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Abstract

Background: It is a commonly accepted belief that cancer cells modify their transcriptional state during the progression of
the disease. We propose that the progression of cancer cells towards malignant phenotypes can be efficiently tracked using
high-throughput technologies that follow the gradual changes observed in the gene expression profiles by employing
Shannon’s mathematical theory of communication. Methods based on Information Theory can then quantify the divergence
of cancer cells’ transcriptional profiles from those of normally appearing cells of the originating tissues. The relevance of the
proposed methods can be evaluated using microarray datasets available in the public domain but the method is in principle
applicable to other high-throughput methods.

Methodology/Principal Findings: Using melanoma and prostate cancer datasets we illustrate how it is possible to employ
Shannon Entropy and the Jensen-Shannon divergence to trace the transcriptional changes progression of the disease. We
establish how the variations of these two measures correlate with established biomarkers of cancer progression. The
Information Theory measures allow us to identify novel biomarkers for both progressive and relatively more sudden
transcriptional changes leading to malignant phenotypes. At the same time, the methodology was able to validate a large
number of genes and processes that seem to be implicated in the progression of melanoma and prostate cancer.

Conclusions/Significance: We thus present a quantitative guiding rule, a new unifying hallmark of cancer: the cancer cell’s
transcriptome changes lead to measurable observed transitions of Normalized Shannon Entropy values (as measured by
high-througput technologies). At the same time, tumor cells increment their divergence from the normal tissue profile
increasing their disorder via creation of states that we might not directly measure. This unifying hallmark allows, via the the
Jensen-Shannon divergence, to identify the arrow of time of the processes from the gene expression profiles, and helps to
map the phenotypical and molecular hallmarks of specific cancer subtypes. The deep mathematical basis of the approach
allows us to suggest that this principle is, hopefully, of general applicability for other diseases.
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Introduction

In a seminal review paper published nine years ago, Hanahan

and Weinberg [1] introduced the ‘‘hallmarks of cancer’’. They are six

essential alterations of cell physiology that generally occur in

cancer cells independently of the originating tissue type. They

listed: ‘‘self-sufficiency in growth signals, insensitivity to growth-inhibitory

signals, evasion of the normal programmed-cell mechanisms (apoptosis),

limitless replicative potential, sustained angiogenesis, and finally, tissue

invasion and metastasis’’. More recently, several researchers have

advocated including ‘‘stemness’’ as the seventh hallmark of cancer

cells. This conclusion has been reached from the outcomes of the

analysis of high-throughput gene expression datasets [2,3]. The new

role of stemness as a hallmark change of cancer cells is also

supported by the observation that histologically poorly differen-

tiated tumors show transcriptional profiles on which there is an

overexpression of genes normally enriched in embryonic stem

cells. For example, in breast cancer the activation targets of the

pluripotency markers like NANOG, OCT4, SOX2 and c-MYC

have been shown to be overexpressed in poorly differentiated

tumors in marked contrast with their expression in well-

differentiated tumors [4].

Other authors suggest different hallmarks, with many papers

pointing alternative processes as their primary focus of their

research. The difference may stem from the fact that these authors

prefer to cite as ‘‘key hallmarks’’ physiological changes which occur

at a ‘‘lower level’’ scale closer to the molecular events. These

authors cite, for example, ‘‘mitochondrial dysfunction’’ [5,6] (including,

but not limited to ‘‘glucose avidity’’ [7] and ‘‘a shift in glucosemetabolism

from oxidative phosphorylation to glycolysis’’ [6,8], ‘‘altered glycolysis’’ [9],

‘‘altered bioenergetic function of mitochondria’’ [10]), ‘‘dysregulation of cell

cycle and defective genome-integrity checkpoints’’ [11], ‘‘aberrant DNA

methylation’’ [12] (‘‘promoter hypermethylation of hallmark cancer genes’’

[13] and ‘‘CpG island hypermethylation and global genomic hypomethyla-

tion’’ [14]), ‘‘shift in cellular metabolism’’ [15,16,17], ‘‘regional hypoxia’’

[18], ‘‘microenviroment acidosis’’ [19], ‘‘abnormal microRNA regulation’’
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[20,21], ‘‘aneuploidy’’ and ‘‘chromosome aberrations’’ [22,23,24,25,26],

‘‘disruption of cellular junctions’’ [27], ‘‘avoidance of the immune response’’

[28], ‘‘pre-existing chronic inflammatory conditions’’ [29,30], ‘‘cancer-

related inflammation’’ [29], ‘‘disabled autophagy’’ [28], ‘‘impaired cellular

senescence’’ [31], ‘‘altered NF-kappaB signalling’’ [32], ‘‘altered growth

patterns, not altered growth per se’’ [33], ‘‘disregulated DNA methylation and

histone modifications’’ [34], ‘‘tissue dedifferentiation’’ [35,36], and

‘‘somatically heritable molecular alterations’’ [37]. This research enriches

the list of the most important cancer hallmarks. However, these

physiological changes occur at a ‘‘lower’’ molecular level they are

likely related sub events of the orginial seven instead of newly

discovered ‘‘key hallmarks’’. More recently, Luo et al attempted a

‘‘stress-based’’ description of some of the hallmarks in terms of

‘‘stresses’’ (‘‘DNA damage/replication stress, proteotoxic stress, mitotic stress,

metabolic stress, and oxidative stress’’) [38]. While this is an interesting

descriptive grouping, it is still a phenotypical characterization.

What is needed is a higher level unifying genotypical character-

ization, from which individual disregulated processes can be

identified in a quantitative way using the existing high-throughput

data capture methodologies. It is clear that a unifying hallmark is

needed if we aim at quantifying the cell’s progression. It is then

evident for us that a unifying mathematical formalism is necessary

to uncover the cell transcriptome’s progression from a normal to a

more malignant phenotype.

We start our quest assuming an implicit working hypothesis

common to many research groups around the world: the macroscopic

physiological changes (i.e. Hanahan and Weinberg’s ‘‘hallmarks’’) must also

correlate with global alterations of the molecular profiles of gene transcription.

It is also assumed that the ‘‘hallmark changes’’ occur along a certain

timeline, but that some of the sub-processes discussed before are

concurrent. These processes may start in a slow incremental way

with some of the major changes being early events while others

(e.g. tissue invasion and metastasis) are likely later processes

triggered by new events during cancer progression. The timeline is

not explicit and it is also likely that cancer subtypes progress to

similar timelines. In some cases the sequence of events are better

understood (e.g. some leukaemia subtypes [39]). The elicitation

and regulation of molecular events is likely to be an ongoing quest

during this century for many types of cancer.

It is not to be assumed that some of the transitions of the

transcriptome are gradual. That is a hypothesis that is unnecessary

in this study. We envision that the progression of cancer may have

‘‘switches’’, with a number of concurrent converging events leading

to macroscopic observable changes in the gene expression profile

resulting in dramatic variations of expression patterns. For

instance, these molecular switches could not be characterized by

an ‘‘oncogene’’ but by a large number of the genes that have

changed its transcriptional state. These abrupt changes may be

triggered by the confluence of several non-linear interactions, and

are likely to be related to the physiological hallmarks we refer to

above.

The presence of macroscopic observable changes that are

computable from a large number of relatively smaller changes

mean that it may be possible to find an objective mathematical formalism to

infer the turning point at which these radical changes occur.

It is then evident that computing the Jensen-Shannon divergences,

the Normalized Shannon Entropy, and the Statistical Complexity of

samples reveal different global transcriptional changes. It is,

however, not easy to infer if these changes would correlate with a

gradual progression or sudden changes. However, one valid

mathematical possibility is that the most important ‘‘hallmark of

cancer’’, a unifying principle above all, is the existence of a

measurable gradual ‘‘progression’’ from a well-differentiated gene

expression profile (corresponding to a healthy tissue). This would

reveal the timeline of a higher level process that is observable and

measurable via a change of Normalized Shannon Entropy and an

increment of Jensen-Shannon divergences from the originating tissue

type. If this is the case, by correlating the changes in Information

Theory quantifiers with the expression of the genes we would be

able to not only uncover useful biomarkers to track this

progression but to explain the ‘‘hallmarks’’ in an ordered timeline.

The timeline also yields clinical and translational important

outcomes. Such analytical methodology will naturally produce ‘‘a

continuous staging’’ of the cancer samples, based on a solid

foundations of Information Theory, based on the knowledge of

transcriptional profile of healthy cells as reference to measure

divergences. In addition, as a mathematical methodology, it can be

applied to other high-throughput technologies for which a probability

distribution function of observed abundances has been computed.

With these ideas in mind, we provide a ‘‘transcriptomic-driven’’

method revealing important biomarkers for cancer progression a

direction of time for which they are presented. The method,

however, is generalizable to other type of high-throughtput techonologies

(e.g. proteomic studies). We have chosen two types of cancers to

study which are almost at the antipodes in terms of progression

rates: prostate cancer and melanoma.

Prostate cancer progresses very slowly. Pathological samples are

common in autopsies of men as young as 20 years old. By the age

of 70 more than 80% of men have these alterations, a fact that

already shows a relationship of this cancer type with increasing

age. The clinical management of prostate cancer requires the

identification of the so-called Gleason patterns in the biopsies [40],

which after almost fifty years is still ‘‘the sole prostatic carcinoma grading

system recommended by the World Health Organization’’. However,

undergrading, underdiagnosis, interobserver reproducibility and

variable trends in grading have been observed as major problems

[41,42]. Melanoma, on the other hand, differs from prostate

cancer in its rapid progression [43] and it is considered one of the

most aggressive types of cancer. One of melanoma’s usual markers

of progression and concern (i.e thickness) is measured in

millimetres, which gives a rough idea of how devastatingly fast

the disease can spread.

We will present our results starting with one prostate cancer

dataset, followed by another in melanoma, to come back to the

prostate cancer discussion using another highly relevant dataset.

This is a departure from the alternative approach in which each

disease is discussed in separate sections. However, after consider-

ing several possibilities, we are convinced that our approach is the

most appropriate to showcase the technique and its power. Details

on the datasets and methods used are given in the ‘Materials and

Methods’ section of this paper. We also refer to the original studies

and manuscripts associated to the three datasets we analysed.

Results

Prostate Cancer – Lapointe et al.’s dataset (File S1)
The first dataset is the one from Figure one in Lapointe et al.

[44]. This data is available from http://microarray-pubs.stanford.

edu/prostateCA/images/fig1data.txt and supplemen-tary materi-

al is also available from http://microarray-pubs.stanford.edu/

prostateCA/.

In the original study, the authors used a cDNA microarray

technology that allowed them to measure gene expression of several

thousand genes on 112 samples, including 41 normal prostate

specimens, 62 primary prostate tumours and 9 lymph node

metastases. From that set, a subset of 5,153 probes were selected

as differentiating prostate cancer samples from normal and

metastases (this is the set from figure one in Lapointe et al. [44]

Cancer: The Entropic Hallmark

PLoS ONE | www.plosone.org 2 August 2010 | Volume 5 | Issue 8 | e12262



and available at the web address given above). After imputation of

missing values, we first calculated the Normalized Shannon Entropy and

the MPR-Statistical Complexity for the each sample.

The flowing section explains the context in which our results

were generated (refer to the ‘Materials and Methods’ section for

detail on how our quantities are computed). The Normalized

Shannon Entropy measure is widely used in ecosystem modelling to

quantify species diversity, where it is acknowledge as having great

sensitivity to relative abundances of species in an ecosystem [45].

We utilise the same sensitivity to differentiate a samples in cancer

datasets. Figure 1 shows that the Normalized Shannon Entropy of

prostate cancer tumor samples do not differ much from normal

samples. This is in contrast to lymph node metastasis samples that

appear to have smaller values of Normalized Shannon Entropy.

A mathematical interpretation of this result is that the samples

from lymph node metastases have cells that not only varied their

transcriptomic profile, they have also ‘‘peaked’’ the distribution of

expression values with significant fold increases on a smaller

number of probes. This explains the reduction in Normalized

Shannon Entropy. We note that there are several mechanisms that

can explain a macroscopically observable global reduction of

transcription. For instance, this may indicate that a relatively large

number of genes have reduced their expression levels by genome

damage, changes in gene regulation, or other silencing processes.

It is reassuring to observe that the changes of the most prototypical

quantitative measure we can draw from Information Theory, the

Normalized Shannon Entropy correlate well with the transition

between normal samples with to ones with metastases. However,

it is also evident from that normal samples do not differentiate

much from the tumor group (the Normalized Shannon Entropy values

do not differ much). It is then not the number of genes with high

expression values, but the change in the distribution of expression

levels on the molecular profile, that can provide the other measure

that could distinguish these other samples. This must be handled

by the other statistical complexity measures to be discussed next.

Several statistical complexity measures can be defined which

aim to clarify our argument. We will first discuss the results of

computing the MPR-Statistical Complexity measure (in the previous

figure the y-coordinates correspond to the MPR-Statistical Complexity

values of each sample). The MPR-Statistical Complexity is propor-

tional to both the Normalized Shannon Entropy associated to the

transcription profile and the Jensen-Shannon’s divergence between that

probability density function and the uniform probability distribu-

tion. Again, we refer the reader to the ‘Materials and Methods’

section for an explanation of how these magnitudes are computed.

Although the results of using the MPR-Statistical Complexity might

not seem particularly impressive, there are a few reasons why we

introduce them at this stage. We want to illustrate a fact that can

already be observed when we employ this measure on this dataset.

In this dataset, for a given entropy value interval, normal tissue

samples tend to have relatively lower MPR-Statistical Complexity

values than tumor and lymph node metastasis. This means that

both prostate cancer and metastases samples diverge from a ‘‘more

uniform’’ distribution indicating that the distribution ‘‘peaks’’ in

fewer active genes. It also means that, in terms of Jensen-Shannon’s

divergence, the transcriptional profile of a normal prostate cell

sample is ‘‘closer’’ to a uniform distribution than to the one that is

observed in a prostate cancer cell sample.

The reader will readily argue, and with reason, that the

transcriptional profile of a normal cell is tissue-specific and that it

hardly resembles that of a uniform distribution of expression

values. That is correct and this observation motivates the

introduction of two new statistical complexity measures. We

generically call these two variants as ‘M-complexities’ (with ‘M’

standing for ‘‘modified’’). They have the same functional form as the

MPR-Statistical Complexity, but instead of computing the Jensen-

Shannon’s divergence from a uniform probability distribution we

compute it against an ad hoc probability distribution functions

derived from the data. In this sense, these measures are more

supervised then the MPR-Statistical Complexity is. Another perspec-

tive is that the MPR-Statistical Complexity is a special case of this

measure in which the ad hoc probability distribution function of

reference is the equiprobability distribution. The relevance of this

measure derives from being a general definition that allows

Figure 1. The Normalized Shannon Entropy and the MPR-Statistical Complexity for each of the 112 samples in Lapointe et al. [44].
Metastatic samples have typically lower values of Normalized Shannon Entropy than normal samples and prostate cancer primary tumors. The
reduction in Normalized Shannon Entropy indicates that there exists a significant reduction on the expression of a large number of genes, or that the
gene profile of metastatic samples has a more ‘‘peaked’’ distribution (due to the upregulation of a selected subset of genes). Both possibilities just
cited are not mutually exclusive. We also note that neither the Normalized Shannon Entropy, nor the MPR-Statistical Complexity (as a single
unsupervised quantifier), can help differentiate between tumor and normal samples, indicating that other Information Theory quantifiers are required
for this discrimination.
doi:10.1371/journal.pone.0012262.g001
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accommodating several different reference states. We will use it to

measure divergences to the ‘‘initial’’ and ‘‘final’’ transcriptomic

states (two states of reference). Taken as computed averages over

normal samples, and respectively metastatic ones, these measures

will allow tracking the processes of differentiation of a cancer cell

from a particular tissue type.

For example, using Lapointe et al.’s dataset, the M-Normal

statistical complexity quantifier first requires the computation of

the probability distribution function of the average gene expression

profile of all normal prostate samples. Afterwards, the Normalized

Shannon Entropy and the Jensen-Shannon’s divergence of any sample

profile will be computed using the divergence to that averaged

normal distribution. Analogously, we compute the M-Metastases

statistical complexity quantifier by first calculating the average

profile of the metastases samples, and then generating the

corresponding probability distribution function, finally computing

the Jensen-Shannon’s divergence with that profile. We refer to the

‘Materials and Methods’ section for details of the calculations.

The results can be observed in Figure 2. On the x-axis, the

lymph node metastases have the largest values of M-Normal

indicating a divergence from the normal profile. In addition, the

M-metastases values of normal samples tend to be higher than most

of the metastasis samples (with the exception of only one).

Figure 2 shows a gradual progression of the samples positions on

this plane from a well-differentiated tissue type specific profile, first

to a more heterogeneous primary tumor cluster, and finally to an

even less differentiated metastatic profile.

The result presented in Figure 2 shows that the prostate cancer

samples, which are not metastases and therefore could have been

scattered anywhere on the plane, are clustered on a particular

confined area between the two other groups. We understand that

there are reasons to be sceptical about this result being not just a

simple consequence of the gene selection process used by Lapointe

et al. For example, if we assume that the 5,153 probes singled out by

Lapointe et al. in their figure one of Ref. [44] (and that constitute

our original data) have been selected with a supervised method

that try to distinguish between normal and metastases, then the

relative position of normal and metastases samples is perhaps

something to be expected. However, even under that assumption,

what is not expected is the position of all primary tumor prostate

cancer samples, linking the normal cluster of samples with the

metastases one. Note that the definition of both the M-Normal and

M-Metastases measures do not use any information from the

primary tumor prostate cancer samples, so the location of these

samples between the normal cluster and the metastases, bridging

them naturally is something to highlight. Together with Figure 1,

it gives evidence that supports the working hypothesis that a

gradual ‘‘progression’’ occurs, from the normal tissue specific

profile to the metastasis one.

Indeed, following our line of argument, Figure 2 has even more

relevance when we highlight the fact that the 5,153 probes have not

been selected with a supervised method. The authors say that the only

selection criteria was to single out the 5,153 cDNAs whose

expression varied most across samples. In the supplementary notes

of their paper the authors say: ‘‘We included for subsequent analysis only

well measured genes whose expression varied, as determined by (1) signal

intensity over background .1.5-fold in both test and reference channels in at

least 75% of samples, and (2) 3-fold ratio variation from the mean in at least

two samples; 5,153 genes met these criteria.’’ As a consequence, Figure 2

has been generated without class selection bias only using the

genes that have the most varied expression pattern.

We now turn to another aspect of the statistical complexity and

entropy analysis. We note that Figure 2 shows that the metastases

samples have a clear reduction on Normalized Shannon Entropy in

comparison with the values observed for the normal samples. At

the same time, metastases samples, as expected, have higher M-

normal complexity than the normal samples (Figure 2). It is then

interesting to evaluate the value of the Jensen-Shannon divergence of

Figure 2. M-Normal against M-Metastases for the samples in Lapointe et al. [44]. We have seen in Figure 1, that the Normalized Shannon
Entropy and the MPR-Statistical Complexity differentiate the metastatic samples from the normal samples, but that these two measures can not help
to discriminate the primary tumors from the normals. We show here the results of two statistical complexity measures which are in some sense
supervised (i.e. dependent on the dataset being interrogated). We call these two stastical mesured M-Normal and M-Metastases. They have the same
functional form of the MPR-Statistical Complexity, but they use the average normal and average metastatic profile as probability distribution functions
of reference. As a consequence, the M-normal and M-metastases are directly proportional to the Jensen-Shannon divergences with the normal (and
respectively with the metastatic) gene expression profile. It is remarkable that, although we are using these end processes only (from Lapointe et al’s,
dataset of 5,153 probes6112 samples), most of the primary tumor samples appear as a transitional state between the normal and metastatic group.
This is remarkable since the primary tumor samples were not used to define the M-normal and M-metastases measures and, in principle, the samples
could have been located anywhere in the (M-normal, M-metastases)-plane. Computation of correlations of the probe expressions values can help us
identify genes which are highly correlated with a divergence from the normal expression profile and, at the same time, converge towards the average
metastatic profile.
doi:10.1371/journal.pone.0012262.g002
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these samples and to identify the genes that most correlate with the

variations of Jensen-Shannon divergence to quantify one of the factors

that is related to the statistical complexity changes.

We have computed the correlation of the gene expression

profile corresponding to each of the 5,123 probes. For each of the

5,123 probes, we computed both the Pearson correlation (x-axis of

Figure 3) and the Spearman correlation (y-axis of Figure 3) of each

probe profile with the Jensen-Shannon divergence having as probability

distribution of reference that of a metastasis profile (these values

are called JSM2-Pearson and JSM2-Spearman in the accompanying

Excel file provided). With this data, we have produced Figure 3, a

scatter plot of the values associated to each probe. In this figure,

there are two probes that are immediately recognizable by any

cancer researcher, and in particular for those in prostate cancer:

KLK3/PSA (Prostate Specific Antigen) and FOS.

The interpretation of these scatter plots is not immediate and

needs an introductory explanation. Each dot corresponds to one

probe of the array. For example, a dot that is very close to the

origin of coordinates (0,0) indicates a probe such that its pattern of

gene expression (across all samples) is not correlated with the

Jensen-Shannon divergence to the average profile of a metastasis

pattern. It is, in essence, a probe which is highly uninteresting in

this regard. Probes that have a high correlation, across all samples,

either positive or negative with the Jensen-Shannon divergence to the

average profile of a metastasis pattern are highly informative.

They ‘‘co-express’’ with this measure.

Although we provide in the supplementary material the

information corresponding to all probes, we will discuss just a

few of them. This will allow the reader to understand these plots

and will put our results in the perspective with current research in

prostate cancer. We particularly highlight the position of KLK3/

PSA, FOS and CCL2. To our surprise, we have found which is

perhaps the most famous biomarker in prostate cancer KLK3/

PSA (Kallikrein-related peptidase 3), probe G_914588 (correla-

tions of 20.9312 and 20.9000 respectively). FOS and KLK3/

PSA are the second and the fourth most negatively correlated

probes in this ranking of all the genes in the microarray. With

opposite signs for correlations are CDKN2D, FOXM1, and

BRCA2. The following is a discussion of a selection of probes

(highlighted in Figure 3) in the context of prostate cancer.

CDKN2D (Cyclin-dependent kinase inhibitor 2D, p19,

inhibits CDK4). One of the genes that has strong positive

correlations is CDKN2D, (Cyclin-dependent kinase inhibitor 2D,

p19, inhibits CDK4) (Pearson correlation of 0.7543, Spearman correlation

0.6833), probe G_145503. A gene that shows a positive correlation

with the divergence of a metastasis profile indicates a gene that has a

putative reduced expression on these samples. CDKN2D is a

known regulator of cell growth regulator and controls cell cycle G1

progression [46,47]. Loss of CDKN2D in cancer cells is one event

which is generally associated to a more malignant phenotype.

FOXM1. Another probe that presents positive correlations is

FOXM1 (Forkhead box M1), with Pearson correlation of 0.7039

and Spearman correlation 0.7500), probe G_564803. It has been

recently shown that the depletion of FOXM1 still allows cells to

enter mitosis but they are unable to complete cell division. As a

consequence this leads to mitotic catastrophe or endoreduplication

[48]. FOXM1 is considered a key regulator of a transcriptional

cluster which is that is essential for proper execution of the mitotic

program and the control of chromosomal stability [49].

BRCA2 - (Breast cancer 2, early onset). Another gene with

positive correlations is BRCA2 (Breast cancer 2, early onset),

probe G_193736, with Pearson correlation of 0.8161 and Spearman

correlation 0.7333). While the loss of BRCA2 function and its

consequences in prostate cancer is being reconsidered

[50,51,52,53], BRCA2 is generally regarded as a ‘‘tumor

suppressor’’, with an established role in maintaining genomic

stability via its function in the homologous recombination pathway

for double-strand DNA repair. This result is supporting its

proposed function. Loss of BRCA2 function is thus a warning

sign of the existence of error prone cell processes. In prostate

Figure 3. A scatter plot of each of the 5,123 probes of the dataset contributed by Lapointe et al. We have computed the Pearson and
Spearman correlation of each probe expression (across samples) with the Jensen-Shannon divergence of each of the samples with the average
metastasis profile (these values are called JSM2-Pearson and JSM2-Spearman in the accompanying Excel file provided). One of the clinically most
relevant markers for prostate cancer (KLK3/PSA) together with FOS, CCL2/MCP-1, SOX9 and a probe for LOC51334 (mesenchymal stem cell protein
DSC54) appear with highly negative Spearman and Pearson correlations values, indicating that they are negatively correlated with the Jensen-
Shannon divergence from the average metastatic profile. BRCA2 (highly regarded as a tumor suppressor in cancer research), FOXM1 (a putative
regulator of the mitotic program and the control of chromosomal stability [49]), and CDKN2D (a CDK4 inhibitor) in opposition with KLK3/PSA, seems
to be positively correlated. As will be seen later in the analysis of the melanoma dataset, these positive correlations with the Jensen-Shannon
divergence from the average metastatic profile indicate a possible dysregulation of these critical processes for which these genes have key roles.
doi:10.1371/journal.pone.0012262.g003
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cancer BRCA2 has been associated to promotion of invasion

through upregulation of MMP9 [54]. BRCA2 loss of function due

to mutations is linked to poor survival in prostate cancer [55] and

rare germline mutations have been associated with early-onset of

prostate cancer [56].

CCL2/MCP-1 (chemokine (C-C motif) ligand 2). Bone is

one of the most common sites of prostate cancer metastasis; close

to 85% of men who die of prostate cancer have bone metastasis

[57]. The successful metastatic process to bone follows from the

activation of osteoclasts with bone resorption, which in turns leads

to the release of different growth factors from the bone matrix

[58]. CCL2 has been previously reported as expressed in human

bone marrow endothelial cells; the CCL2 stimulation promotes

prostate cancer cell migration and proliferation [57,59] and it has

been proposed as a paracrine and autocrine factor for invasion

and growth of prostate cancer [60]. As a consequence of this

central role in the tumor microenvironment, CCL2 is being the

object of several studies and is included in the list of potential

targets for novel therapies [60,61,62,63,64,65,66,67,68,69].

FOS (V-fos FBJ murine osteosarcoma viral oncogene

homolog). A probe for FOS (G_811015; correlations of

20.9380 and 20.9500 computed with Pearson and Spearman)

has a similar correlation than KLK3/PSA. The high rank of FOS

was unexpected, but perhaps it is less of a surprise for some

experienced researchers in prostate cancer as its role has been

highlighted in the past [70,71,72]. Amplification of members of

the MAPK pathway was associated with androgen independent

prostate cancer, and co-expression of RAF1, ERBB2/HER2 and

c-FOS would lead to this phenotype [73].

We will not discuss in depth the known relationships between

FOS, Lamin A/C and prostate cancer. We leave this discussion

for later, as Lamin A/C will also appear in our study of the other

prostate cancer dataset studied in this paper. Lamin A/C appears

as a member of a set of genes with reduced expression for higher

grade primary prostate cancer samples (note that the current

analysis that gave FOS as a biomarker is on lymph node metastatic

samples like here). However, we would like to point out a

connection that is currently hypothesized between Lamin A/C

and FOS, the gene we have just discussed. Ivorra et al. have

recently proposed that ‘‘lamin A overexpression causes growth arrest, and

ectopic c-Fos partially overcomes lamin A/C-induced cell cycle alterations. We

propose lamin A/C-mediated c-Fos sequestration at the nuclear envelope as a

novel mechanism of transcriptional and cell cycle control’’ [74]. In addition:

‘‘c-Fos accumulation within the extraction-resistant nuclear fraction (ERNF)

and its interaction with lamin A are reduced and enhanced by gain-of and loss-

of ERK1/2 activity, respectively.’’ [75]. These novel interactions

between LMNA and FOS, their putative role in prostate cancer

metastasis and their seemingly different behaviours in prostate

cancer lymph node metastases warrant further investigation.

SOX9 (SRY (sex determining region Y)-box 9). This

transcription factor has been recently identified as having an

importat role during embryogenesis and in the early stages of

prostate development [76,77] and in testis determination [78],

processes that link SOX9 upregulation to cancer development

[79]. Basal epithelial cells do express SOX9 in a normal prostate.

While there exists no detectable expression in lumina epithelial

cells, SOX9 has already been reported as ‘‘expressed in primary

prostate cancer in vivo, at a higher frequency in recurrent prostate cancer and in

prostate cancer cell lines (LNCaP, CWR22, PC3, and DU145)’’ [80].

Wang et al., also in [80] add that: ‘‘Significantly, down-regulation of

SOX9 by siRNA in prostate cancer cells reduced endogenous AR protein levels,

and cell growth indicating that SOX9 contributes to AR regulation and

decreased cellular proliferation. These results indicate that SOX9 in prostate

basal cells supports the development and maintenance of the luminal epithelium

and that a subset of prostate cancer cells may escape basal cell requirements

through SOX9 expression.’’ An increased value of SOX9 expression in

advanced prostate cancer has been associated to tumor

progression and the epithelial-mesenchymal transition [81].

SOX9 expression has been associated with a putative subgroup

of prostate cancer [82], associated to lymph-node metastasis (as

seems to be the case in this dataset) and has a know role in

chondrogenic differentiation processes [83].

KLK3/PSA – (Kallikrein-related peptidase 3)/Prostate

Specific Antigen. To finalize our initial discussion on this

dataset, we address KLK3. The high ranking of KLK3/PSA in

our list is perhaps one of the most remarkable retrodictive

outcomes of our approach. KLK3/PSA (also known as Prostate

Specific Antigen) is a conspiquous member of our top rank list. It is

perhaps the best blood biomarker for prostate cancer screening. Its

relevance and popularity as a target of studies is so wide that it

makes unfeasible any serious attempt to uncover its relevance in

the prostate cancer literature. A search using PubMed using the

keyword ‘KLK3’ (and the other alias names of this gene) reveals a

total of 11,429 published papers. Of course, many of these

publications relate to its role for early screening, but in this study

we are uncovering its role as a tissue biomarker. Our results echoes

a recent contribution by S. Miyano’s and his collaborators [84] on

a massive meta-analysis of microarray datasets. It is also in line

with results from clinical studies that indicate that a 5-year PSA

value is useful for predicting prostate cancer recurrence. Stock et

al. recently concluded that ‘‘patients with a PSA value ,0.2 ng/mL are

unlikely to develop subsequent biochemical relapse’’. Denham et al.,

studying data from radiation-treated patients on the TROG 96.01

clinical trial, found that on 270 patients there were two distinct

‘‘PSA-signatures’’. These two different dynamical patterns

(characterized as ‘‘single exponential’’ or ‘‘non-exponential’’)

stratified the population. Those patients in the second group

(50% of the total) ‘‘had lower PSA nadir (nPSA) levels (p,.0001), longer

doubling times on relapse (p = .006) and significantly lower rates of local

(hazard ratio [HR]: 0.47, 95% confidence interval [0.30–0.75],

p = .0014) and distant failure (HR: 0.25[0.13–0.46], p,.0001), death

due to PC (HR: 0.20[0.10–0.42], p,.0001) and death due to any cause

(HR: 0.37 [0.23–0.60], p,.0001)’’ [85]. Certainly the dynamics of

PSA, now perhaps with FOS and SOX9 added to the set of

biomarkers of interest, warrant further investigation for patient

population stratification after initial treatment.

The biomarkers discussed in this section warrant further

investigation in prediction of lymph-node metastasis and clinical

management of prostate cancer [86,87,88,89,90,91,92,93,94,95,

96,97,98,99,100,101,102,103,104,105,106,107,108,109]. We refer

the reader to the Supplementary Material to have a complete list

of probes and their correlations with the Information Theory

quantifiers.

Melanoma – Haqq et al.’s dataset (File S2)
The following sections present the results that we obtained with

a melanoma dataset. Our aim is to observe if variations of the

Normalized Shannon Entropy and the statistical complexity measures,

MPR-complexity and the modified forms M-normal and M-metastases,

provide interesting results in a different disease and experimental

setting.

In this case we have selected a gene expression dataset from

Haqq et al. [110] containing information of 14,772 cDNAs in 37

samples (Figure two from the [110]). The 37 samples include 3

normal skin, 9 nevi, 6 primary melanoma and 19 melanoma

metastases. This datasets has more phenotypical characteristics for

the group of samples.
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After an initial process of data cleaning, we removed 35 probes

which had an unsually high expression value on only a few

samples, in some cases on a single one. The dataset we work with

from original contributed by Haqq et al.consists of 14,737 probes.

First, we computed the Normalized Shannon Entropy and the MPR-

Statistical Complexity for each sample (refer to the ‘Materials and

Methods’ section for a detailed presentation of these calculations).

Figure 4 shows the values of these quantifiers for each sample.

We first observe an important difference between Figure 1 and

Figure 4. In this melanoma dataset, neither the use of the

Normalized Shannon Entropy nor the MPR-complexity helps to

discriminate between normal skin, nevi, primary and metastastic

melanomas. Nevertheless, we decided to present this figure for

methodological reasons. We envision that some researchers will

calculate the Normalized Shannon Entropy and MPR-complexity using

all the probes. We note that in Figure one of Haqq et al’s original

paper, the whole probe set was previously filtered by selecting

those which vary across samples, thus indicating that they may

have information about disease subtypes (although the phenotypic

types were not biasing the selection). In this case we want to

illustrate both the Normalized Shannon Entropy and MPR-complexity

calculated using all the probes does not give the expected benefits.

We will now see the benefits of using the M-complexities.

As we did for prostate cancer (see Figure 2), we aim at

identifying if the use of the modified forms of the statistical

complexity (the M-complexities) could give some insight where the

Normalized Shannon Entropy and MPR-complexity measures fail. To

compute the M-normal measure, we need to define the average

gene expression profile for a normal cell (which we call Pave). We

thus resort to the three normal skin profiles and we produce the

average based on these profiles (details for computing the average

profiles are given in the ‘Materials and Methods’ section). We call

M-skin the resulting measure that relies on this profile. Analo-

gously, we need to compute a pattern for M-metastasis, and we

proceed to calculate the Pave profile averaging over the 19

metastases samples. The result is encouraging, as samples plotted

in the (M-skin, M-metastasis)-plane cluster in groups, showing an

important M-skin complexity transition between normal skin cells

and nevi. Most importantly, this method naturally shows that

some of the metastatic samples have a large value of M-skin

complexity, so we present the results of another experiment, aimed

at clarifying this fact.

In their original publication, Haqq et al. classified the

melanoma metastases in two groups due to their molecular

profiles: five samples were classified as ‘Type I’ and fourteen as

‘Type 2’ based on a hierarchical clustering approach. Our result

reinforced the view that the Type II melanomas metastasis is a

pretty homogeneous group, we will present the results on the (M-

skin, M-metastasis I)-plane. This means that now the Pave profile will

not be obtained by averaging over the 19 metastases samples, but

instead using only the 14 samples which have been labelled as

‘Type II’. As such, we aim at revealing if Type I samples are

indeed different in this plane, and if other clusters are also present.

Figure 5 presents the results. The first fact worth commenting is

the pronounced gap between normal skin samples and the nevi,

primary, and metastatic melanoma samples as revealed by the M-

skin measure. Note also that the M-skin is based on the average

profile that of the normal samples, which indicates that no

information about the profiles of metastasis are used, yet M-skin

reveals that increasing values of this measure may be linked with a

‘progression’ from nevi to primary and metastasis melanoma

profiles.

We now introduce another useful technique to identify genes

which correlate with the transitions. The challenge is to find genes

which are related with the progression towards metastases profiles,

even when we recognize that there the group of metastasis samples

is heterogeneous (containing at least two groups). Since the final

outcome of Figure 4 and Figure 5 is that the Normalized Shannon

Entropy does not help much in this experimental scenario, we will

concentrate only on one of the multiplicative factors of the M-

complexities, the Jensen-Shannon divergence. We compute two Pave

profiles, one with the normal skin samples only, and the other with

all the metastasis samples (regardless their type). We will call the

two divergences JSM0 and JSM5 respectively. We then compute

the Spearman correlation of the profile of all gene probes in the

array across the 37 samples to both JSM0 and JSM5. We have

listed all probes according to the absolute value of the difference of

these correlations, i.e. Abs. Diff. (probe) = |JSM0(probe)2JSM5

Figure 4. Scatter plot of the samples of the melanoma dataset contributed by Haqq et al. It presents the MPR-Statistical Complexity of
each sample as a function of its Normalized Shannon Entropy. This dataset contains information of 14,737 probes and 37 samples. The samples
include 3 normal skin, 9 nevi, 6 primary melanoma and 19 melanoma metastases (these samples are 5 of melanoma metastasis ype I and 14 of type II,
as labelled by Haqq et al). Following Haqq et al’s original classification, the two types of melanoma metastases they identified are presented with
different color coding. The plot illustrates that in this case, the Normalized Shannon Entropy does not help to differentiate the normal to metastatic
progression (as it happened in the case of prostate cancer). We will show in Figure 5 that the modified statistical complexities M-skin and M-
metastasis allow visualizing a clearer transitional pattern.
doi:10.1371/journal.pone.0012262.g004
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(probe)| in decreasing order. The results are provided as Haqq-

PLoSONE-SupFile.xls, in the sheet labelled ‘Results-correlation’.

The rationale is to identify those probes which are highly

correlated (both positively or negatively) with the Jensen-Shannon

divergence of the normal tissue profile and that ‘‘reverse signs’’. For

instance, a probe for the TP63 gene (Tumor protein p63,

keratinocyte transcription factor KET), AA455929, is ranked in

the third position. Its correlation with the Jensen-Shannon divergence

of the normal skin type is relatively high and negative

(JSM0 = 20.63632) while at the same time is has a positive

correlation with the Jensen-Shannon divergence of the metastasis

profile (JSM5 = 0.62138). In the ranking, the first probe that

presents the opposite behaviour is one for ADA (Adenosine

deaminase), AA683578. Figure 6 helps to understand the

relationship of these correlations with expression. Not only are

these genes well correlated with the divergences, they also seem to

be good markers of the progression from one tissue type profile to

the metastasis profile.

We will now discuss three of these genes in the context of current

biological knowledge on melanoma drivers and metastatic progres-

sion. We provide many references for one of them, SPP1 (Secreted

phosphoprotein 1 or Osteopontin). The discussion on this gene will

be left for later, when we will discuss specifc oncosystems related to

cell proliferation, chemotaxis and responses to external simulus.

Figure 7 shows the expression of ADA (Adenosine deaminase,

AA683578) as a function of TP63 (keratinocyte transcription factor

KET, AA455929). All normal skin samples, as well as nevi and a

couple of primary melanomas have relatively low values of ADA but

they express TP63. There is a change of roles in metastatic and

some primary melanomas, which have reduced TP63 expression

but increased values of expression of ADA. As we will later see, these

events correlate with other major transcriptional modifications

which involve dozens of genes and that we have been able to map

thanks to functional genomics bioinformatics tools. The role of

SPP1 will be discussed in that context after some references to

TP63, ADA, and PLK1 which follow.

TP63. The product of this gene [111,112] belongs to the same

protein family of its more famous relative, TP53, a gene that is

often mutated in human cancers [113] and highly regarded as a

key ‘‘tumor suppressor’’. TP63’s product, p63, is a homologous

protein to p53, which is considered to be phylogenetically newer

[114] and also regarded as an important apoptotic and cell-cycle

arrest protein. Mice that lack TP53 are born alive with a

propensity for developing tumours; mice that lack TP63 do not

appear to be tumour prone, although, new results are partially

contradicting earlier findings [115]. It appears that the diverse

roles of the isoforms of the p63 family reveal that there exists a

crosstalk with the different isoforms of the p53 family that needs to

be systematically investigated [116]. It has recently been shown

that p63 is a key regulator of the development of stratified

epithelial tissues [113] and that its deletion results in loss of

stratified epithelial and of all keratinocytes [117]. Melanocytes also

express two isoforms of p63 [118], but p63 expression is not

reported in 57 out of 59 tumors in a tissue microarray study

performed by Brinck et al. [119]. It is clear that the the role of loss

of expression of TP63 in melanoma warrants further investigation.

ADA - (Adenosine deaminase) and DPP4/CD26 (Dipeptidyl-

peptidase 4, CD26, adenosine deaminase complexing protein

2). A link between TP63 and ADA has already been reported in

the literature. ADA is a gene involved in cell division and

proliferatation [120] and it has been suggested to have a

regulatory role in dendritic cell innate immune responses

[121].Translational modification is also a function of p63. Sbisa et

al. have proved that ADA is a direct target of isoforms of p63, which

is an important discovery as ADA has two TP53 binding sites,

leading to a complex metabolic balance due to the different

relationships between this trio and p21 yet to be completely

elicitated [120,122]. Several studies indicate elevation of adenosine

deaminase levels in sera of breast [123], head and neck [124],

colorectal [125], acute lymphoblastic leukaemia [126] and laryngeal

cancers [127].

We observe a marked increase of expression of a probe for ADA

with melanoma progression while at the same time we observe a loss

of expression of a probe corresponding to DPP4/CD26 (Dipeptidyl-

peptidase 4, CD26, adenosine deaminase complexing protein 2), a

membrane-bound, proline-specific serine protease [128] that has

Figure 5. Scatter plot of the melanoma sample dataset of Haqq et al. This is the same set of samples of Figure 4 and we have used the same
color coding. We are now using the modified statistical complexity measures M-skin and M-metastasis II. As expected, normal skin samples (in green)
have a low value of the M-skin measure. Interestingly, most of the nevi samples (in yellow) have an intermediate value of the M-skin measure, and
most of the primary and metastatic samples have even larger values of M-skin. This result, together with our observation and analysis of Figure 4,
indicate that the Jensen-Shannon divergence of melanoma samples from the normal skin profile may be a relevant measure to quantitatively analyse
progression even when the whole gene expression dataset is used. We observe that, although the M-metastasis II measure has used all the samples
labelled as Type 2 (in Haqq et al.’s original contribution), their position in this plane shows two different clusters. This may indicate that a further
heterogeneity may exist in this subgroup, a fact that warrants further study with a larger group of samples.
doi:10.1371/journal.pone.0012262.g005
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been attributed tumor suppressor functions [129]. It has been

previously reported that loss of DPP4 immunostaining helps to

discriminate malignant melanomas from deep penetrating nevi, a

variant of benign melanocytic nevus [130] and early reports of their

absence in metastatic melanomas exist [131,132]. As deep

penetrating nevi can mimic the vertical growth phase of nodular

malignant melanoma, and ADA could potentially be downregulat-

ing DPP4 [133,134] we believe that the elicitation of the

complementary role of these two biomarkers to distinguish these

two entities is necessary and also warrants further clinical studies.

PLK1 (Polo-like kinase 1 (Drosophila)). Another probe for

gene that ranks high as a positive marker of metastasis is PLK1,

Polo-like kinase 1, Serine/Threonine protein kinase 13

(AA629262). PLK1 is a centrosomal kinase [135] which is

Figure 7. Scatter plot showing the expression of the probe corresponding to ADA (Adenosine deaminase), AA683578 (y-axis) and
TP63 (Tumor protein p63), AA455929 (x-axis). All the samples that have TP63 expression are normal or nevi, with two primary melanomas still
preserving TP63 expression but with higher ADA. The trend reverses for the rest of the primary melanoma samples and the metastatic ones, which all
express ADA but not TP63.
doi:10.1371/journal.pone.0012262.g007

Figure 6. A scatter plot of the Spearman correlation of 14,737 probes in the Haqq et al. melanoma dataset. We have computed the Jensen-
Shannon divergence of each sample with the normal skin average. We then computed the correlation of each individual probe expression with the
Jensen-Shannon divergence of each sample. As this correlation is computed on all samples, the resulting value (x-axis) was denoted as JSM0A-Spearman.
Analogously, we compute the Jensen-Shannon divergence of each sample with the average metastastic profile and we also compute the correlation of
each probe with this measure (y-axis). The position of one probe corresponding to the TP63 gene (Tumor protein p63, keratinocyte transcription factor
KET), AA455929, is highlighted. The expression of this probe has a relatively high negative correlation with the Jensen-Shannon divergence of the normal
skin type (JSM0-Spearman = 20.63632) while at the same time is has a positive correlation with the Jensen-Shannon divergence of the metastasis profile
(JSM5 = 0.62138). The first probe that presents an opposite behaviour is one for ADA (Adenosine deaminase), AA683578. Probes for SPP1 (Secreted
phosphoprotein 1 or Osteopontin) and PLK1 (Polo-like kinase 1 or Drosophila) are also highlighted. While PLK1 is currently less recognized as a
biomarker in melanoma research, the importance of SPP1 in cutaneous pathology [315,318,320,321] and in particular in melanoma
[208,209,210,211,212,214,215,216,217,218,219,222,226,264,314,315,316,317,319,322,323,324,325,326,327,328,804,805,806,807,808,809] is increasing. Us-
ing a 5-biomarker panel that included SPP1, Kashani-Sabet et al. used tissue microarrays on 693 melanocytic neoplasms to show that SPP1 expression
collaborates significantly improving the detection of high percentage of melanomas arising in a nevus, Spitz nevi, dysplastic nevi and misdiagnosed
lesions [253]. Like in the case of prostate cancer (Figure 3, in which KLK3/PSA - Prostate Specific Antigen was highlighted), our method allows the
detection of important biomarkers with a high degree of concordance with current biological understanding of metastatic processes.
doi:10.1371/journal.pone.0012262.g006
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regarded as being linked to centrosome maturation and spindle

assembly [135]. PLK1 expression has also been singled out as a

biomarker of a ‘‘death-from-cancer’’ signature, sharing with others

the function of being an activator of mitotic spindle check point

proteins. With other proteins it would has a stem cell-like

expression profile phenotypically characterized by enabling

metastasis with anoikis resistance and disregulated cell-cycle

control [136]. PLK1 inhibition could be a common target for

gastric adenocarcinoma [137], bladder cancer [138], colon cancer

[139,140], hepatocellular carcinoma [141], medullary thyroid

carcinoma [142], esophageal cancer [143], pancreatic cancer

[144] and in some types of non-Hodgkin lymphomas [145] and

breast cancer [146].

PLK1’s Spearman correlation with the values of the Jensen-

Shannon divergence of samples with the normal skin profile is

relatively high (0.5863). PLK1 also has a high value of (negative)

Spearman correlation with the values of the Jensen-Shannon

divergence of samples with the average metastatic profile

(20.44571). In 2002 Kneisel et al. have conducted a study to

investigate the expression of PLK1 in very thin melanomas

(smaller or equal to 0.75 mm). On 36 patients, within five-years of

follow-up, 22 melanomas developed metastases while 14 did not.

In the comparison, it was found that metastatic malignant

melanomas with expressed PLK1 at markedly elevated levels

(median, 60.00% vs. 37.98%; p-value,0.000053), concluding that

PLK1 is a reliable biomarker for patients at high risk of metastases,

even when the most important prognostic clinical factor (Breslow’s

maximum thickness of the primary malignant melanoma) indicates

the contrary [147]. We consider this an important finding as

PLK1 silencing is already part of an integrated oncolytic

adenovirus approach currently being studied in mice models of

orthotopic gastric carcinoma [148] and has promise due to the

lack of a reported measurable immune response of siRNA-based

therapeutics [149]. Another positive note is the less sensitivity to

PLK1 depletion of cells with a functional p53 [150,151], and can

help to sensitize cells to chemotherapy (as observed in lung cancer

[152]). This constraint of aneuploid cancer cells to PLK1

expression, particularly in cells with inactivated p53 [153], could

be exploited by lentivirus-based RNA interference [154].

Correlation analysis with Jensen-Shannon divergences reveals biomarkers for

loss of cell adhesion, cell-cell communication, impairment of tight junction

mechanisms and dysregulation of epithelial cell polarity.

As discussed before, the probe for ADA (Adenosine deaminase)

is the first that has a different trend. Since we put all metastasis

samples together in the same group when we calculated the

average probability profile (and we have a heterogeneous group)

we have on our ranking 58 probes that appear before ADA (we

refer to the Supplementary File Haqq-PLoSONE-SupFile.xls). An

analysis using GATHER (http://gather.genome.duke.edu/) [155]

to interpret the collective influence of the lack of expression of all

these genes in the metastasis samples reveals an interesting new

perspective. Using Gene Ontology, we found that six of the 44

genes identified by GATHER are related to epidermis develop-

ment (CDSN, DSP, EVPL, GJB5, KRT13, KRT5), p-value

,0.0001, Bayes Factor 16, and eight genes are related to cell

adhesion (CDSN, CLDN1, DSG1, DST, LGALS7, LRIG3,

PCDH21, PKP1), p-value,0.0001, Bayes Factor 7. ANK1 (Ankyrin

1, erythrocytic), AA464755 was also singled out as by our Gene

Ontology analysis as related to the maintenance of epithelial cell

polarity (p-value = 0.002, Bayes Factor 3). The use of another profiler

of genome signatures (g:Profiler, [156]) also reinforces the view

that many genes that have lost expression are related to ‘Epidermis

Development’ (COL17A1, DSP, EVPL, GJB5, KRT13, KRT5,

LCE1C, MAFG, TGM3) with p-value = 7.78E-11. Thirteen are

associated with Gene Ontology function of cell communication

(ANK1, CDSN, CLDN1, DSG1, DST, GCHFR, GJB5, GPR115,

LGALS7, LRIG3, PCDH21, PKP1, PTGER3), albeit with a p-

value of only 0.02. GCHFR is also involved in nitric oxide

metabolism.

If we add to the list of 44 genes already recognized by

GATHER the other 77 probes that after ADA in this ranking have

also loss of expression (until we found PDXP (Pyridoxal

(pyridoxine, vitamin B6) phosphatase), the evidence is stronger,

now COL7A1, GJB5, KLK4, and KRT1 also is in this group (the

Bayes factor of this association returned by Gather is now 21 for

the GO term ‘Epidermis development’). ‘Cell adhesion’ has now 13

genes, CDSN, CLDN1, COL7A1, DSC2, DSG1, DST, JUP,

LGALS7, LRIG3, PCDH21, PKP1, SLIT3 THBS3 (p-val-

ue,0.001, Bayes factor 10). These results are considered

statistically very relevant as identifiers of a particular process

which seems to be undermined by this collective loss of expression.

If we put all this information together, we clearly observe a

pattern of downregulation of gene expression that is associated

with an impairment of epidermis development and the main-

tainance of its structure (Figure 8 and Table 1). This is, perhaps,

an instantiation of one of the ‘‘extended hallmarks of cancer’’ (that

of ‘‘tissue dedifferentiation’’). This process includes the loss of function

of genes that are essential for the maitainance of tight junction and

epithelial cell-cell communication. While loss of epithelial structure

is related to these genes, we observe that those that increase

expression are associated to other developmental processes, not

necessarily concerted in this panel. Instead they show a pattern of

increasing cell motility, chemotaxis and positive regulation of cell

proliferation. We will first discuss the processes related to the loss

of adhesion, which could be linked to an increased probability of

metastatic potential of these cells.

The loss of expression of Plakophilin 1, Junction plakoglobin, Desmoplakin

and Desmoglein 1 indicate deficiencies in desmosome processes.

In general, this panel is composed of a number of genes that are

losing expression during progression and that have Gene Ontology

annotations related to tight junctions, gap junctions, adherens

junctions and desmosomes, and an impaired set of processes that

link, via intercellular channels and bridges, the cells of the

epidermis. Mutations in these genes are linked to a number of skin

genetic diseases [157,158,159,160,161,162,163,164,165,166,167,

168,169,170]

The desmosome are cell-cell adhesive junctions which provide a

mechanical coupling between cells. These junctions are found in

several epithelial tissues and the decreased assembly of the

desmosome has been shown to be a common feature of many

epithelial cancers [171,172]. Plakoglobin helps to connect

transmembrane elements to the cytoskeleton [173]. Plakophilin 1

[174] (PKP1, one of the genes in our panel above) is a desmosomal

plaque component [175] that stabilizes desmosomal proteins at the

plasma membrane [176,177] and, with desmoplakin [178],

recruits filaments to sites of cell-cell contacts [179]. As a

consequence, it has been proposed that the lack of PKP1 increases

keratinocyte migration [180] and loss of PKP1 expression in head

and neck squamous cell carcinoma and in esophageal squamous

cell carcinoma may contribute to an invasive phenotypic

behaviour [171], perhaps as a consequence of the impaired

recruitment of desmoplakin.

The desmoglein-specific cytoplasmic region (DSCR) is the site

of caspase cleavage during apopotosis and is a conserved region of

yet undefined function and unknown structure, but it specifies the

function of the desmoglein family of cell adhesion molecules (of

which DSG 1 is a member). It has been recently shown that the

DSCR has a weak interaction with PKP1, Plakophilin 1
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(ectodermal dysplasia/skin fragility syndrome) and the cytoplasmic

domain of Desmocollin 1 [181]. Plakoglobin is cleaved by Caspase

3 during apoptosis [182]. In addition, Kami et al. in Ref [181] also

report and conclude that: ‘‘desmoglein 1 membrane proximal region also

interacts with all four DSCR ligands, strongly with plakoglobin and

plakophilin and more weakly with desmoplakin and desmocollin 1. Thus, the

DSCR is an intrinsically disordered functional domain with an inducible

structure that, along with the membrane proximal region, forms a flexible

scaffold for cytoplasmic assembly at the desmosome’’.

As previously discussed, all these genes progress towards a loss of

expression, and they are highly correlated. Figure 9 shows the

average expression of PKP1/Plakophilin 1 (ectodermal dysplasia/

skin fragility syndrome), (NM_000299) and JUP, Junction

plakoglobin, (BX648177) on the x-axis against that of DSP,

Desmoplakin (NM_004415 Hs.519873) on the y-axis. Again, we

see a clear pattern of progressive reduction of expression from

normal skin and nevi (green and yellow, respectively), primary

melanomas (in orange) and melanoma metastases (red).

Joint loss of expression of Claudin 1 and members of the Aquaporin family

are also linked to a transition to a more malignant phenotype

We note however, the Gene Ontology annotation is not the only

way that we can make sense of this information. A detailed analysis

of that list of 58 genes reveals other proteins involved in tight

junction, like Aquaporin 3 (AQP3). Probes for AQP3 and Claudin

1 (CLDN1) have reduced expression with the progression of the

disease as shown in Figure 10.

AQP3 (Gill blood group) is a member of the aquaporin

family of proteins, and currently is recognized as an ‘aquaglycer-

oporin’ [183] of great importance to maintain skin hydration of

mammals epidermis [184]. Three proteins of this family (AQP1,

AQP3, and AQP9) have probes that seem correlated with

melanoma progression, all losing their expression in the process

of going from normal skin to metastatic melanoma. AQP3 water

channels have been pointed out as an essential pathway for

volume-regulatory water transport in human epithelial cells [185].

AQP3 is also selective for the passage of glycerol and urea and it

has been suggested that osmotic stress up-regulates AQP3 gene

expression in cultured keratinocytes [186]. AQP3 was found to be

the predominant aquaporin in human skin which increased

expression and altered cellular distribution of AQP3 in eczema

thus contributing to water loss [187]. The putative involvement of

aquaporins in the progression of melanoma, uncovered by our

method in our results, warrants further investigation as it has been

recently shown that another member of this family (AQP8) also

facilitates hydrogen peroxide diffusion across membranes [188]. It

is suspected that AQP3 has other functions with a suggestion that

it is involved in ultraviolet radiation induced skin dehydration

[189]. There is no probe for AQP8 in Haqq et al.’s dataset that we

could scrutinize from its trend with progression but we note that a

novel strategy for drug development for melanoma (i.e. Ele-

sclomol) works by inducing apoptosis via a mechanism of elevation

of reactive oxygen species (of course, including hydrogen peroxide

in cancer cells) thus exploiting the ‘‘Achilles hell of cancer metabolism’’

[190].

Claudin 1, CLDN1 [191], a gene which is reported to be

‘‘normally expressed in all the living layers of the epidermis’’ [192], in

concert with AQP3, is a key component of the tight junction

complexes of the epidermis. Low CLDN1 gene expression was

correlated with shorter overall survival in lung adenocarcinoma.

Overexpression of CLDN1 was correlated with suppression of

cancer cell migration, invasion and metastasis [193]. Hoevel et al.

report that re-expression of CLDN1, in breast tumor spheroids,

induces apoptosis and they conclude: ‘‘These findings support a

potential role of the tight junction protein CLDN1 in restricting nutrient and

growth factor supplies in breast cancer cells, and they indicate that the loss of

the cell membrane localization of the tight junction protein CLDN1 in

carcinomas may be a crucial step during tumor progression’’ [194]. Tokes et

al.also report that malignant invasive breast tumors are negative

Figure 8. Heat map of the expression of 27 probes with genes annotated showing functions on cell adhesion, cell-cell communication,
tight junction mechanisms and epithelial cell polarity. The average expression of the skin samples is shown in green. In yellow, the nevi samples,
showing that some of them have a reduced average expression. The primary melanomas have a mixed behaviour (orange columns) with four of them
having almost zero of negative average expression. The metastatic samples (columns in red) have all a negative average expression. Overall the figure
indicates a progression, from the positive average expression of this gene panel for nevi and normal skin samples, towards negative expression
values of the metastatic samples, ‘‘passing’’ through the mixed behaviour present in primary melanomas.
doi:10.1371/journal.pone.0012262.g008
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Figure 9. Shows the average expression of PKP1 and JUP. The joint expression of the probe for PKP1 (Plakophilin 1 - ectodermal dysplasia/
skin fragility syndrome - NM_000299) and the probe for JUP (Junction plakoglobin - BX648177), as added values on the x-axis, against the expression
of the probe for DSP (Desmoplakin - NM_004415 Hs.519873) on the y-axis. There is a clear common downregulation trend of these biomarkers from
the normal skin (Skin) to the nevi (MN) and to the primay melanoma and metastic melanoma samples (PM and MM respectively).
doi:10.1371/journal.pone.0012262.g009

Table 1. Gene names and probe accession number of the 27 probes with genes annotated with functions on cell adhesion, cell-cell
communication, tight junction mechanisms and epithelial cell polarity shown in the heat map in Figure 8.

THBS3 NM_007112 Hs.169875 Thrombospondin 3

TGM3 AK290324 Hs.2022 Transglutaminase 3 (E polypeptide, protein-glutamine-gamma-
glutamyltransferase)

SLIT3 BC098388 Hs.604116 Slit homolog 3 (Drosophila)

PTGER3 NM_198715 Hs.445000 Prostaglandin E receptor 3 (subtype EP3)

PKP1 NM_000299 Hs.497350 Plakophilin 1 (ectodermal dysplasia/skin fragility syndrome)

PCDH21 NM_033100 Hs.137556 Protocadherin 21

MAFG NM_002359 Hs.252229 V-maf musculoaponeurotic fibrosarcoma oncogene homolog G (avian)

LRIG3 AY358288 Hs.253736 Leucine-rich repeats and immunoglobulin-like domains 3

KRT 5M21389 Hs.433845 Keratin 5 (epidermolysis bullosa simplex, Dowling-Meara/Kobner/Weber-
Cockayne types)

LGALS7 BM913998 Hs.558355 Lectin, galactoside-binding, soluble, (galectin 7)

LCE1C NM_178351 Hs.516429 Late cornified envelope 1C

KRT13 CR591347 Hs.654550 Keratin 13

JUP BX648177 Hs.514174 Junction plakoglobin

GPR115 NM_153838 Hs.710050 G protein-coupled receptor 115

GJB5 AK129509 Hs.198249 Gap junction protein, beta 5, 31.1kDa

GCHFR BQ054887 Hs.631717 GTP cyclohydrolase I feedback regulator

EVPL NM_001988 Hs.500635 Envoplakin

DST NM_183380 Hs.631992 Dystonin

DSP NM_004415 Hs.519873 Desmoplakin

DSG1 NM_001942 Hs.2633 Desmoglein 1

DSC2 BC063291 Hs.95612 Desmocollin 2

COL17A1 NM_000494 Hs.117938 Collagen, type XVII, alpha 1

CLDN1 NM_021101 Hs.439060 Claudin 1

CDSN NM_001264 Hs.556031 Corneodesmosin

ANK1 NM_000037 Hs.654438 Ankyrin 1, erythrocytic

doi:10.1371/journal.pone.0012262.t001
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for CLDN1 [195]. As in breast cancer [196], in which reduced

expression correlated with recurrence status, the low expression of

CLDN1 and other tight junction proteins seems to contribute to

cellular detachment.

The complementary set of correlations with the Jensen-Shannon divergences

unveils biomarkers for cell proliferation, chemotaxis, and responses to external

simulus.

If the use of Gene Ontology has produced very peculiar results,

helping us to link the loss of expression of 44 genes with a

significant change in epithelial structure and development. A

natural question arises: ‘‘Which is the significance of another set, now

arbitrarily chosen to be also of the same cardinality (i.e 44 genes) with the

complementary behavioural pattern?’’ We have now listed all the probes

according to Diff. (probe) = JSM0(probe)2JSM5(probe) in decreasing

order. The results are provided as Haqq-PLoSONE-SupFile.xls

(‘Results-correlation’ sheet). This now gives ADA as the first

ranked gene. Again using GATHER [155] on the first 44 genes

recognized by the software, and again using Gene Ontology, we

observe as most important common function that of cell motility

(CCL3, CXCL10, FPRL1, SEMA6A, SPP1), p-value = 0.0002,

Bayes Factor 5, and chemotaxis (CCL3, CKLFSF7, CXCL10,

FPRL1, SPP1), p-value,0.0001, Bayes Factor 7. The genes

CXCL10, SPP1, and WARS, together with another gene that

has been annotated as related to positive regulation of mitosis (SCH1),

have also been annotated as regulators of cell proliferation (p-

value = 0.007, Bayes Factor 2). Using the g:Profiler software [156],

we obtain a complementary information. Sixteen genes (including

SPP1, SEMA6A, LEF1 [197], CD230, ALS2CR2, DKK1,

CYFIP2, SHC1, ANKRD7, IFI6, CITED1, and MID1) have

been associated to the Gene Ontology term of ‘developmental process’.

SPP1 - Secreted phosphoprotein 1 (osteopontin). SPP1 is

one of the most conspicuous melanoma biomarkers

[198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,

213,214,215,216,217,218,219,220,221,222] (see also the refer-

ences cited in Figure 6 and note its eminent position in this scatter

plot). In 1990, Craig et al. reported that SPP1 may work as an

autocrine adhesion factor for tumor cells (see also [204,223,224]).

They observed that ‘‘SPP1 mRNA, which is barely detectable in normal

mouse epidermis, was expressed at moderate-to-high levels in 2 of 3 epidermal

papillomas and at consistently high levels in 7 of 7 squamous-cell carcinomas

induced by an initiation-promotion regimen’’ [225]. The evidence is being

constantly expanded on the role of SPP1 as a molecular prognostic

biomarker in melanoma [226]. Activation of SPP1 may be an

important event that allows the transformed melanocytes to invade

the dermis as proposed by Geissinger et al. in 2002 [208]. This

causes SPP1 to avoid the apoptotic stimulus, one of the ‘‘hallmarks

of cancer’’, which invasive cells will be receiving from this new

tissue.

If we extend the literature-based search so that we now include

the first 200 gene probes recognized by GATHER then we have

27 gene probes associated with the Gene Ontology in terms of ‘‘cell

proliferation’’ (p-value = 0.0002, Bayes Factor 5), and ‘regulation of cell

proliferation’, p-value = 0.003, Bayes factor 3). However, other partners

of PLK1 appear and their function in ‘mitotic cell cycle’ (p-

value = 0.0003, Bayes Factor 5) is increasingly present (in particular,

the M phase of the mitotic cell cycle). The details of the Gene

Ontology terms which are significant and the genes associated to

them are listed in Table 2.

The analysis using g:Profiler largely coincides with the analysis

using GATHER, however, it retrieves 12 genes associated with the

M phase of mitotic cell cycle, namely: AURKA and AURKB

[227,228,229], BUB1 [230,231], CDCA5A/Sororin/p35 [232],

CDC7 [233,234], CHEK1 [235], KIF23/MKLP-1 [227,236,237],

MAP9/ASAP [238,239], NCAPD3, NCAPG2 [240], NEK6

[241,242,243,244], PLK1 [147,245,246], PTTG1/Securin [247],

SHC1/p66 [248,249,250] (discussed in the context of SHC4

signalling), and TFDP1/DP-1 [251]. These are a significant finding

by g:Profiler (p-value = 4.03E-07).

We have listed above some of the genes gene associated to the

M phase of mitotic cell cycle and associated references which are

either to current research in melanoma and/or its biological

function. We now list other genes which have been associated with

the term ‘cell proliferation’ by GATHER. These genes are:

ARPC1B [252], ARPC2 (which, together with SPP1, is also in the

novel 5-biomarker panel of Kashani-Sabet et al. [253]), BCCIP

(BRCA2 and CDKN1A-interacting protein)/P21-and CDK-

Figure 10. Expression of a probe for CLDN1 (Claudin 1) (y-axis) as a function of a probe for Aquaporin 3 (x-axis). Other members of the
aquaporin family of proteins have a similar behaviour. AQP3, together with CLDN1 are key components of the tight junction complexes of the
epidermis and their joint loss of expression seem to be related to a transition to a more malignant phenotype. We use the same color coding as
Figure 9.
doi:10.1371/journal.pone.0012262.g010
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associated protein 1) [254], BST2/Bone marrow stromal antigen

2/Tetherin [255], CCL3/MIP-1alpha [256,257,258], CCT4,

CDCA5/Sororin [259,260,261,262,263], CENPF/Mitosin [264],

CXCL1/chemokine (C-X-C motif) ligand 1 (melanoma growth

stimulating activity, alpha) [265,266,267,268,269,270,271,272,

273,274,275,276,277,278,279,280,281,282,283,284,285] (in uveal

melanoma see [286]), CXCL10 [256], FLT1/VEGFR1 [287,

288,289,290,291,292,293,294,295,296,297,298,299], FTH1/Fer-

ritin Heavy Chain [300,301,302] (which may indicate a necessary

condition for the mainainance of iron sequestration and

suppression of reactive oxygen species accumulation [303]),

FPRL1, LIG3/DNA Ligase 3 [304] (which, together with XPA

and ERCC5 is associated to DNA repair in ionizing radition

studies [305]), MCMDC1, PSEN2, NRP2/Neuropilin 2/Vascular

endothelial cell growth factor 165 receptor 2 [306,307,308],

SEMA6A (a member of the Semaphorin family, of increasing

importance in cancer research [309,310,311] and in particular due

to its observed upregulation in undifferentiated embryonic stem

cells [312]), SLAMF1/CD150 (a marker associated with hemato-

poietic stem cells [313]), SPP1/Osteopontin (which, together with

ARPC2, is also in the novel 5-biomarker panel of Kashani-Sabet

et al. [253]) [206,207,208,209,210,211,212][206,207,208,209,210,

211,212,214,215,216,217,218,219,220,221,222,226,314,315,316,-

317,318,319,320,321,322,323,324,325,326,327,328,329], STK6

[230,330], and WARS/Tryptophanyl-tRNA synthetise [331].

Figure 11 shows a heat map of discussed gene probes annotated

with functions on cell proliferation.

The references provided next to each gene help to related these

upregulated genes in the context of current research in melanoma

or with the M phase of mitotic cell cycle, showing a high degree of

correlation between our results and with published literature.

Prostate Cancer - True et al.’s dataset (File S3)
Another microarray dataset we have selected to evaluate for the

relevance of transitions of Normalized Shannon Entropy and Statistical

Complexity was contributed by True et al. [332] in 2006.

The original goal of True et al. was to identify a molecular

correlate for Gleason patterns 3 and, if possible, the clinically most

worrisome patterns 4 and 5. They partially succeeded by linking

the expression of only 86 genes with Gleason pattern 3 [332] using

a standard statistical analysis. In this study, we eliminated sample

02-209C since data was acquired using a different platform and

would not be useful for our analysis. The remaining thirty one (31)

samples were assayed with the GPL3834 (FHCRC Human

Prostate PEDB cDNA Array v4) platform using 15,488 probes.

We also eliminated all the probes with missing values, remaining

13,188 probes.

We have first plotted the samples on the (Normalized Shannon

Entropy, MPR-Statistical Complexity) plane (Figure 12). It was

interesting to observe that there exists a high correlation between

the two measures. Samples that are entirely composed of Gleason

pattern 3 tend to have a greater value of Normalized Shannon Entropy

than 0.985. We can also identify a cluster of samples that present

Gleason patterns which are either 4 or 5. Note that there seems to

be two outliers (02_003E and 03_063) to the generic trend of the

other 29 samples. The two outliers are samples that correspond to

samples labelled as having Gleason 3 patterns and both have

unusually low values of Normalized Shannon Entropy that are well

below the values of the rest of the group.

This raised a suspicion about the true nature of this

phenomenon. If the labelling is correct, this may indicate a

subsampled group of prostate cancer that has Gleason 3 pattern

characteristics but very low entropy. Alternatively, it may indicate

an experimental bias for reasons we can not explain with the

available clinical information. In order to clarify the situation, and

see if we can declare these two samples as outliers of the other

group, we performed another experiment. We have now com-

puted two modified complexities, which we will call M-Gleason 3

and M-Gleason 5 (Figure 13). The names are probably self-

explanatory, but a brief reminder follows. To calculate the MPR-

Complexity, by definition, we have used the equiprobable

distribution as our probability distribution of reference (for the

computation of the Jensen-Shannon Divergence of the gene expression

profile to this distribution). In the case of the M-Gleason 3, the

probability distribution of the reference is obtained averaging all

the probability distributions of the samples that have been labelled

as Gleason 3 (analogously, we calculated M-Gleason 5). Samples

that have Gleason pattern 3 and 5 appear as separate clusters in

the (M-Gleason 3, M-Gleason 5) plane with the two putative outliers

of the general trend far apart (even if they have been used to

calculate the average probability distribution function of the

Gleason 3 pattern). Even samples with Gleason 4 pattern are

located closer to samples of Gleason patterns 3, and 5, indicating

that, perhaps, there exists a subsampled subtype of prostate cancer

or there might be another experimental bias or factor that at

present we can not resolve with the information we have for these

samples. Consequently, we have decided to eliminate both samples

(02-003E and PNA_03-063A) from further calculations. With

these considerations, we now have a dataset with 13,188 probes

and 29 samples as our dataset for further analysis.

Table 2. Significant Gene Ontology terms and their associated genes.

Gene Ontology annotation Genes p-value
Bayes
factor

GO:0008283 [4]: cell proliferation 27 (AURKB BCCIP BST2 BUB1 CCT4 CDC7 CDCA5 CENPF CHEK1 CXCL1 CXCL10 DNAJC6 FLT1
FTH1 IFI16 KIF23 LIG3 MCMDC1 PLK1 PSEN2 PTTG1 SHC1 SLAMF1 SPP1 STK6 TFDP1 WARS)

0.0002 5

GO:0000278 [6]: mitotic cell cycle 10 (BCCIP BUB1 CDC7 CENPF CHEK1 KIF23 PLK1 PTTG1 SHC1 STK6) 0.0002 5

GO:0000280 [7]: nuclear division 9 (BUB1 CENPF CHEK1 KIF23 LIG3 PLK1 PTTG1 SHC1 STK6) 0. 0003 4

GO:0000279 [6]: M phase 9 (BUB1 CENPF CHEK1 KIF23 LIG3 PLK1 PTTG1 SHC1 STK6) 0.0004 4

GO:0007067 [8]: mitosis 7 m(BUB1 CENPF KIF23 PLK1 PTTG1 SHC1 STK6) 0.003 3

GO:0042127 [5]: regulation of cell proliferation 10 (CDC7 CHEK1 CXCL1 CXCL10 FLT1 FTH1 SHC1 SLAMF1 SPP1 WARS) 0.003 3

GO:0000087 [7]: M phase of mitotic cell cycle 7 (BUB1 CENPF KIF23 PLK1 PTTG1 SHC1 STK6) 0.003 3

GO:0006928 [4]: cell motility 8 (ARPC1B ARPC2 CCL3 CXCL10 FPRL1 NRP2 SEMA6A SPP1) 0.004 2

doi:10.1371/journal.pone.0012262.t002
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Figure 14 shows the distribution of the samples using the

Normalized Shannon Entropy and the MPR-complexity. By definition,

the positions of the 29 samples in the plane do not change (this

figure is basically ‘‘zooming in’’ one region of Figure 12 that

contains these samples). We note again, however, that the 29

samples seem to be separating in three different clusters. Whether

we can argue about the existence or not of these gaps in Normalized

Shannon Entropy, it is clear that there seems to be a progression as

we have seen with Lapointe et al’s dataset. There is a group of

three samples with Gleason pattern 3 that seem to have the the

largest Normalized Shannon Entropy values. There is also a cluster that

only contains samples of either Gleason pattern 4 and 5, all with

Normalized Shannon Entropy values smaller than 0.985.

There is also very little variation (see Figure 15) of the positions

of the 29 samples on the (M-Gleason 3, M-Gleason 5)-plane,

indicating a degree of robustness that the computation of these

modified complexities have, even in the presence of some outliers.

Correlations of the genes’ expressions profiles across
samples with the transitions of Entropy

After observing that Figure 14 shows a correlation of Gleason

pattern score with Normalized Shannon Entropy, we asked ourselves:

‘which are the genes that most positively and negatively correlate with the

transitions of Normalized Shannon Entropy?’ We have plotted Spearman

versus Pearson correlation values of probe expressions to attempt to

find those that best correlate, either positively or negatively, with the

Normalized Shannon Entropy values of the samples. The results have

revealed some of the most relevant biomarkers of progression, and

some unexpected newcomers. Figure 16 shows the Pearson and

Spearman correlations of all the 13,188 probes in the dataset with

the Normalized Shannon Entropy values of the samples. We have

highlighted some particular genes that are discussed below.

CDKN2C (cyclin-dependent kinase inhibitor 2C (p18,

inhibits CDK4). When we compute the correlations of the

probes expressions with the Normalized Shannon Entropy values of the

samples, the gene that has the most negative correlations is

CDKN2C (cyclin-dependent kinase inhibitor 2C - p18, inhibits

CDK4 - NM_078626), which has been previously associated with

the transition from prostatic intraepithelial neoplasia (PIN) to

prostate cancer [68] (Spearman correlations with the Normalized

Shannon Entropy range between 20.8010 and 20.7276 for all the

probes for NM_078626 in this array). It has been recently argued

that CDKN2C and PTEN partner in tumor suppression by

constraining a positive regulatory loop between cell growth and

cell cycle control pathways. Bai et al. reported that a ‘‘double mutant

mice develop a wider spectrum of tumors, including prostate cancer in the

anterior and dorsolateral lobes, with nearly complete penetrance and at an

accelerated rate’’ [333]. Using the cancer cell lines LNCaP, PC3,

PC3M, PC3M-Pro4, and PC3M-LN4 and three immortalized

prostate epithelial cell lines Wang et al. report hypermethylation of

CDKN2C [334].

Figure 11. Heat map of the expression of 38 gene probes annotated with functions on cell proliferation, in particular cell motility,
mitotic cell cycle, nuclear division, and specifically, M phase of mitotic cell cycle. We have used the same convention we employed in Figure 8: in
green, the normal skin samples; in yellow, the nevi samples; the primary melanoma samples (in orange) show increased expression for most of these
biomarkers. This may indicate that the upregulation of genes involved in these processes is an earlier event (it occurs as a common feature in all the
primary melanoma samples) while modifications to cell adhesion, cell-cell communication, tight junction mechanisms and epithelial cell polarity occur
later (primary melanomas in Figure 4 show a transition). Finally, the metastatic samples (in red) show some heterogeneity, but overall provide an
increased expression. The average expression of this panel could be a good indicator of the transition from nevi to a malignant phenotype, while the
panel of Figure 8 can complement the information indicatingthe onset of tissue dedifferentiation processes.
doi:10.1371/journal.pone.0012262.g011
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MAOA, monoamine oxidase A. Four probes for MAOA

(Monoamine oxidase type A), two for NM_000240 and two for

BC008064, follow closely with CDKN2C (Spearman correlations

with Normalized Shannon Entropy ranging between 20.7650 and

20.7202 echoing the interest of True et al. and other researchers

on MAOA [332,335,336,337]). Zhao et al. have recently reported

that ‘‘MAO-A is also expressed in the basal epithelial cells of normal prostate

glands. Using cultured primary prostatic epithelial cells as a model, we showed

that MAO-A prevents basal epithelial cells from differentiating into secretory

cells. Under differentiation-promoting conditions, clorgyline, an irreversible

MAO-A inhibitor, induced secretory cell-like morphology and repressed

expression of cytokeratin 14, a basal cell marker’’. They also observed

mRNA and protein expression of AR, the androgen receptor

[338]. Peehl et al. now report correlation of MAOA expression

Figure 13. Scatter plot of the samples in the prostate cancer dataset contributed by True et al. We have used the same color coding
convention we have used in Figure 12. We plot the values of two modified statistical complexities, which we will call M-Gleason 3 and M-Gleason 5.
Instead of using the equiprobable distribution as our probability distribution of reference (for the computation of the Jensen-Shannon Divergence of
the gene expression profile to this distribution), as required for the MPR-Statistical Complexity calculation, we used a different one. For the M-Gleason
3, the probability distribution of the reference is obtained averaging all the probability distributions of the samples that have been labelled as
Gleason 3 (analogously, we calculated M-Gleason 5). This is analogous to our approach in melanoma (Figure 5) in which we used normal and
metastatic samples as reference sets for a modified statistical complexity. We observe that, even in this case, 02_003E and 03_063 continue to appear
as outliers. In addition to the evidence, we have observed that the deletion of these two samples did not significantly alter the identification of
biomarkers.
doi:10.1371/journal.pone.0012262.g013

Figure 12. Scatter plot of the samples in the prostate cancer dataset contributed by True et al., presenting the MPR-Statistical
Complexity of each sample as a function of its Normalized Shannon Entropy. The dataset contains the expression of 13,188 probes and 31
samples. The samples include 11 samples labelled ‘Gleason 3’ (in green), 12 ‘Gleason 4’ samples, and 8 ‘Gleason 5’ (in red). Two samples seem to be
outliers to a generic trend, which is somewhat expected. We do expect samples with a ‘Gleason 3’ label to have higher values of Normalized Shannon
Entropy. This is indeed the case, no sample with a ‘Gleason 3’ label has a value of Normalized Shannon Entropy lower than 0.985, while 14 samples
corresponding to samples which are either ‘Gleason 4’ or ‘Gleason 5’ have values smaller than that threshold. In agreement with some of the caveats
discussed by True et al., there exist a group of samples that, irrespective of their label, have similar values of Normalized Shannon Entropy (near 0.992).
Samples 02_003E and 03_063 seem to be outliers to this trend, and in the case of 03_063 the sample is not even close to a hypothetical linear fit
which seems to be the norm for all the samples. Figure 13 will provide further evidence that may indicate that these two samples are outliers or not
to the overall trend.
doi:10.1371/journal.pone.0012262.g012
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with the dedifferentiation process, with preoperative PSA levels

and the percent of Gleason 4 and 5 cancers [338].

AMACR, Cyclin G2, CDK4 and CDK7. Other probes that

also have high negative correlations with the Shannon Normalized

Entropy correspond to CCNG2 (Cyclin G2) CR598707, CDK4

(Cyclin-dependent kinase 4), CDK7 (Cyclin-dependent kinase 7,

TFIIH basal transcription factor complex kinase subunit) [339],

and AMACR (Alpha-methylacyl-CoA racemase), an ‘‘obscure

metabolic enzyme (that has taken) centre stage’’ [340] as judged by the

extraordinary convergence to this biomarker in prostate. We

believe that our result is an important finding. AMACR was not

judged of importance according to the methodology used in [332]

and it was barely cited in that manuscript. Here we present results,

from an unifying biological and informational principle, which

allows (using Ref. [332]’s own data) the identification of the most

central current biomarker with a truly compelling body of support

in independent studies [316,340,341,342,343,344,345,346,347,

348,349,350,351,352,353,354,355,356,357,358,359,360,361,362,

363,364,365,366,367,368,369,370,371,372,373,374,375,376,377,

378,379,380,381,382,383,384,385,386,387,388,389,390,391,392,

393,394,395,396,397,398,399,400,401,402,403,404,405,406,407,

408,409,410,411,412,413,414,415,416,417,418,419,420,421,422,

423,424,425,426,427,428,429,430,431,432,433,434,435,436,437,

438,439,440,441,442,443,444,445,446,447,448,449,450,451,452,

453,454] that currently exists in prostate cancer.

TP53 and BRCA1. There exist several studies linking two

‘‘tumor suppressors’’ BRCA1 and TP53, its expression, status and

mutations, to prostate cancer progression [51,55,455,456,457,458,

459,460,461,462,463,464,465,466,467,468,469,470,471,472,473,

474,475,476,477,478,479,480,481,482,483,484,485]. BRCA1 is

one coregulator of AR, the androgen receptor [486,487,488,

489] and inhibits ESR1 (Estrogen receptor alpha) activity

[490,491]. Knockdown of BRCA1 results in the accumulation

of multinucleated cells, indicating that BRCA1 regulates gene

expression of an orderly progression during mitosis [492],

preserving chromosomal stability [490]. BRCA1 showed

decreased expression in a study involving immortalized prostate

epithelial cells before and after their conversion to tumorigenicity

[493]. Lack of BRCA1 function may impair activation of STAT3

[494]. Inactivation of TP53 by somatic mutations is also

associated to the panel of disruptions which are common for

this ‘‘tumor suppressor’’ [113]. One possible mechanism for gene

Figure 15. A plot showing that restricting our analysis to 29 samples does not have a major negative impact or changes in the
computation of modified statistical complexities.
doi:10.1371/journal.pone.0012262.g015

Figure 14. A region of interest of Figure 12 containing the 29 samples to be used in the analysis. Due to the characteristics of this
microarray dataset and the experiment setting, the Normalized Shannon Entropy correlates well with the established clinical notions of malignancy
(high Gleason patterns). Most Gleason pattern 5 samples (in red) have lower values of Normalized Shannon Entropy than Gleason pattern 3 samples.
doi:10.1371/journal.pone.0012262.g014
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silencing is CpG island methylation. Rabiau et al.show in [495]

that BRCA1, RASSF1, GSTP1 and EPHB2 promoter

methylation is common in prostate biopsy samples. Mannicia et

al. suggest that the mitochondrial localization of BRCA1 proteins

may be a significant factor in regulating the mitochondrial DNA

damage [5].

SFPQ - (Polypyrimidine tract-binding protein-associated

splicing factor). The most positively correlated gene with the

loss of Normalized Shannon Entropy is SFPQ/PSF (Polypyrimidine

tract-binding protein-associated splicing factor) (Spearman

correlation of 0.7902), a multifaceted nuclear factor [496,497]

which is also a putative regulator of growth factor-stimulated gene

expression [498]. This is extremely interesting as it has been

recently shown that the AR/PSF complex interacts with human

PSA gene and that PSF inhibits AR transcriptional activity [499].

The loss of expression of SFPQ and other proteins that together

regulate androgen receptor-mediated gene transcription [500] (see

also [501,502]) may indicate they have a role not only as a

biomarker of the progression and well as transitions of the disease

to androgen independence. In a study of human labor, Dong et al.,

also showed that SFPQ acts as a Progesterone Receptor

corepressor, thus putatively contributing to the functional

withdrawal of progesterone [503]. We will return to this

particular gene later on the ‘Discussion’ section as new evidence

of its role in nuclear organization has been documented.

CD40 - (TNFRSF5, B-cell surface antigen CD40). The loss

of Normalized Shannon Entropy gives us several markers that indicate a

de-differentiation from a epithelial basal phenotype and an

increasing loss of control of cell cycle regulation (due to

uncoordinated upregulation of CDK4, CDK7, CCNG2 with their

functional partners). This poses the question: What can we observe while

looking at the genes that most positively correlate with the loss of Normalized

Shannon Entropy? We observe, second on the ranking of all samples, a

probe for CD40 (TNFRSF5, B-cell surface antigen CD40),

BX381481 with a Spearman correlation of 0.7616. Loss of CD40

expression has been previously reported in prostate cancer and

it is the object of a study that attempts to establish dendritic cell

gene therapies [504,505,506,507,508,509,510,511,512,513,514,515,

516,517,518,519,520,521,522]. We will continue discussing CD40

in the following subsection in concert with other genes.

Correlations of the genes’ expressions profiles across
samples with the MPR-Statistical Complexity

Another natural question can be asked: Which is the extra

information that we can obtain the by analysing the correlations with the

MPR-Statistical Complexity in this case? As we have discussed before,

and can be appreciated from Figure 14, there is a strong

correlation between the MPR-Statistical Complexity and the value

of the Normalized Shannon Entropy. It appears in prostate cancer, as

in this gene expression dataset, the reduction of Entropy is not the

major factor responsible for the increase in MPR-Statistical Complexity.

Again, it is perhaps better to now look at one of the multiplicative

factors of the statistical complexity measure, the Jensen-Shannon

divergence to the equiprobability distribution, as this is increasing the

MPR-complexity.

CD40. We present more evidence of the case of CD40 as a

biomarker, since a probe for CD40 (BX381481) ranks 6th (the

Spearman correlation of the probe expression with the Jensen-

Shannon divergence from the equiprobability distribution is 20.5764).

CD40 is a member of the TNF receptor superfamily. Notably, in

56 out of 57 archival prostate cancer samples Palmer et al. have

reported no CD40 expression [518]. However, CD40 expression

was present in normal prostatic acini, so they proposed that

‘‘invasive prostate cancer is a CD40-negative tumour’’ (see the previous

results of Moghaddami et. al. [514]). Matching our observations,

they proposed that CD40 provides ‘‘insight into progression of cancer

from normal epithelium’’; our proposed methodology is revealing this

fact as well. Depletion of CD40 in the tumour microenvironment

may be central in avoiding the action of the immune system [506],

as prostate cancer induces a progressive suppression of the

Figure 16. A scatter plot of Spearman versus Pearson correlation values of the probe expression of 13,188 probes in True et al.’s
prostate cancer dataset with the Normalized Shannon Entropy values of the samples. The identification of probes that best correlate, either
positively or negatively, with the values of the Normalized Shannon Entropy of the samples highlights some of the most important biomarkers in
prostate cancer, like CDKN2C, MAOA, CDK4, CDK7, AMACR, TP53 and BRCA1 (with an upregualtion trend from their normal expression values). The list
includes others that present a downregulation from their normal values, like LMNA, CD40, and SFPQ. These genes are discussed in detail in the
context of current prostate cancer research in the main text. This result has revealed some of the most relevant biomarkers of prostate cancer
progression (AMACR, MAOA, CDK4, TP53, BRCA1, STAT3), and some unexpected new complementary biomarkers (i.e. SFPQ, CD40, STAT3, LMNA,
CD59 etc).
doi:10.1371/journal.pone.0012262.g016
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dendritic cell system [520]. It is perhaps a central piece which

should be put together in the context of other pieces of information

coming from immunotherapy [508,512,513,516] and phar-

macological studies [507] that warrant serious investigation

towards the design of new and improved clinical studies [508,517].

CD59 molecule, complement regulatory protein. Four

probes for protectin [335,523,524], CD59, with Spearman

correlations with the Jensen-Shannon divergence from the

equiprobable distribution, ranging from 20.61823 to 20.5089,

rank between the 1st and 39th position (when we rank genes

according to this correlation in ascending order). CD59 is an

interesting gene as ‘‘a comprehensive investigation of CD59 expression in

prostate cancer has not been conducted yet’’ [524]. Like LMNA (which is

ranked third and will be discussed later) the rank of CD59/

protectin means that these genes progressively loose expression of

these probes. CD59 is expressed in the prostatic epithelium [525]

and in prostasomes [526]; secretory granules which are produced,

stored and released by the glandular epithelial cells of the prostate

[527]. Babiker et al. concluded in [335] that prostasomes (via

expression CD59) contribute to the protection of malignant cells

from complement attack. We now investigate if the ratio of delta-

catenin to CD59 can is a more robust biomarker for non-invasive

prostate cancer detection, particularly after the results presented in

[528]. We also note that CD59 may be also relevant to reveal the

heterogeneous nature of prostate cancer. Its correlation was good,

but is not lower than 20.62, which in our experience, indicates

that we may be dealing with at least two types tumors in this

dataset. Indeed, Xu et al. obtained CD59 mRNA levels were

determined by real-time PCR in matched (tumor/normal)

microdissected tissues from 26 cases and they found that: ‘‘High

rates of CD59 expression were noted in 36% of prostate cancer cases and were

significantly associated with tumor pT stage (P = 0.043), Gleason grade

(P = 0.013) and earlier biochemical (PSA) relapse in Kaplan-Meier analysis

(P = 0.0013). On RNA level, we found an upregulation in 19.2% (five

cases), although the general rate of CD59 transcript was significantly lower in

tumor tissue (P = 0.03)’’ [524]. They concluded that: ‘‘CD59 protein is

strongly expressed in 36% of adenocarcinomas of the prostate and and is

associated with disease progression and adverse patient prognosis’’ [524].

Jarvis et al. have previously hypothesized that CD59 expression, in

some cancer cells, may help to regulate the immunological

response, protecting them from the cytolytic activity of

complement [523] (see also [529,530]).

LMNA (Lamin A/C). The third probe in the ranking

corresponds to a LMNA (Lamin A/C), AY528714. Mutations

on LMNA have been linked at 10 different human diseases

[531,532]. LMNA, due to its functions, could be involved in

important cell fate decisions as lamins are involved in the

organization of the functional state (and position) of interphase

chromosome [531]. Lamins are ‘‘scaffolders’’ for the function of

nuclear processes such as chromatin organization, DNA

replication, cellular integrity and transcription [532]. As a

consequence Lamins are involved in several clinical syndromes

[533,534,535]. Among the recent functions attributed to LMNA is

as an intrinsic modulator of ageing within adult stem cells via a

mechanism where LMNA act as signalling receptors in the

nucleus. These observations correspond to Pekovic and

Hutchinson who observed that dysfunction of LMNA leads to

inappropriate activation of self-renewal pathways and initiation of

stress-induced senescense [536]. In lmna-deficient mouse

embryonic fibroblasts (lmna(2/2) MEFs), the loss of

lmna‘‘dramatically affects the micromechanical properties of the cytoplasm’’,

since ‘‘Both the elasticity (stretchiness) and the viscosity (propensity of a

material to flow) of the cytoplasm in Lmna(2/2) MEFs are significantly

reduced’’ [537]. Using ballistic intracellular nanorheology to

evaluate the micromechanical properties of the cytoplasm of

these cells, Lee et al. conclude: ‘‘Together these results show that both the

mechanical properties of the cytoskeleton and cytoskeleton-based processes,

including cell motility, coupled MTOC and nucleus dynamics, and cell

polarization, depend critically on the integrity of the nuclear lamina, which

suggest the existence of a functional mechanical connection between the nucleus

and the cytoskeleton. These results also suggest that cell polarization during cell

migration requires tight mechanical coupling between MTOC and nucleus,

which is mediated by lamin A/C’’ [537] (see also [538,539]). In

addition to these very interesting findings, a functional association

of LMNA and the retinoblastoma protein (pRB) exists. Nitta et al.

have shown that pRB needs to be stabilized by LMNA for

INK4A-mediated cell cycle arrest and that somatic mutations in

LMNA may also have a role in tumor progression [540]. In

mammalian cells, LMNA a) colocalizes with c-FOS at the nuclear

envelope, b) suppresses AP-1 through a direct interaction with c-

FOS and, in LMNA-null cells perinuclear localization of c-FOS is

absent (but it is restored when it is overexpressed, c) LMNA-null

cells have enhanced proliferation [74]. These results obtained by

Ivorra et al. are giving the indication that of yet another

mechanism of cell cycle and transcriptional control mediated by

LMNA [74] (see also [541]). LMNA has also been proposed as an

inhibitor of adipocyte differentiation [542]. Hutchingson et al.

have proposed the alias of ‘‘guardian of the soma’’ for lamins A

and C as they seem to have ‘‘essential functions in protecting cells from

physical damage, as well as in maintaining the function of transcription factors

required for the differentiation of adult stem cells’’ [543].

NF-kappaB regulated genes reveal links to focal adhesion
and ECM-receptor interaction and immune response
disregulation

From our results, we can not completely establish if the

downregulation of CD40 and CD59 are enough to pinpoint an

impaired or abnormal immune response. If we continue the

inspection of the list, the first 20 probes give us more supporting

evidence. The 20 probes correspond to 13 different genes. Five of

these 13 genes have Genome Ontology information annotated as

‘‘defense response’’, the above mentioned CD59 and CD40 as well

as IL4R (interleukin 4 receptor, CR616481), XBP1 (X-box

binding protein 1, AK093842) and HLA-A (major histocompat-

ibility complex class I HLA-A29.1, BU075230). Takahashi et al.

[544] report an inverse correlation between XBP1 expression and

histological differentiation in a series of prostate cancers without

hormonal therapy, the expression of XBP1 was localized in

epithelial and adenocarcinoma cells of the prostate and the

majority of refractory cancer cases exhibited weak XBP1

expression), MST1/STK4 (along with MST2/STK3) act as

inhibitors of endogenous AKT1, a mediator of cell growth and

survival [545].

We can not yet know what reason is behind their joint

downregulation, but another interesting common denominator is

that 12 out of 13 genes share a regulatory motif for NF-kappaB

(according to TRANSFAC, V$NFKB_Q6_01). A putative role for

NF-kappaB in prostate cancer has been reported based on the

observation of the centrality of NFKB on two up- and down-

regulated networks compairing prostate tumors and healthy tissue

[546] and in a larger study by McDonnel et al. [547] (255 core

prostate cancer tissue microarrays from 47 prostatectomy

specimens). Several other researchers are currently investigating

different roles of the NFKB family in prostate cancer

[548,549,550,551,552,553,554,555] and it could be a promising

target for intervention [555,556,557,558,559,560,561,562,563,

564,565,566,567,568,569,570,571]. If we include other genes

following the ranking order, the first 38 genes in the ranking
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include 33 that have the regulatory motif V$NFKB_Q6_01

(GATHER reports for this list a p-value of 0.0006). Even when we

double the list to the probes that correspond to the first 76 different

genes recognized by GATHER, 58 of them have the regulatory

motif V$NFKB_Q6_01, with p-value = 0.003 (ATP6AP2, BCAT1,

BTG2 [572,573,574,575,576,577,578], C14orf123, C18orf45,

CCL2, CD302, CD40 (already discussed), CD59 (already

discussed), CHI3L1, COL16A1, COMMD6, CRABP2, CSRP1,

CTBP2, CTGF (Connective tissue growth factor,

[579,580,581,582]), DES, DMN, DNAJB1, EGF, EMP1, FHL2

[583,584,585,586,587,588], GRIPAP1, GSTM1 [589,590],

HBEGF, IL4R, ITGA3, ITGA7, JUNB [591,592], KIAA0152,

KIAA1191, KIAA1324, KLF6, LAMB2, LMNA (already dis-

cussed), NFATC1, NFKB2, NUDC [593], P4HB, PDK2, PIM1,

PISD, PXN, RAP1B, RNF40, SARA1, SEC61A1, SGTA [594],

SLC12A2, SRD5A2, STAT6 [595,596], TACSTD2, TBX1,

TMED3, VPS39, WDFY3, XBP1 [544], ZAK). This result

indicates that our results support the importance of NFkappa-B

and the huge amount of research effort to understand the role of

the NFkappa-B activity and its potential as a target for

intervention in prostate cancer (File S4).

The group of 58 biomarkers contains one of particular interest,

STAT6. This gene is considered a survival factor in prostate

cancer and a key regulator of the genetic transcriptional program

responsible for progression [595]. STAT6 has been recently linked

to HPN as one of the most robust pair of biomarkers for prostate

cancer using an integrative approach that linked several micro-

array datasets [596].

Focal and cell adhesion modifications can be inferred by
monitoring losses of a group of genes composed by EFG,
Integrins, LAMB2, Paxillin and RAP1B

Analysis using GATHER of this group reveals that six of these

58 genes are in KEGG pathway path:hsa04510, Focal adhesion (EGF,

ITGA3, ITGA7, LAMB2, PXN, RAP1B, p-value,0.0007) and

from these there are three in pathway:hsa045122, ECM-receptor

interaction (ITGA3, ITGA7, LAMB2, p-value,0.005) while four of

these six are also in path:hsa04810: Regulation of actin cytoskeleton,

(EGF, ITGA3, ITGA7, PXN, p-value,0.01).

LAMB2. Alterations of the gene profile of LAMB2 and

CDKN2C/p18(Ink4c), a CDK4 inhibitor, have been reported

on the transition from prostatic intraepithelial neoplasia (PIN) to

prostate cancer [597] (see also [333]).

ITGA7 (integrin, alpha 7) and ITGA3 (integrin, alpha

3). The contribution of the loss of these integrins and the

subsequent derived impairment on cell adhesion has been reported

in several tumours. Ren et al. in [598] report that ‘‘Focal or no

integrin alpha 7 eexpression in human prostate cancer and soft tissue

leiomyosarcoma was associated with a reduction of metastasis-free survival (for

example, for prostate cancer with focal or no expression, 5-year metastasis-free

survival was 32%, 95% CI = 24.4% to 40.3%, and for prostate cancer

with at least weak expression, it was 85%, 95% CI = 79% to 91%;

p-value,.001)’’.

Discussion

‘‘Any method involving the notion of entropy, the very existence of which

depends on the second law of thermodynamics, will doubtless seem to

many far-fetched, and may repel beginners as obscure and difficult of

comprehension.’’

Willard Gibbs, Graphical Methods in the Thermodynamics of

Fluids, (1873)

Transcriptional vs. Karyotypic Entropy
The changes of the Normalized Shannon Entropy and Statistical

Complexity of the gene expression profile of a cancer cell are

associated with the gradual deterioration of genome transcription-

al information content due to the modification of its structural and

functional integrity during disease progression. Our results clearly

suggest that we can track the cancer cell’s progression by following

observable changes in the Shannon Entropy and, in particular, by

employing the Jensen-Shannon Divergence of the gene expression

profile of a sample to the normal expression profile. We have also

shown if an average expression profile of some state of interest can

be properly defined (i.e. distant metastasis) then the Jensen-Shannon

Divergence can help us to identify which probes best correlate with

these measures resulting in useful biomarkers.

Before any thermodynamical consideration could be discussed,

we note that there is a clear and objective informational perspective

that our study delivers. In this study we have chosen to position

ourselves as the ‘receivers’ of a ‘transcriptional message’. In this

experimental perspective the tumor tissue is the ‘sender’ (the

source of information) and the high-throughput technology (gene

expression microarrays in this case) can be regarded as the

transmission medium (providing noise and distortion). As we

explain in the ‘Materials and Methods’ section, the Shannon Entropy

of a gene expression profile is the average expected surprisal of that

profile understood as a message. The Normalized Shannon Entropy

makes this surprisal an intensive measure and the correlation of the

gene expression patterns across samples with this measure can

deliver useful biomarkers to track the progression of transcriptional

change. After normalization, we have a measure that does not

depend of the number of probes of the high-throughput technology,

although, it obviously does depend on the type of probes used.

We believe that the readers may have already noticed an

apparent paradox. While some researchers understand cancer

progression as a mechanism that increases entropy, we actually

observe a reduction of Normalized Shannon Entropy in this work. This

means that our normalized average expected surprisal, as receivers of the

transcriptional message, is smaller. We must then discuss the

physical meaning of thermodynamic entropy, its current use in

systems biology and cancer research genetics and the informa-

tional measure we use in this paper to clarify these notions in this

context.

In biomedical research there exists a certain consensus among

cancer researchers that genetic instability or ‘‘mutability’’ is a major

critical force of cancer progression, but it is not the only one to

consider. It is clear that the mutational damage of key genes (like

TP53, TERT, BRCA1, RB1, etc.), and the collective damage

inflicted on key DNA repair mechanisms (like Nucleotide-excision

repair and Base-excision repair) collaborate for an increasing

acceleration of the number of genomic changes. Sub-microscopic

alterations of the genome accumulate in cancer progression in an

irreversible way and ‘‘are compounded by the widespread scrambling of the

chromosome structure, and thus the karyotype, found in cells from the great

majority of solid tumours’’ [599]. In Weinberg’s own words [599]: ‘‘we

learned that this chromosomal chaos also contributes this progression forward’’.

This ‘‘chromosomal chaos’’ [600] or ‘‘cancer as a chromosomal disease’’

perspective is viewed by some researchers not as just a side

consequence of mutational damage, but as the main core theme to

understand a number of unexplained issues in cancer progression.

‘‘In sum, cancer is caused by chromosomal disorganization, which increases

karyotypic entropy’’ [601]. Regarding the cancer types studied in this

paper, one particular ‘‘measure of disorder of a system’’, aneuploidy,

has been observed in poorly-differentiated prostate cancer cells

and it is often associated with a more agreessive phenotype

[602,603], increased PSA levels [604,605], and correlate with
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Gleason score [606,607,608]. Gene fusions and chromosomal rearrange-

ments are other source of increase in the ‘‘disorder’’ of the genome

organization and they are increasingly being recognized as a major

player in prostate cancer progression [609]. The increase in

‘‘karyotypic complexity’’ and ‘‘extended aneuploidy and heteroploidy’’ may be

already enough to develop a malignant melanoma phenotype, as

the report of Gagos et al. indicate [610]. The observed finding of

aneuploidy in melanoma (also including uveal melanoma) is also

increasingly important due to a number of different independent

observations [247,611,612,613,614,615,616,617,618]. It is in this

context that the word ‘entropy’ has been used.

The magnitude of the ‘‘chromosomal chaos’’ is also evident

from comparative genomic hybridization (CGH) studies which

show significant variations in the copy number of individual

chromosomal segments. ‘Chaos’ is really a very appropriate word to

describe what we observe from CGH data. The genomic changes

are not distributed uniformly at random. ‘Chaos’ has been

described by some researchers as ‘‘a kind of order without any

periodicity’’. Some common changes seem to consistently appear in

several independently arising tumours of the same type, and

sometimes the researchers suggest common links [619]. Our work

has addressed, in part, this question: ‘‘Can we quantify the chaos

observed in the genome from the increasingly available transcriptional data and

relate it to tumour progression?’’ If no commonalities were observed, we

would not have found interesting biomarkers that seem that

strongly correlate with the divergences from normal tissue types.

We know from our results that these commonalities do occur.

We need to go back to basics to explain these evolving concepts

and resolve this apparent paradox. The phrase ‘‘karyotypic entropy’’

has been used in the past to define what is actually a divergence from

the normal chromosome structure and it genomic organization.

This denomination has also been employed by several authors,

notably [601], but it has also been used in at least two other

publications [620,621]. These works have in common the use of

this term to refer to a ‘‘disorder’’, fuelled by the undergraduate

textbooks indoctrination of associating increase of entropy in

natural spontaneous processes with the increase of ‘‘observed

disorder’’ in the system. We propose that the use of a natural

measure of divergence, the Jensen-Shannon divergence, could not only

be a more formal, but also more appropriate modelling approach.

As such, we propose to introduce the term ‘karyotypic divergence’ or

‘karyotypic Jensen-Shannon divergence’ to replace this concept and to

avoid a subjective approach.

Why is it the case that we observe the Normalized Shannon Entropy

of the transcriptional profile decreasing with cancer progression when intuitively

our average expected surprisal (Shannon Entropy) should increase with

progression?

Arieh Ben-Naim in his recent book ‘‘A farewell to Entropy:

Statistical Thermodynamics based on Information’’ [622] comments:‘‘It is

interesting to note that Landsberg (1978) not only contended that disorder is an

ill-defined concept, but actually made the assertion that ‘it is reasonable to

expect ‘disorder’ to be an intensive variable’’’. Ben-Naim also states: ‘‘In

my view, it does not make any difference if you refer to information or to

disorder, as subjective or objective. What matters is that order and disorder

are not well-defined scientific concepts. On the other hand, information is a

well-defined scientific quantity, as much as a point or a line are scientific in

geometry, or mass or charge of a particle are scientific in physics.’’ However,

in a manuscript entitled ‘‘Can Entropy and ‘order’ increase together ?’’

Landberg defines (in an attempt to decouple the notions of order

and entropy), for a thermodynamical system that can be on N

states the ‘disorder’ D(N) to be the Normalized Entropy (which is a

function of N) divided by Boltzmann’s constant [623]. ‘Disorder’

then is an intensive magnitude bounded by 0 and 1, and ‘order’ is

defined as 1-D(N).

While Landberg’s decoupling argument between order and

entropy [623] may still be controversial in Physics, the question is

pertinent for our apparent paradox (the question that motivates

this subsection). Borrowing from the title of his paper we could

now state the central question as ‘‘Can Shannon Entropy increase while

the Normalized Shannon Entropy decrease?’’ The solution of this

apparent paradox is a trick of escapologism, perhaps also

paralleled by what a cancer cell may be experiencing (or

‘‘reacting’’ in response to increased sources of stresses), and it is

worth discussing in this context. Let H[X] be Shannon Entropy for an

ensamble X with N different values. We will now assume, and here

is the trick, that N is not a constant, but a function of time N(t). Let

D(X(N(t))) be the Normalized Shannon Entropy. By definition

D(X(N(t))) = H(X(N(t)))/log2(N(t)). Then, just by taking the time

derivatives it can be shown that the time variation of D(X(N(t)))

can be negative, although the time rate of H[X] can be positive.

_DD(X (N(t)))=D(X (N(t)))

~½ _HH(X (N(t)))=H(X (N(t)){k _NN(t)=(N(t)log2N(t))�

where k is a constant. The escape to our paradox is ‘‘achieved’’ via

making explicit the time variability of N(t). Landberg explicitly

mentions that biological systems are examples where growth

processes increase N(t), and perhaps the increased diversity in the

transcriptome of a cancer cell during progression is one of such

examples.

This discussion somehow resolves the apparent disassociations

due to language barriers that may exist between the different

disciplines (physics, information theory, molecular biology and

oncology). A biologist may regard a cancer cell as an entity that,

during progression, may ‘‘spread’’ its transcriptomic profile,

including the generation of a large number of novel molecular

species (due to adquired characteristics during its ‘‘devolution’’ from

the normal type). In our informational perspective, this would be

analogous to a situation in which the sender of a message, after

some time, decides to increase the size of the alphabet of

transmitted symbols. Clearly, it is intuitive to think that the

receiver would be in a situation of increased Shannon Entropy.

However, if the receiver is not aware of the new symbols (or is not

able to detect them) and some of the symbols of the previous

alphabet are no longer used, the receiver would now perceive a

reduction of Normalized Shannon Entropy, observing an increasing

order.

We now borrow an illustrative example from Landberg [623],

but we add a twist to this argument for the purpose of illustrating

this discussion. Suppose we have a sender transmitting only two

possible symbols (N = 2), and we will assume that we have the

same probability, let’s denote this as (1/2, 1/2). Then the average

expected surprisal (Shannon Entropy), is H(X) = 1, and the Normalized

Shannon Entropy is also equal to one. Assume now that now our

sender starts to transmit using another symbol, so that we now

have theoretical probabilities of (0.5, 0.25, 0.25). Then N = 3, and

the average expected surprisal increases to H(X9) = 1.5 the Normalized

Shannon Entropy is now 1.5/log2(3) = 0.946… (a reduction). This

‘third symbol’ could actually represent a new ‘‘molecular species’’

or a protein isoform that would not be normally expressed in that

tissue type [624], or even something entirely new, product of a

mutational/deletional event. If our hypothetical high-throughput

technology can only be detecting the first two symbols, and

following the conventions we established in the ‘Materials and

Methods’ section, we would be ‘‘observing’’ frequencies of (2/3,1/

3) since the other events would not be detected with our

equipment. As a consequence, the both the log2(2) = 1, Shannon
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Entropy and the Normalized Shannon Entropy are both reduced to

0.918293. Obviously, we can not count what we can not observe.

As a consequence, a degenerating transcriptional profile that

produces novel molecular species, and at the same time reduces

those which we can not measure with a particular technology,

would look increasingly more ordered.

Exporting entropy, Maxwell Demons and Aquaporins
We envision that physicists may find here a fertile ground to

explore new ideas and attempt novel mathematical formalisms for

cancer progression from the realm of finite-state thermodynamics [625]

and in particular endorevesible processes [626] and endoreversible

thermodynamics [627]. Some molecular alterations would then be

part of the set of revesible processes that could occur in a cancer

cell, while other processes like aneuploidy or gene fusions could be

truly ‘‘irreversible genetic switches’’ associated with cancer progression

[628]. If we assume that the process is slow (i.e. the times required

for significant variations of the transcriptome’s profile is large in

comparison with the cell’s processes time scales), and follwing the

results of Spirkl and Reis [626], it may be possible that we have a

constant entropy production rate exists during cancer progression

leading to Hauptmann’s ‘‘entropic devolution’’ [629]. Hauptmann

sees a malignant tumour as ‘‘a dissipative structure arising within the

thermodynamical open system of the human body’’ that starts when ‘‘a

localized surplus of energy exists and there is no possibility to export entropy.

An energetic overload in most malignant cells is indicated by their abnormally

high phosphorylation state.’’ His perspective, preceeded in part by

Dimitrov [630], Klimek [631,632] and Marinescu and Viculetz

[633] might then fit well an endoreversible thermodynamic

formalism. Hauptmann says in [629] ‘‘I believe that cancer is a special

kind of adaptation to energetic overload, characterized by multiplication and

mutation of genomic DNA (generation of new biomolecules which enhance the

probability of survival under harmful conditions), and by chiral alterations

(reduction of entropy by entrapping energy) leading to abnormal configurated

biomolecules. In this regard the genetic alterations are probably secondary

changes. Cancer serves to dissipate energy in a type of developmental process but

one in which the results are harmful to the whole organism: an entropic

devolution.’’

This thermodynamical perspective is now worth exploring and

we will discuss it in this context. Assuming that a cancer cell is in a

state of ‘‘energy overload’’, without ‘‘the possibility of exporting entropy’’,

could it lead to some type of ‘‘genetic alterations’’? Which key

mechanisms might be impaired? What consequences is this

‘‘system’’ delivering? Could this be another hallmark for oncosystems

indentification?

In 1871, in this book called ‘‘Theory of Heat’’, Maxwell speculated

the idea of ‘‘a being, who can see the individual molecules’’ and who has

enough reactive intelligence to open and close a unique small hole

existing between two communicating vessels (called ‘A’ and ‘B’). An

ideal gas filled both vessels, so that starting at uniform temperature

the intelligent being could observe the molecules and close and open

the hole accordingly to a mission: ‘‘to allow only the swifter molecules to

pass from A to B, and only the slower ones pass from B to A.’’ The being,

‘‘without expenditure of work raise the temperature of B and lower that of A in

contradiction to the second law of thermodynamics.’’ The ability of the

‘‘being’’ to use observable information about the system to lower the

thermodynamical entropy has motivated many articles in physics

and fuelled the imagination of many since it was originally

introduced by Mawell, and named as ‘‘demon’’ by Thomson three

years later [622]. An excellent collection of articles until 1990

[634,635,636,637,638,639,640,641,642,643,644] was edited by

Leff and Rex [645]. The Maxwell ‘‘demon’’, far from being

‘‘exorcised’’ from Physics, still inspires interesting new perspectives

[634,635,636,637,638,639,640,641,642,643,644,646,647].

In a letter to Peter Guthrie Tait, Maxwell writes about the

‘‘demons’’: ‘‘Is the production of an inequality of temperature their only

occupation? No, for less intelligent demons can produce a difference in pressure

as well as temperature by merely allowing all particles going in one direction

while stopping all those going the other way. This reduces the demon to a valve.

As such value him. Call him no more a demon but a valve like that of the

hydraulic ram, suppose.’’ (from [645], p. 6). Maxwell gives again here

a sign of his brilliant mind, ‘‘degrading’’ the demon to a valve, but

also offering an inspiring perspective to oncosystems research.

Which types of mechanisms exist in biological systems, and

particularly in individual cells, to control these differential values

in key parameters? Could changes of key physical parameters for

metabolic processes of the cytoplasm and cell’s organelles like

temperature, volume, pH or electrochemical potentials be also implicated in

cancer progression?

The influence of temperature may be giving an interesting

working hypothesis for further research. What are the conse-

quences if cancer cells are a different type of open system which

also operates at a different temperature than a normal cell? Butler

et al. have studied p53 and they argue that at temperatures above

37 degrees centigrades wild-type p53 spontaneously loses DNA

binding activity. While folding kinetics do not show important

changes in a range from 5 to 35 degrees C, the unfolding rates

accelerate 10,000-fold. This leads to a somewhat unexpected

mechanism of p53 inactivation. It could be the case that a fraction

of p53 molecules become trapped in misfolded conformations with

each folding-unfolding cycle due to the increased frequency of

cycling. The occurrence of misfolded p53 proteins can lead to

aggregation and subsequent ubiquitination in the cell, leading to

p53 inactivation [648,649]. If a key ‘‘guardian of the genome

integrity’’ [650,651] and its remarkable conformational flexibility

[652] is challenged by an increase of temperature [653], its role in

genotoxic damage and adaptive response (like that of the skin to

UVB damage [654]) may be impaired. The same may occur for

other members of the DNA damage response. An increment in

temperature has already been linked to skin carcinogenesis.

Boukamp et al. report in that [655] ‘‘exposure of immortal human

HaCaT skin keratinocytes (possessing UV-type p53 mutations) to 40 degrees

C reproducibly resulted in tumorigenic conversion and tumorigenicity was stably

maintained after recultivation of the tumors.’’

On the other hand, natural gradients on physical biochemical

properties can also be challenged in a cancer cell. This in turn

derives in metabolic processes running under abnormal paramet-

ric circumstances. It is well-known that compartimentalization, in

biological systems, naturally require the existence of mechanisms

that would keep some key state variables relatively constant, or

within bounds, for normal operation of the metabolic processes.

One example is very illustrative and a case in point. Instead of

demons, holes, or valves, the cell requires pores in its membranes

to allow osmotic regulatory processes, yet it should preclude the

conduction of protons. This is a nanotechnological design problem

not faced by Maxwell, but certainly solved by biological systems

without the need of an ‘‘intelligent being’’ as Mawell cleverly

pointed to Tait in his letter.

This discussion brings us to one of the gene families we have

already discussed in this paper, the aquaporins [184,656,657,

658,659,660,661]. They are considered the primary water

channels of cell membranes [662,663,664,665]. The specific

functions of each member of this family are now being slowly

mapped by several research labs around the world [666]. Their

clinical role in cancer [667,668,669,670,671,672,673,674,

675],obesity [676], malaria [677,678] and other diseases is

emerging [657,679,680,681,682,683,684,685,686,687,688,689].

In [690], our group observed the dowregulation of AQP3 in all
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melanoma cell lines studied of the NCI-60 dataset of Ross et al.;

this dowregulation was also observed for the CNS and Renal cell

lines. AQP3 was relatively upregulated for Leukaemia and Colon

cell-lines (we refer the reader to the Supplementary Material of

[690] for details). Inhibition of AQP3 in prostate cancer cells was

already proposed as a mechanism that increases the sensitivity to

cryotherapy treatment [691].

The aquaporins are not ‘‘an intelligent being’’ in any real sense,

yet they are so formidable selective that they could easily parallel

Maxwell demon’s efficiency in creating the right conditions for the

cell. Wu et al. give us some clues on the role of point mutations in

the AQP1 and how their effective electrostatic proton barrier can

be impaired [692]. The elicitation of the detailed mechanistic

explanation of this extraordinary selectivity is under intense

investigation with a number of techniques, including sophisticated

molecular dyanamics simulations, for an overview of this field see

[665,693,694,695,696,697,698,699,700,701,702,703,704,705,706,

707,708]. One less known feature of aquaporins is that they may

not only channel water, but also carbon dioxide and ammonia

[709,710,711], glycerol [712] and urea and other small solutes

[713] and, very relevant for cancer research, hydrogen peroxide [188].

At least two of members of this family have been observed in the

inner mitochondrial membrane in different tissues. This in turn

may indicate mitochondrial roles for aquapotins in osmotic

swelling induced by apoptotic stimuli [714].

Could it be possible that we can track cancer progression by

looking at some of these ‘‘Maxwell demons’’? We have seen in

Figure 10, that AQP3 has a reduced expression with increased

progression in our melanoma dataset. Cao et al., reported that

ultraviolet radiation induced AQP3 down-regulation in human

karatinocytes; thus AQP3 has become a strong and plausible link

between UV radiation, skin dehydration [186,715] and photoag-

ing [189]. This may indicate an impared function on skin

hydration [184,185,716,717,718,719]. The expression of AQP3,

as well as AQP1, AQP5, and AQP9 seem to be correlated with

melanoma progression, indicating a common pattern of downreg-

ulation from the higher values in normal skin and benign nevi (see

Figure 17).

Does a similar pattern of aquaporin downregulation exist in

prostate cancer? Wang et al. have looked at the expression and

localization of AQP3 in human prostate using cell lines as well as

patient samples. They have observed AQP3 mRNA ‘‘in both normal

and cancerous epithelia of human prostate tissues, but not in the mesenchyme.

In the normal epithelia of the prostate, localization was limited to cell

membranes, particularly the basolateral membranes. However, the expression of

AQP3 protein in the cancer epithelia was not observed on the cell membranes.’’

This finding seems to implicate the subcellular localization of

AQP3 as a possible indicator of a transition to a more malignant

phenotype. Lapointe’s dataset allows us to see the downregulation

of AQP3 and AQP1. A large subgroup of primary prostate tumors

has reduced levels of AQP3 and AQP1 as most of the lymph node

metastasis samples [Figure 18].

Retrodictions, Postdictions, Predictions, Telomeres, non-
coding RNAs and paraspeckles

One critique that we are aware we could receive is that the

current manuscript presents a novel methodology and an

underlying unifying theory based on retrodictions or postdictions.

Indeed we have shown that the use of the Normalized Shannon

Entropy and the Information Theory quantifiers (the M-complexities and

the Jensen-Shannon divergence) allow to monitor cancer progression

and to identify the best biomarkers that correlate with the

transcriptomic changes. Our approach works in a retrodiction way in

that it looks at data already obtained by other studies, but gives a

unifying framework to track cancer progression. For instance, on

True et al’s dataset, our unifying hallmark of cancer gives not only

MAOA, which was already identified in the original publication,

but also AMACR, CD40, CDK4, etc. are very important

biomarkers for prostate cancer. Analogously, the identification of

KLK3/PSA in Lapointe’s dataset is another important retrodic-

tion which shows the power of the method.

In some sense our approach also works in a postdiction way, as it

helps to evaluate the speculation that cancer cells have ‘‘an entropic

devolution’’. Our results show that the variations of Normalized

Shannon Entropy and Jensen-Shannon divergences indeed give measur-

able changes, and that these changes are related to important

biomarkers in the two types of cancer studied in this work.

In addition, we remark that we are literally making hundreds, or

even thousands of predictions. The results in the ‘Supplementary

Material’ provide this information for the detailed scrutiny of our

peers. We believe that other probes with gene expression patterns

in high correlation with the probes discussed in this paper, and

perhaps less studied by immunohistochemistry and other methods

in the two cancer types studied here, are worth exploring as a

group of biomarkers. These predictions can be tested with further

studies on staging and patient stratification.

A very recent study by Ballal et al. have linked BRCA1 to

telomere length and maintenance and its loss from the telomere in

response to DNA damage [720] (see also [721]). We have

previously mentioned that BRCA1 is a conspiquous biomarker

arising from the analysis of True et al.’s dataset using our methods.

We found this to correlate with a preivous study that showed that

BRCA1 has a reduced expression in immortalized prostate

epithelial cells before and after their conversion to tumorigenicity

[493]. We also mentioned that the knockdown of BRCA1 leads to

anaccumulation of multinucleated cells [492], preserving chromo-

somal stability [490]. Ballal et al. telomeric ChIP assays to detect

Figure 17. Heat map showing the expression of four of the six probes corresponding to aquaporins (AQP1, AQP3, AQP5, and
AQP9) in Haqq et al.’s melanoma dataset. Primary melanaoma samples (annotated in green) and benign nevi (in yellow) show higher
expression values. Primar melanoma (in orange) show a mixed behaviour and metastaic melanoma samples (in red) show in comparision that their
expression is remarkably lower. We highlight the similarity of this finding with Figure 8, in which we have shown the same behaviour for a group of
genes functionally annotated as being involved in cell adhesion, cell-cell communication, tight junction mechanisms and epithelial cell polarity.
Metastatic melanoma samples, in comparison, show remarkably reduced values of the joint expression of these four probes, indicating the possibility
of an impaired function of these highly selective mechanisms.
doi:10.1371/journal.pone.0012262.g017
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BRCA1 at the telomere and reported time-dependent loss of

BRCA1 from the telomere following DNA damage. Due to the

role of telomeres in maintaining chromosomal stability [722] and

the inverse correlation of telomere length and divergent karyotypes

in prostate cancer cell lines [723,724] (as well as the recognized

role of telomere dysfunction in the induction of apoptosis or

senescence in vivo [725,726,727,728,729,730], increase of muta-

tion rates [731], DNA fragmentation [732], and their relation with

DNA damage signalling [733]), we checked for other probes of

genes involved in telomeric function.

From those which we were able to identify in True et al’s

dataset, we have found a strong high correlation of the expression

of BRCA1 with TERF2/TRF2 (telomeric repeat binding factor 2)

[734] and a negative correlation with the expression pattern of

TERF2IP (telomeric repeat binding factor 2, interacting protein)

[Figure 19].

Finally, one particular type of probes has also caught our

attention, and we would like to refer to them before concluding

this section.

With the denomination of ‘non-coding RNA’ we identify those

RNA molecules which are functional but that are not translated

into proteins. Many microarray chips contain probes that are

annotated as ‘non-protein coding’, indicating that there might be

some valuable expression data that we can also mine for

information. We note that our method, although employing

transcriptomic data, does not limit its application to protein-

coding information, and that the combined use of protein-coding

and non-coding protein probe expression would allow a more

comprehensive view of the transcriptional state of the cell.

Among non-protein coding, microRNAs [735] are gaining

acceptance as key players in several cancers [736,737,738]

(including prostate cancer [739,740]), but the so-called ‘‘long non-

coding RNAs’’ [741] are also gaining a place in the scenario of

cancer biomarkers (see [742], and [743,744,745]). We thus turned

our attention to these probes that have been annotated as ‘‘non-

protein coding’’ and we highlight some of them that have very high

correlation values with the Normalized Shannon Entropy in True et al’s

prostate cancer dataset. In particular, the probes for MALAT1/

MALAT-1 [742,746,747,748,749,750,751,752,753,754,755,756,

757,758] have a very conspiquous position (See Figure 20). They

located very closely to other protein coding biomarkers that have

also lost expression and have been discussed in this work like SFPQ,

CD40, BRCA1, and TP53 (see Figure 16). MALAT1 has been

recently pointed as a biomarker in primary human lobular breast

cancer as a result of an analysis of over 132,000 Roche 454 high-

confidence deep sequencing reads [749]. An international team,

searching on thousands of novel non-coding transcripts of the breast

cancer transcriptome, has been able to identify more than three

hundred reads corresponding to MALAT1 [749]. This is a non-

coding RNA which was identified in 2003 in non-small cell lung

cancer, was shown to be highly expressed (relative to GAPDH) in

lung, pancreas and prostate, but not in other tissues including

muscle, skin, stomach, bone marrow, saliva, thyroid and adrenal

glands, uterus and fetal liver [758]. MALAT-1, also known as

NEAT2, is considered to be ‘‘extraordinarily conseved for a

noncoding RNA, more so than even XIST’’ [754]. Our results

indicate that the reduction of expression of some non-coding RNAs,

in particular of MALAT-1, and SNORA60 with respect to their

normal expression in prostate, as well as the upregulation of

SNHG8 and SNHG1 should be monitored as useful biomarkers to

track disease progression.

We will now address another non-coding RNA called NEAT1

which, like NEAT2, is also conserved in the mammalian lingeage.

Before we move onto NEAT1, we will first recall a previous result.

We have noted before the conspiquous position of SFPQ/PSF

(Polypyrimidine tract-binding protein-associated splicing factor) in

Figure 18. Heat map and stacked values showing the expression of the probe that correspond to AQP1 and AQP3 in Lapointe et
al’s prostate cancer dataset (Samples ordered by their total average value). Most of the control samples have a positive joint expression
value (in green). A reduction is observed in primary prostate tumor samples (in yellow), with more than one half of the samples now having negative
values. On the rightmost part of the figure, most of the lymph node metastasis samples (in red) have a strong negative total joint expression of these
two biomarkers.
doi:10.1371/journal.pone.0012262.g018
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Figure 16. The expression of a probe for SPQF has the highest

correlation with the values of the Normalized Shannon Entropy. We

highlighted before that SFPQ/PSF is a putative regulator of

growth factor-stimulated gene expression [498]. The loss of SFPQ

expression during the progression of prostate cancer may be an

important key to understand this disease or one of its subtypes. We

have also mentioned that the AR/PSF complex interacts with the

PSA gene (perhaps the most well-established prostate cancer

biomarker) and that SFPQ/PSF inhibits AR transcriptional

activity [499]. Kuwahara et al. showed that SFPQ together with

NONO (Non-POU-domain-containing, octamer binding protein)

and PSPC1 (Paraspeckle protein 1 alpha isoform, formerly known

as PSP1) are expressed in mouse Sertoli cells of the testis and form

complexes that function as coregulators of androgen receptor-

mediated transcription [500]. While new research results [759]

link SFPQ and NONO/P54NRB with the RAD51 family of

proteins (largely regarded as another key protector of chromosome

integrity as being involved in homologous recombination DNA

repair), it is perhaps SFPQ and NONO’s co-localization in

paraspeckles that make this group also remarkable [760].

Paraspeckles [760,761,762,763,764,765,766,767,768,769,770,

771,772,773,774,775,776,777] are a novel nuclear compartment,

of approximately 0.2–1 mm in size, discovered in 2002, by Fox et

al. in Dundee Scotland, following the identification of the protein

PSPC1 (AF448795) in the nucleolar proteomics project at

Lamond’s lab which is described well by Fox et al. [777]. Three

years later, Fox, Bond and Lamond showed that NONO and

PSPC1 form a heterodimer that localizes to paraspeckles in an

RNA-dependent manner [773]. Paraspeckles are dynamic struc-

tures, observed in numbers that vary between 10 and 20, that seem

to control gene expression via retention of RNA in the nucleus

[772]. A long noncoding RNA called NEAT1/MEN epsilon/beta

[754,760,762,764,778], that colocalizes with paraspeckles, seems

to be integral to their structure. Depletion of NEAT1 erradicates

paraspeckles and a biochemical analysis by Clemson et al indicates

that the NEAT1 binds with paraspeckle proteins SFPQ/PSF,

P54NRB/NONO and PSPC1. NEAT1 is also known as TncRNA

(trophoblast-derived noncoding RNA) [754,779,780,781,782,

783,784,785,786] and probes for TncRNA exist on this dataset,

We have observed in True et al.’s dataset that there exists a high

correlation between the Normalized Shannon Entropy with the

expression of SFPQ/PSF, P54NRB/NONO, and TncRNA.

Overall, this implies that the disruption of the function of the

paraspeckles is correlated with the increasing signs of deterioration

of normal transcriptomic state of the cells. While a causal

relationship still needs to be proved, we admire the mathematical

elegance of the Normalized Shannon Entropy of the samples, a global

measure of the average expected surprisal of the transcriptome,

which in turn has lead us to consider the dysfunction of the

smallest nuclear body as a putative biomarker of disease

progression. The role of SFPQ/PSF in the control of tumorigen-

esis is under investigation [787] and the information coming from

these studies would need to be integrated with their role, together

with P54NRB/NONO and TncRNA, in paraspeckles if we want

to achieve a better understanding of these mechanisms.

Conclusions
In this contribution we have shown that for the melanoma and

prostate cancer datasets studied, the quantitative changes of

Information Theory measures, Normalized Shannon Entropy, Jensen–

Figure 19. The stacked average gene expression of probes corresponding to BRCA1 and TERF2 (telomeric repeat binding factor 2)
in True et al’s prostate cancer dataset. The first group of samples (1 to 9 in green) correspond to Gleason 3 pattern, indicating that most of the
samples in this group have no significantly reduced expression of this pair of genes. The second group of columns (10 to 21 in yellow) correspond to
Gleason 4 patterns and the last 8 columns (22 to 29 in red) correspond to Gleason 5 samples. A very recent study by Ballal et al. have linked BRCA1, to
telomere length and maintenance and its loss from the telomere in response to DNA damage [720] (see also [721]). There is an increasing trend of
dowregulation, so it would be interesting to evaluate if indeed this pair of proteins could be an early marker of dowregulation useful to evaluate
samples with Gleason pattern 2, or if may constitute a biomarker useful to distinguish a prostate cancer subtype.
doi:10.1371/journal.pone.0012262.g019
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Shannon divergence and the novel Statistical Complexity quantifiers

defined here are in high correlation with gene expression changes

of well-established biomarkers associated to cancer progression. In

addition, variations of the basic technique (i.e. a modified form of

statistical complexity) which allows us to better understand the

phenotypic changes observed in these samples which are

associated with the progression and the transitions of the gene

expression profiles. For instance, in a properly defined Statistical

Complexity vs. Entropy plane, on a melanoma dataset first studied in

Ref. [110], samples appear in well differentiated ‘‘clusters’’. These

clusters correlate well with the phonotypic characteristics of normal

skin, nevi, primary and metastatic melanoma. In this ‘‘Complexity vs.

Entropy’’ plane, primary melanomas samples appear ‘‘bridging’’

benign nevi and metastatic melanoma samples. Our results may

also suggest that the evolution of metastatic melanoma leads to at

least two different subtypes.

The Normalized Shannon Entropy of a transcriptional sample profile

is calculated associating the measured expression values of a gene

with the relatively probability of being expressed. We have

observed that, in general, the transcriptomes of tumour progress-

ing cells tend to have lower values of Normalized Shannon Entropy

than normal ones. Given a population of normal cells of a given

tissue type it is then possible to compute useful measure of

divergence of cancer cell profiles from the normal expression

average profile, in terms of Information Theory quantifiers, the

Shannon Eveness normalized entropy and generalized statistical

complexity [788,789,790].

In addition, our observation of the correlation of the statistical

complexity of tumours with its natural progression allows an

unprecedented way of finding biomarkers that links with the gradual

deterioration of the genome integrity. The proposed methodology

uncovered, for the first time, evidence of the putative role of

impared centrosome cohesion in melanoma progression.

Statistical complexity has then been able to pinpoint otherwise

unrecognized biomarkers in concert with existing ones, reinforcing

the view that ‘‘chromosomal chaos’’ and ‘‘cancer as a chromosomal disease’’

can be a useful guiding principle to understand the molecular

biology of cancer and uncover the timeline of its progression. This is

a powerful method to uncover ‘‘oncosystems’’ instead of ‘‘onco-

genes’’. ‘‘Oncosystems’’ are a highly differentially disregulated set of

genes that, if linked with the molecular ‘‘hallmarks of cancer’’

described in the introduction, and existing databases with putative

common functional genomic annotations, can help to understand

the biological progression pathways that drive the disease.

On one of the prostate cancer dataset studied (obtained from a

previous published study, [44]), we observe a gradual pattern of

reduction of Normalized Shannon Entropy from three well character-

ized tissue types: normal prostate, primary prostate tumours and lymph node

metastases. On a different dataset on prostate cancer (from Ref

[332]), we observe that a group of samples having Gleason

Figure 20. Non-coding RNAs and prostate cancer. We present again a scatter plot of Spearman versus Pearson correlation values of the probe
expression of 13,188 probes in True et al’s prostate cancer dataset with the Normalized Shannon Entropy values of the samples. All blue dots
correspond to one of the probes, but the only difference with Figure 16 is that we have now highlighted the position of s ome probes which have
been annotated as corresponding to ‘‘non-coding RNAs’’. In particular, we highlight those of MALAT1 (Metastasis associated lung adenocarcinoma
transcript 1, (non-protein coding)), SNORA60 (small nucleolar RNA, H/ACA box 60); both increasingly downregulated, SNHG1 (small nucleolar RNA
host gene 1 (non-protein coding)) and SNHG8 (small nucleolar RNA host gene 8 (non-protein coding)). The probes for MALAT1/MALAT-1
[742,746,747,748,749,750,751,752,753,754,755,756,757,758] have a very conspiquous position, which we could judge a priori to be equivalent in
relevance to those of the previously discussed roles of SFPQ, CD40, BRCA1, and TP53 (see Figure 16). MALAT1 has been recently pointed as a
biomarker in primary human lobular breast cancer as a result of an analysis of over 132,000 Roche 454 high-confidence deep sequencing reads.
Within the thousands of novel non-coding transcripts of the breast cancer transcriptome, Guffanti al., identified more than three hundred reads
corresponding to MALAT1 [749]. This non-coding RNA, first identified in 2003 in non-small cell lung cancer, was shown to be highly expressed
(relative to GAPDH) in lung, pancreas and prostate, but not in other tissues including muscle, skin, stomach, bone marrow, saliva, thyroid and adrenal
glands, uterus and fetal liver (see figure four of Ref. [758]). Our results indicate that the reduction of expression of some non-coding RNAs, in
particular of MALAT-1, and SNORA60 with respect to their normal expression in prostate, as well as the upregulation of SNHG8 and SNHG1 should be
monitored as useful biomarkers to track disease staging and progression to a more malignant phenotype. Interestingly enough, a study published in
2006 by Nadminty et al. has shown that KLK3/PSA modulates several genes, reporting a 16.5 fold downregulation of MALAT1 [810]. While these
results have been obtained using the human osteosarcoma cell line SaOS-2, our results indicate that MALAT1 expression in the normal prostate and
in cancer cells could also be considered as a relevant biomarkers to be tested in the future.
doi:10.1371/journal.pone.0012262.g020
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patterns 4 and 5 (two patterns which are typically associated to an

aggressive phenotype) have lower Normalized Shannon Entropy values

than a subset of Gleason pattern 3 (a pattern which is normally

associated to a less aggressive phenotype but which nevertheless is

still of clinical concern). However, a group of samples having

Gleason patterns 3, 4, and 5 is revealed; this mixed cluster has a

mid-range entropy. This is an interesting fact which correlates

with the limitations observed in Ref. [332]. We note the authors’

comment: ‘‘We were unable to identify a cohort of genes that could

distinguish between pattern 4 and 5 cancers with sufficiently high accuracy to

be useful, suggesting a high degree of similarity between these cancer histologies

or substantial molecular heterogeneity in one or both of these groups.’’ Our

results provide a conciliatory middle ground that explains the

perceived clinical usefulness of Gleason pattern classification,

widely used around the world, while at the same time reveals the

reason for the difficulties of obtaining a good transcriptional

signature for the other two patterns [791].

We have seen, through a detailed discussion of several biomarkers

in three different datasets, that the variation of the gene expression

distributional profile can be characterized via Information Theory

quantifiers. Our study also showed that current established

biomarkers of the two diseases studied seem to correlate with those

that best co-variate with these quantifiers. For instance, AMACR, in

our second prostate cancer dataset studied, naturally appears as one

of the most correlated genes (in both the Pearson and the Spearman

sense) with the pattern of variation of Entropy of the samples.

Together with MAOA, which is the highlighted gene in True et al.’s

[332] original publication, AMACR is now being recognized as one

of the best biomarkers in primary prostate cancer with approxi-

mately 180 publications dedicated to it in the past five years. We

have also shown that many gene probes that best correlate with the

divergence of the normal tissue profile have been identified as useful

biomarkers (via other accepted validation methods). This said, the

use of other sources of information, like pathway or gene ontology

databases has lead as to the identification of other cell processes that

may be altered.

We have presented a unifying hallmark of cancer, the cancer

cell’s transcriptome changes its Normalized Shannon Entropy (as

measured by high-througput technologies), while it increments its

physical Entropy (via creation of states we might not measure with

our devices). This hallmark allows, via the use of the Jensen-Shannon

divergence, to identify the arrow of time of the process, and helps to

map the phenotypical and molecular hallmarks of cancer as major

converging trends of the transcriptome. The methodology has

produced remarkable postdictions and retrodictions that show that

it can predictively guide biomarker discovery.

Materials and Methods

We refer the reader to the original publications for details of

methods for data collection, but we highlight here some aspects

that are important to understand the data generation process for

the purpose of our analysis.

Lapointe et al.’s dataset (File S1)
Samples were obtrained from radical prostatectomy surgical

procedures. Samples are labelled as ‘‘tumors’’ if they contain at

least 90% of cancerous epithelial cells, and they were considered as

‘‘non-tumor’’ if they contain no tumor epithelium and are from

the noncancerous region of the prostate. The later samples were

labelled ‘‘normals’’ although the authors alert that some may

contain dysplasia. In this dataset, Lapointe et al. have performed a

gene expression profiling by using cDNA microarrays containing

26,260 different human genes (UniGene clusters). Using 50 mg of

total RNA from prostate samples Cy5-labeled cDNA was

prepared and Cy3-labeled cDNA used 1.5 mg of mRNA common

reference, pooled from 11 human cell lines (see Ref. [792]). The

fluorescence ratios were subsequently normalized by mean

centering genes for each array, a relatively standard procedure.

In addition, to minimize potential print run specific bias, Lapointe

et al. report that ratios were then mean centered for each gene

across all arrays according to Ref. [793]. We have only used the

genes that the authors report in their first figure, 5,153 genes that

have been well measured and have significan variation in some of

the samples. For the other details of their matrials and methods we

refer the readers to the Supporting Notes and the Materials and

Methods section of their original publication [44].

Haqq et al.’s dataset (File S2)
Samples were obtained from nevus volunteers and melanoma

patients and only those samples that have more than 90% of

tumor cells were profiled. The 20,862 cDNAs used (Research

Genetics, Huntsville, AL) represent 19,740 independent loci.

(Unigene build 166).median of ratio values from the experiment

were subjected to linear normalization in nomad (which can be

accessed at http://derisilab.ucsf.edu), log-transformed (base 2),

and filtered for genes where data were present in 80% of

experiments, and where the absolute value of at least one

measurement was .1.

True et al’s dataset (File S3)
In this dataset, samples have information of 15,488 spots per

array, with a total of 7,700 unique cDNAs represented. The samples

were obtained from frozen tissue blocks from 29 radical prostatec-

tomies accessioned and selected to represent Gleason grades 3, 4,

and 5. The samples are ‘‘treatment naı̈ve’’, meaning that they were

also selected such that their gene expression profile is also and the

absence of any bias that the treatment before prostatectomy. The

frozen sections (8 mm) were cut from optimal cutting temperature

medium blocks and immediately fixed in cold 95% ethanol. Around

5,000 epithelial cells from both histologically benign glands and

cancer glands were separately laser-capture microdissected (LCM).

The authors of the study have also been very careful to include only

one Gleason pattern in each laser-captured cancer sample, following

a process in which the patterns were assessed independently by two

investigators.The matched benign epithelium was captured for each

cancer sample for a total of 121 samples.

An important characteristic of this dataset is the normalization

procedure. For each spot and in each channel (Cy3 and Cy5), True

et al. substracted the median background intensity from the median

foreground intensity, and subsequently the log ratios of cancer

expression to benign expression were computed. These ratios were

obtained by first dividing the background-subtracted intensities

(Prostate Cancer/Benign) and then taking the logarithm base 2. In

the case that the median background intensity was greater than the

median foreground intensity, the spot was considered missing. We

refer to the original publication for the other aspects of imputation,

spot quality and filtering, but, like in Lapointe et al’s study, they also

filter to keep informative (expression ratios of benign versus cancer

should at least be 1.5-fold or greater in at least half of one of the

Gleason groups as one of the selection criteria).

Normalized Shannon Entropy, Jensen-Shannon
Divergence and Statistical Complexity

Shannon Entropy. In many circumstances, experimental

measurements are associated with the accumulation of individual

results which, ultimately, qualitatively and quantitatively
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characterized our experimental observations. The presence (or

absence) of a particular result of an individual experimental

measure is called an event. An event which can take one of several

possible values is called a random variable. Analogously, a random event

is an event that can either fail to happen, or happens, as a result of

an experiment. An event is certain if it can not fail to happen and it

is said to be impossible if it can never happen.

Following Andreyev [794], we will define the probability p(x) of

an event x, as the theoretical frequency of the event x about which the

actual frequency occurrence of the event shows a tendency to fluctuate as the

experiment is repeated many times. The Shannon information content

of an event x (or the surprisal of an event x, [795]), is defined as

h(x)~log2

1

p(x)

� �

Following McKay [796], an ensamble X is a triple (x,AX ,PX ),
where x is the value of a random variable, which takes on one of a

set of possible values, AX ~fa1,a2,:::,ai,:::,aNg, having probabil-

ities PX ~fp1,p2,:::,pNg, with p(x~ai)~pi, pi§0 andX
ai[AX

p(x~ai)~1.

The Shannon Entropy of an ensemble X (also known as the uncertainty

of X), denoted as H[X], is defined to be the average Shannon

information content. It is the average expected surprisal for an infinitely

long series of experiments. We use the theoretical frequencies to

compute this average, and then we have

H X½ �~{
XN

i~1

pi(x)log2(pi(x))

Suppose that we have a fair dice, the theoretical frequency of an

event ‘the dice shows a three’ is 1/6, (if the dice is assumed fair, the

theoretical frequency is the same for any number from 1 to 6). In

that case a hypothetical experimentalist guessing will have an

average expected surprise of H[X] = log2(6). We note the two

natural bounds that the entropy can have. The Shannon Entropy

of an ensemble X is always greater or equal to zero. It can only be

zero if p(x~ai)~1 for only one of the N elements of

AX ~fa1,a2,:::,ai,:::,aNg. On the other hand, the Shannon Entropy

is maximized in the case that p(x~ai)~1=N. This is the so-called

‘‘equiprobable distribution’’, a uniform probability distribution over

the finite set.

Transcriptional Shannon Entropy. Let f
(j)

i the expression

value of probe i (i = 1,…, N) on sample j (j = 1, …, M). For each

sample j we first normalize the expression values. We interpret

them as the theoretical frequency of a single hybridization event. We

then define a probability distribution function (PDF) over a finite

set as:

P(j)~ p
(j)
i ~

f
(j)

iXN

i~1
f

(j)
i

; i~1,:::,N

8<
:

9=
; j~1, . . . ,M:

The uniform (equiprobably) distribution is defined as

Pe~ pi~
1

N
; i~1,:::,N

� �

and the average probability distribution over all M samples as

Pave~ vpiw~
vfiwXN

i~1
vfiw

; i~1,:::,N

8<
:

9=
;,

with vfiw ~
1

M

XM

j~1
f

(j)
i

Let He~H½Pe�~log2N, then in this paper we always use the

Normalized Shannon Entropy, defined as:

S P(j)
� �

~{

XN

i~1
p

(j)
i log2p

(j)
i

He

, j~1, . . . ,M

The Jensen-Shannon divergence and the Statistical
complexity measures

Given a probability distribution function over a discrete finite

set, is then straightforward to calculate its Normalized Shannon

Entropy if we have the theoretical frequencies. Several measures of

‘‘complexity’’ of a probability distribution function have been

proposed. In this work we have used Statistical Complexity measures.

All the complexity measures used in this work are the product of

a Normalized Shannon Entropy of the probability distribution function,

and a divergence measure to a reference probability distribution

function. We follow earlier proposals by López-Ruiz, Mancini and

Calbet who first introduced a statistical complexity measure based

on such a product in [797]. The LMC-Statistical Complexity is the

product of the Normalized Shannon Entropy, H[P], times the

disequilibrium, Q[P]; the latter given by the Euclidean distance

from P to Pe, the uniform probability distribution over the

ensemble. In this paper we used a later modification which we

refer as the MPR-Statistical Complexity [43] which replaces the

Euclidean distance between P to Pe by the Jensen-Shannon divergence

[788,798]. The Jensen-Shannon divergence is linked in physics to the

thermodynamic length [799,800,801,802].

We define the MPR-Statistical complexity [790] as:

C(MPR) P(j)
� �

~H P(j)
� �

:Q P(j),Pe

� �
,

where Q P(j),Pe

� �
~Q0Js P(j),Pe

� �
, Q0 is a normalization factor, and

Js P(1),P(2)
� �

is the Jensen-Shannon’s divergence between two probability

density functions P(1) and P(2), which in turn is defined as

Js P(1),P(2)
� �

~H
P(1)zP(2)

2

� 	
{

H P(1)
� �

zH P(2)
� �

2

In this work, in many cases we compute the Jensen-Shannon divergences

of a probability with a probability of reference which is not the

uniform probability distribution over the ensemble. In general, it is

the average over a subset of probability distribution functions which

are consider to be either the ‘‘initial’’ of ‘‘final’’ states of interest. Let

Pave be such an average, then the M-Statistical Complexity of a

probability distribution function P(j), given a Pave of reference, is given by

C(M) P(j)
� �

~H P(j)
� �

:Js P(j),Pave

� �

An illutrative example. In order to discuss a relatively

simple example that can intuitively provide a grasp of the basic
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mathematical principles of Information Theory we present a

hypothetical ‘‘gene expression’’ dataset involving four samples

each with the expression of five unique probes corresponding to

five genes (not necessarily different) as follows in Table 3.

One of the quantifiers that we use in this contribution describes

a measure of order for a sample: the Normalized Shannon Entropy also

known as Shannon Evenness Index [803]. This section focuses on this

quantifiers use and importance (refer to the ‘Materials and

Methods’ section to see how this measure is calculated). In Sample

4 all probes have the same expression therefore it has the highest

achievable value of Normalized Shannon Entropy (H = 1). The

Normalized Shannon Entropy values for samples 1 and 2 are the

same (H = 0.82). Sample 3, which tends to be less peaked and has

the two most significantly expressed genes with the same value, has

a higher value of Normalized Shannon Entropy (H = 0.92) (see

Figure 21).

This simple example shows that the Normalized Shannon Entropy

variations of the gene expression profile convey information about

global transcriptomic changes; however, this measure alone is not

enough to characterize the deviations from normal tissue profiles.

For example, assume that Sample 1 is the normal profile of a

particular tissue type. Assume that Sample 3 is the profile of a

cancer cell that originated from that tissue type, the variation of

Normalized Shannon Entropy can be related to this malignant change.

However, as Sample 2 illustrates, Normalized Shannon Entropy is not

enough to let us to measure the variation from a profile and at

least another Information Theory quantifier is needed. We resort to

Statistical Complexity quantifiers, which in turn use the Jensen-Shannon

divergence [798] to provide this complementary dimension [800]

(refer to the ‘Materials and Methods’ section for a mathematical

definition of the Jensen-Shannon divergence).

Figure 21 shows how the Jensen-Shannon divergence helps us to

evaluate the variation between profiles. Samples 1 and 2, as

perhaps intuitively expected, have the largest divergence between

them, their Jensen Shannon divergence is 0.286636 (JS(1,2) =

Table 3. An example dataset to illustrate the principles of
Shannon Entropy and the Information Theory quantifiers used
in this work.

Gene 1 Gene 2 Gene 3 Gene 4 Gene 5

Sample 1 4 3 2 1 0.1

Sample 2 0.1 1 2 3 4

Sample 3 5 2 5 1 3

Sample 4 2 2 2 2 2

The matrix is a hypothetical gene expression dataset containing four samples
each consisting of probes for five genes.
doi:10.1371/journal.pone.0012262.t003

Figure 21. Normalized Shannon Entropy values (H) of the samples from Table 3. Sample 4 has the largest attainable value since the expression
of all probes is the same. Samples 1 and 2, which have the same set of expression values, although in different probes, have the same value of
Normalized Shannon Entropy. As a consequence, there is a need for another quantifier of gene expression to address the permutational
indistinguishability of these two expression profiles. The Jensen-Shannon divergence provides a natural alternative (see Table 4).
doi:10.1371/journal.pone.0012262.g021

Table 4. Jensen-Shannon divergence values using the
example introduced in Table 3.

Samples 1 2 3 4

1 0 0.286636 0.077849 0.82685

2 0.286636 0 0.157463 0.082685

3 0.077849 0.157463 0 0.035851

4 0.82685 0.082685 0.035851 0

While samples 1 and 2 have the same Normalized Shannon Entropy, they have
very different gene expression profiles and this is reflected in their mutual
Jensen-Shannon divergence which is 0.286636. The sample with the smallest
divergence to the equiprobability distribution sample 4 is sample 3.
doi:10.1371/journal.pone.0012262.t004
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JS(2,1) = 0.286636). The two ‘‘closest’’ pair of profiles correspond

to Samples 3, and 4, (JS(3,4) = JS(4,3) = 0.035851). See Table 4.

Let H P(j)
� �

be the Normalized Shannon Entropy of a transcriptional

sample profile, then the MPR-Statistical Complexity C(MPR) P(j)
� �

is

defined as being proportional to the product of the Normalized

Shannon Entropy times the Jensen-Shannon divergence of the profile with

the equiprobable distribution (in the example above the equi-

probable distribution is that of Sample 4). Then we have

C(MPR) P(j)
� �

~Q0H P(j)
� �

:Js P(j),Pe

� �
,

Where Q0 is a normalization factor. Once again, we refer to the

‘Materials and Methods’ sections for the accompanying formal

mathematical presentation. As a consequence, we can plot the

MPR-Statistical Complexity of the samples of our example as a

function of the Normalized Shannon Entropy as can be seen in

Figure 22.
Annotated genes. A full list of gene references in this paper

along with their descriptions from iHOP (http://www.ihop-net.

org/UniPub/iHOP/) can be found in supplementary material

reference File S5.
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DOC)
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