platforms are presented separately.

Metabolite %-change p-value

glutamylvaline [M] 26.4% 2.961024

gamma-glutamylisoleucine [M] 27.8% 6.761024

isoleucine [C] 13.6% 7.861023

(iso)leucine [B] 8.3% 0.017

(iso)leucine [C] 13.5% 0.017

leucine [C] 13.5% 0.039

gamma-glutamylleucine [M] 12.3% 0.055

valine [B] 7.0% 0.059

leucine [M] 7.2% 0.087

isoleucine [M] 7.9% 0.095

valine [C] 7.4% 0.15

valine [M] 2.5% 0.55

doi:10.1371/journal.pone.0013953.t005
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Branched chain amino acid (BCAA) metabolism and
gluconeogenesis

The BCAAs leucine, isoleucine, and valine as well as their

gamma-glutamyl-derivates are all increased in the diabetes group,

indicating an impaired short-term metabolic control [43], i.e.

peripheral tissues such as skeletal muscle may have lost their ability

to react to the presence of energy sources by selective uptake

mechanisms. These observations are concordant with what is

measured in diabetic mice, where increased plasma levels of

BCAAs were also found [15], as well as in experimentally diabetic

rats [44] and in insulin-dependent type 1 diabetic human patients

[45]. Gamma-glutamyl derivates are formed in the glutathione-

dependent transport of certain amino acids. This indicates that not

only the levels of these amino acids differ between the groups, but

that also an effect on the transport of these amino acids may be

observed. BCAAs contribute to glucose recycling via the glucose-

alanine cycle [46]. There is a continuous flux of BCAAs from

visceral tissues through the blood to skeletal muscle where

transamination of the BCAAs provides the amino group for

production of alanine from pyruvate with a corresponding

movement of alanine from muscle to liver to support hepatic

gluconeogenesis [47]. Under normal conditions, alanine arising

from BCAA nitrogen likely accounts for 25% of gluconeog-

enesis from amino acids [48]. Diabetic db-/db- mice present

clear evidence of increased gluconeogenesis, visible in strongly

decreased concentrations of the gluconeogenic amino acids

alanine, glycine, and serine [15]. However, such changes are not

observed here. Glycine concentrations are not significantly

different between the two groups; alanine and serine concentra-

tions are even 6–10% higher in the diabetes group. Obviously,

study participants with diabetes do not show significantly increased

gluconeogenesis (limited validity of the mouse model) or the

consumption of the glucogenic amino acids is better compensated

by increased proteolysis.

Perturbation of lipid metabolism
It is known that the characteristic features of dyslipidemia in

humans with type 2 diabetes are high plasma triglyceride

concentration, low HDL cholesterol concentrations and increased

concentration of small dense LDL-cholesterol particles, while total

cholesterol is not increased in patients with diabetes. These lipid

changes in these individuals may be due to an increased free fatty

acid flux secondary to insulin resistance [49]. However, the

perturbations observed here in lipid metabolism reflect the state of

already treated diabetes. Association studies with blood lipid

parameters [Adamski et al., unpublished data, [50]] show that

many PC species associate with HDL and total cholesterol levels

while PE species associate with triglyceride levels. In this study, we

observed lower phosphatidylcholine (PC) and higher phosphati-

dylethanolamine (PE) concentration in the diabetes group matches

the lower HDL and total cholesterol levels and higher triglyceride

levels in this group, indicating that these glycerophospholipids may

provide a more differentiated view of the shifted lipid homeostasis

in patients with diabetes as what can be obtained from the bulk

blood cholesterol and triglyceride parameters alone. Consistent

with this finding, Gall et al. [34] observed reduced levels of

multiple acylglycerophosphocholine species that were highly

correlated with insulin resistance as measured by the euglycemic

clamp.

Mild signals of ketosis can be discerned
The two common ketones produced in humans are acetoacetic

acid and b-hydroxybutyrate [51]. Acetoacetic acid was not

measured in this study. In the diabetes group we observe highly

increased concentrations of the ketone 3-hydroxybutyrate (BHBA).

At the same time, the acetate concentrations are lower, as

indicated by the ratio between acetate and BHBA. Traditionally,

in clinical practice hyperketonemia and diabetic ketoacidosis were

predominant medical conditions in persons with type 1 diabetes.

However, newer data reveal that hyperketonemia or diabetic

ketoacidosis can also co-exist with hyperglycemia in patients with

type 2 diabetes [52]. Ketogenesis, the formation of ketone bodies

from lipid breakdown and deamination of amino acids, occurs

after depletion of the hepatic glycogen pool. In the case of

diabetes, this can be related to glucose defective absorption,

related to insulin deficiency. The concentrations of ketones

observed here probably do not correspond to a state of diabetic

ketoacidosis, but indicate that the diabetes group shows signals of

mild ketosis. A similar phenotype has previously been observed in

a clinical biomarker study on metabolic syndrome patients (three

or more ATP criteria) where the carnitine ester of BHBA was

found at significantly elevated concentrations as compared to

healthy controls (Weinberger, unpublished data).

Table 6. Overview of findings.

Observation (relative to the control group) Interpretation

Increased sugar metabolites Impaired insulin sensitivity

Reduced 1,5-anhydroglucitol Short term marker of glycemia

Decreased PCs, increased PEs Compatible with lower HDL/total cholesterol and higher triglyceride levels in patients with diabetes

Decreased medium chain-length fatty acids and arachi-
donate, increased longer chain fatty acids and PUFAs

Modification of lipid homeostasis

Increased BCAAs Increase in glucose-alanine cycle = Impaired short-term metabolic control!

Increased 3-hydroxybutyrate Marker of ketosis

Increased creatinine, 3-indoxyl sulfate, detection of pheny-
lacetate, strengthened association for cysteine to creatinine
and to 3-indoxyl sulfate ratios

Marker of nephritis, kidney function impairment and nephropathy

Detection of pioglitazone and hydroxypioglitazone, sali-
cyluric glucuronide, and erythritol

Detection of diabetes-specific xenobiotics

Reduced detection of cholate and gamma-muricholate,
increased detection of deoxycholate

Higher activity of primary into secondary bile acid conversion by gut flora?

doi:10.1371/journal.pone.0013953.t006
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Early signals of impaired renal function
3-indoxyl sulfate (IS), which is higher in the diabetes group, is

metabolized by the liver from indole, which is produced from

tryptophan by the intestinal flora. IS shows nephrotoxicity and is a

stimulating factor for progression of chronic renal failure (CRF)

[53,54]. Additional evidence for the onset of diabetic nephropathy

are creatinine concentrations, which are found to be increased

.16% in the diabetes group. Creatinine is produced in muscle

and is often increased in diabetic nephropathy. Assuming that

higher creatinine and IS values are indicators for impaired renal

function, these findings are in agreement with previous work that

shows that glomerular filtration rate (GFR) is the rate-limiting

factor for renal clearance of cysteine in patients with diabetes but

without overt nephropathy, and that hyperfiltration explains lower

than normal mean plasma total cysteine concentrations in patients

with diabetes [55]. Moreover, another study [56] suggests that an

observed increase of plasma homocysteine concentration with age

could be partly due to the deterioration of renal function. Our

results suggest that the cysteine to creatinine and the cysteine to IS

ratios are indicators of deterioration of renal function in diabetes

patients and support the idea that endogenous amino acid

catabolites, such as IS, may play a significant role in the

progression of chronic renal failure. Furthermore, phenylacetate

was more often detected in the diabetes group in this study.

Phenylacetate is a carboxylic acid ester that has been found in the

biofluids of patients with nephritis [57]. Taken together, these

results suggest that signals of the onset of renal failure can be

detected in the diabetes group, although, as we have already

pointed out in the case of ketosis, the concentrations we observe

here are still in the range that would not yet be considered as

pathogenic, but rather represent ‘‘mild’’ or ‘‘early’’ phenotypes.

These findings now need to be further verified by a quantitative

analysis from retrospective studies, especially in the light of recent

findings that L-cystine stone prevention by rational design of

crystal growth inhibitors may be possible [58].

Diabetes-specific medication can be identified
In our study salicyluric glucuronide was more frequently detected

in subjects with diabetes. Salicyluric glucuronide is the product of

the hydrolysis of acetylsalicylic acid in liver, blood and some other

organs. Detection of increased levels of this drug metabolite is

plausible considering subjects with diabetes more frequently use

drugs such as acetylsalicylic acid due to their high risk for

cardiovascular complications [59]. Furthermore, both pioglitazone

and hydroxypioglitazone were detected in individuals with diabetes

only, confirming the intake of diabetes-specific medication. In

addition, the association with erythritol could indicate a more

frequent use of sweetener by patients with diabetes. Thus,

metabolomics does not only allow the detection of naturally

occurring diabetes-related compounds, but also allows for an

external assessment of medication and intake of other xenobiotic

substances when such information is not available otherwise.

Bile acids (BAs) that can be transformed by gut bacteria
are less often detected in patients with diabetes

Cholate was detected more frequently in the control group than

in the diabetes group, while the opposite was true for deoxycholate.

Along with chenodeoxycholic acid, cholic acid is one of two primary

bile acids produced exclusively in the liver where it is synthesized

from cholesterol. Deoxycholate, also known as cholanoic acid

(3a,12a-dihydroxy-5b-cholanate), is one of the secondary bile acids

and constitutes a significant part of the circulating BA pool in

humans (35%). These secondary BAs can be either passively

absorbed to enter the BA pool or being excreted in the faeces. The

fecal loss of BAs, which is compensated for by de novo BA

biosynthesis in the liver to maintain pool size, represents a major

route for cholesterol turnover. Therefore, the present findings may

indicate that patients with diabetes exhibit alterations in the

composition of the bile acid pool, and their related biosynthetic

pathways, possibly including a higher rate of conversion of primary

to secondary bile acids by the gut microflora. Stemming from the

Figure 3. A systemic view of metabolic markers that associate with diabetes in this study. The coverage of the metabolome’s diversity
allows the detection of systemic metabolic imbalances, thereby providing a disease specific picture of human physiology.
doi:10.1371/journal.pone.0013953.g003
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data observed here, this hypothesis is in agreement with the fact that

the gut microbiota composition can be different between controls

and individuals with diabetes [60].

Limitations of the present study
The challenges of interpreting metabolic profiling data in a human

population include the following two points. First, a human

population is expected to display a much more heterogeneous

metabolic makeup as compared to inbred animal models under

laboratory conditions, with different environmental factors, lifestyle

and genetic background being the major contributors. Second,

human patients with diabetes will react to their diagnosed diseased

state in many ways, for example by differentially changing their

nutritional habits, level of physical exercise, and by intake of a variety

of anti-diabetic and cardiovascular-protective medications. Despite

these pronounced heterogeneities within a human diabetic popula-

tion, the present study with a limited sample size was nevertheless able

to detect many differences between patients and controls in metabolic

profiles from different pathways, lending deeper insights and

increased sensitivity for detection of a diabetic metabolic state. Many

observations presented here are consistent with what is known about

diabetes – but not necessarily at clinical levels. The participants of this

study represent a random sample of the general population, not a

specific selection of diabetes patients with acute or clinical symptoms.

They are more likely to have their diabetes under control, thereby

representing relatively mild, or possibly earlier phenotypes.

Conclusion
Our study represents the first multi-platform approach to the

metabolome-wide analyses of diabetes in a general population. The

identification of biomarkers allowing prediction of disease progres-

sion and its complications from such studies would be certainly

beneficial. However, for the caveats discussed above, we feel that

this study should be considered as a pilot for future work. One major

finding of our work is the identification of a series of known, and also

some novel, deregulated metabolites that associate with diabetes

under sub-clinical conditions in the general population. These

metabolites have been discovered by integrative metabolomics

applying different platforms including nuclear magnetic resonance

(NMR) and mass spectrometry (MS). Out of the multitude of

metabolites measured, a holistic view of differences reflecting global

variations in pathophysiology emerges from our study. The

coverage of the metabolome’s diversity allows the detection of

systemic metabolic imbalances, thereby providing a disease-specific

picture of human physiology (Figure 3). A pronounced increase in

the sample size in future studies will likely allow for further detection

of other metabolites of unrecognized associations with diabetic

pathways. Finally, our study shows how functional metabolomics

can contribute to obtaining a more sophisticated classification of the

disease as well as rational optimization of diagnostic and treatment

options, as recently suggested by Bain et al. [4].
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