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Abstract

Despite the wide use of cell lines in cancer research, the extent to which their surface properties correspond to those of
primary tumors is poorly characterized. The present study addresses this problem from a transcriptional standpoint,
analyzing the expression of membrane protein genes - the Membranome – in primary tumors and immortalized in-vitro
cultured tumor cells. 409 human samples, deriving from ten independent studies, were analyzed. These comprise normal
tissues, primary tumors and tumor derived cell lines deriving from eight different tissues: brain, breast, colon, kidney,
leukemia, lung, melanoma, and ovary. We demonstrated that the Membranome has greater power than the remainder of
the transcriptome when used as input for the automatic classification of tumor samples. This feature is maintained in tumor
derived cell lines. In most cases primary tumors show maximal similarity in Membranome expression with cell lines of same
tissue origin. Differences in Membranome expression between tumors and cell lines were analyzed also at the pathway level
and biological themes were identified that were differentially regulated in the two settings. Moreover, by including normal
samples in the analysis, we quantified the degree to which cell lines retain the Membranome up- and down- regulations
observed in primary tumors with respect to their normal counterparts. We showed that most of the Membranome up-
regulations observed in primary tumors are lost in the in-vitro cultured cells. Conversely, the majority of Membranome genes
down-regulated upon tumor transformation maintain lower expression levels also in the cell lines. This study points towards
a central role of Membranome genes in the definition of the tumor phenotype. The comparative analysis of primary tumors
and cell lines identifies the limits of cell lines as a model for the study of cancer-related processes mediated by the cell
surface. Results presented allow for a more rational use of the cell lines as a model of cancer.
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Introduction

Proteins associated with the cell plasma membranes mediate key

processes such as molecular transport, cell adhesion, interaction

with the extracellular matrix, signal transduction and cell-to-cell

signaling. They have long been recognized to play a crucial role in

the genesis and development of cancer, by mediating complex

interactions between the tumor cells surface and the surrounding

cellular environment [1]. Moreover, this class of proteins is of

special relevance in cancer research as it constitutes the target of

election of monoclonal antibodies based therapies [2]. In fact a

number of monoclonal antibody targeting cell surface proteins

have been approved as therapeutics and have consolidated their

value in the treatment of cancer [3]. Many studies focusing on

cellular processes involving surface properties of cancer cells make

use of model cell lines derived from primary tumors. Examples

are: i) the identification of tumor specific membrane proteins

involved in pathways of adhesion and signaling [4]; ii) the assay of

anticancer drugs and antibodies targeting cell surface proteins [5];

iii) the selection of anti-cancer mAbs from antibody libraries using

the cell lines as target [6]; iv) cell binding assays and immuno-

staining experiments [2]. When using in-vitro cell models to mimic

cancer biology it is important to remember that tumors are

complex and heterogeneous systems. They are composed of

different cell types, interacting with each other, with the

extracellular matrix (ECM) and the surrounding tissue through a

complex network of signaling pathways, all mediated by cell

surface proteins. In contrast, cell lines consist of homogeneous

clonal populations generally lacking interactions with other cell

types and instead interacting with an artificial support. Moreover,

cell adaptation to in-vitro microenvironments involves recalibra-

tions of many pathways involving the cell surface, for example by

genetic and epigenetic alterations [7,8], different post-transcrip-

tional regulation [9] and modified signaling networks [10].

Differences in the composition and the functional activity of the

cell surface of primary tumors frequently result in different

sensitivity to anticancer agents, with cell lines being in general

more sensitive to treatments than primary tumors [5]. For these

reasons we believe that a quantitative and qualitative assessment of

the similarities and differences between the cell surface of primary

tumors and related cell lines is of outstanding importance for a

more efficacious use of the cell lines as an in-vitro cancer model. In

fact, despite their wide use, the extent to which the surface

properties of cell lines actually correspond to those of the

corresponding tumor tissues of origin has been poorly character-

ized. We addressed this question from a transcriptional standpoint,
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by performing a meta-analysis of membrane protein gene-

expression profiles from ten different studies [8,11–19], all using

the same microarray platform. The data set is composed in total of

409 human samples, including normal, primary tumor samples

and tumor derived cell lines. Eight different tissue origins are

represented: brain, breast, colon, kidney, leukemia, lung, melano-

ma, and ovary. We defined as the Membranome the ensemble of all

human genes coding for proteins integral to or covalently

associated with the plasma membrane. First, we demonstrated

that the Membranome expression data have greater power than the

rest of the transcriptome when used as input for the automatic

classification of tumor samples. This property suggests that most of

the gene expression specificity of tumors of different origins resides

into the genes codifying for cell surface proteins. This feature is

maintained in tumor derived cell lines.

Then we run a systematic comparison between the Membranome

expression in tumor and cell lines, using three different analytical

approaches. The first one is based on the direct comparison of the

Membranome expression values in primary tumors and cell lines,

grouped by tissue of origin. The second focuses on pathways

involving the Membranome and identifies those pathways differen-

tially regulated in tumors and cognate cell lines. The third analysis

quantifies the extent to which cell lines reproduce Membranome up-

or down-regulation observed in primary tumors with respect to

their normal tissue counterparts.

Results

Microarray data
Gene expression data on tumor cell lines, primary tumors and

normal tissues were integrated from ten independent studies, all

based on the Affymetrix HG-U95Av2 array platform (see

Methods) (Table 1). The resulting dataset includes 56 cell lines,

294 tumor samples and 59 normal samples representing a total of

8 different tissue origins: brain, breast, colon, kidney, leukemia,

lung, melanoma and ovary.

Definition of human Membranome genes
We defined as the Membranome the ensemble of all human genes

coding for proteins integral or associated to the plasma membrane.

All human genes reported in the NCBI Gene database were

surveyed using a combined analysis of the available Gene Ontology

annotations [20] and through the Phobius algorithm predicting

trans-membrane domains and signal peptides [21].

The resulting human Membranome comprises 4,329 genes

(about 17% of human genes) encoding for plasma membrane

proteins, neglecting the additional complexity introduced by

alternative splicing events or post-translational modifications. Of

these genes, 1,701 are represented on the Affymetrix HG-U95A2

microarray platform, common to all data sets considered in the

present study (Table S1)

Although the array covers only about 40% of the whole

Membranome (Fig. 1A), the internal representation of all major

functional classes – as defined by Panther [22] - is strictly

maintained (Fisher exact test p-value,0.001) (Fig. 1B). Impor-

tantly, the class of Membranome genes annotated as ‘‘molecular

unclassified’’ is under-represented on the array, reflecting a

positive bias towards well annotated genes in the process of array

design.

Membranome classification power with respect to tissue
origin

Much of the biological specificity of different cell and tissue

types is conferred by specialized subsets of proteins present on the

surface of the cell [23]. A large fraction of these proteins have a

structural role, being linked to the cellular cytoskeleton and

conferring specific morphologies to different cell types; others

mediate the response to external stimulus (e.g. cytokines, growth

factors) and/or the interaction with other cells through a variety of

molecular mechanisms [24]. To quantify - in terms of gene

expression - the contribution of Membranome genes in defining the

tumor type specificity, we run a parallel classification study on

primary tumors and tumor derived cell lines. The classification

power of Membranome and an equally sized, randomly chosen, set of

Not-Membranome genes, was used as input for the automatic

classification of samples with different tumor origin.

The results obtained using classifiers of decreasing size (Fig. 2)

show that the Membranome genes have a significantly lower

misclassification rate - and therefore greater power - in classifying

both tumor samples and cell lines according to their tissue of

origin. Importantly, the analysis also shows that the misclassifica-

tion rates obtained for cell lines are significantly higher than those

for primary tumors. In both primary tumors and cell lines

analyses, the eight tissues of origin analyzed gave rise to

comparable frequencies of misclassification. Therefore the ob-

tained misclassification rates cannot be ascribed to specific tissue

types.

Comparison of Membranome expression profiles in
primary tumors and cell lines

To characterize the degree to which cell lines are representative

of their tumor of origin with respect to Membranome expression, a

systematic comparative analysis was performed. Membranome gene

expression in primary tumors and cell lines were compared using

the Pearson’s correlation as metrics of similarity, as described in

Methods. Correlation values between primary tumors and cell

lines, grouped by tissue of origin, are represented in Fig. 3 as box

plots. With the exception of breast and lung, primary tumors

always showed highest similarity with their cognate cell lines (t-test

p-value,0.01). In particular, brain, leukemia, colon and ovary

were the tissues with the most pronounced correspondence

between tumors and cell lines. For breast and lung tumors the

analysis indicates that not only their cognate cell lines, but also cell

lines of different origins have comparable Membranome expression

similarity.

Table 1. Microarray datasets on NCI60 cell lines, primary
tumors and normal tissues analyzed in this study.

Tissue Cell Lines[8] Normal tissues Tumor tissues

Brain 6 9[17,18] 21[15]

Breast 6 - 19 [19]

Colon 7 9[14,19] 21 [19]

Kidney 8 14[13] 11 [19]

Leukemia 6 - 72[11]

Lung 9 20[12] 127[12]

Melanoma 8 - 9 [16]

Ovary 6 7[18,19] 14[19]

Total 56 59 294

All the gene expression measurements were obtained with Affymetrix HG-
U95Av2 arrays.
doi:10.1371/journal.pone.0011742.t001

Membranome Expression Analysis
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Membranome-driven pathways differentially regulated in
primary tumors and cell lines

To better characterize the differences between primary tumors

and cell lines at the cell surface level, an analysis of the Membranome

pathways differentially regulated in the two systems was performed.

For each tumor type, differentially regulated genes in primary

tumors and their cognate cell lines were identified by SAM

(FDR,0.01). The resulting groups of up- and down-regulated genes

were analyzed separately by using a gene set enrichment approach

(see Methods). A representative extract of the results is illustrated in

Fig. 4 and 5 (complete results are available in Table S4). Among the

dominant themes up-regulated in primary tumors emerge those

related to the immune response (Fig. 4A). These include ‘‘B-cell, T-

cell and antibody mediated immunity’’, ‘‘antigen presentation’’,

‘‘NFAT in immune response’’, ‘‘immunological synapse forma-

tion’’, ‘‘regulation of T-cell proliferation’’, ‘‘Natural killer cell

mediated immunity’’. Other themes generally up-regulated in

primary tumors are those related to ‘‘cell adhesion’’, ‘‘extracellular

matrix’’, ‘‘signal transduction’’, ‘‘cell-cell communication’’. Also the

‘‘cell differentiation’’ and ‘‘organ development’’ pathways appear

also up-regulated in different tumor types (Fig. 4B).

As expected, more specialized pathways/gene sets are up-

regulated in a more restricted manner. Examples are ‘‘nervous

system development’’ and ‘‘melanoma prognosis’’, specifically up-

regulated respectively in brain and melanoma tumors.

Interestingly, the ‘‘breast cancer mutated kinases’’ gene set –

composed of kinases genetically mutated in primary breast tumors

[25] - appears to be up-regulated only in breast and ovary tumors,

as compared to the corresponding cell lines. Overall, only a limited

number of pathways and gene sets were found to be up-regulated

in cell lines vs primary tumors and conservation of up-regulation

was limited across cell lines of different origin (Fig. 5). Examples

include the ‘‘c-myc transcription factor targets upregulated’’

(brain, leukemia, lung), the ‘‘RAS oncogenic pathway signature’’

(brain, lung, kidney) and the ‘‘G-protein signaling, coupled to

cAMP’’ (‘‘colon, ovary, kidney’’). Of interest is also the up-

regulation of pathways related to drug metabolism such as

‘‘detoxification’’, ‘‘ABC transporter’’ (colon and ovary), ‘‘drug

binding’’ (kidney) and ‘‘response to drugs’’ (ovary).

Membranome tumor deregulated genes in primary
tumors and cell lines

To further investigate on the nature of the similarities and

differences between primary tumors and cell lines in the

Membranome expression we considered also samples of normal

origin in the study. We defined as MTDG (Membranome tumor

deregulated genes), those Membranome genes up- or down-regulated

in either primary tumor or cell line samples, as compared to

normal samples with the same tissue origin. The analysis was

restricted to those tissues for which cell lines, primary tumors and

normal samples were available: brain, lung, colon, ovary and

kidney. For each tissue, MTDG were identified in primary tumors

and cell lines, using SAM (FDR,0.01) [26] (Table 2 and Table S3)

and the percentages of MTDG with consistent regulation between

Figure 1. Definition of the Human Membranome. A) Schematic representation of the strategy used to identify the Human Membranome.
Combining annotations (GO), predictions (Phobius) and manual revision we estimate that approximately 17% of human protein coding genes are
exposed on the plasma membrane on the cell. 39% of them are represented on the Affymetrix HG-U95A/Av2 array. B) Panther Molecular Function
composition of the Membranome. The percentage of genes annotated in each category is shown for the complete set of membranome genes
(purple) and for the fraction that is represented on the array (blue).
doi:10.1371/journal.pone.0011742.g001

Membranome Expression Analysis

PLoS ONE | www.plosone.org 3 July 2010 | Volume 5 | Issue 7 | e11742



primary tumors and the cell lines were computed (Table 2 and

Fig. 6). The highest match was observed in brain, ovary and lung

tissues, with 65%, 65% and 64%, respectively, of common MTDG

between primary tumors and cell lines. Ovary, colon and kidney

follow with 44% and 39%, respectively. When the percentages are

instead analyzed separately for up- and down-regulated MTDG,

higher values where consistently obtained for down-regulated

MTDG. A significant portion of Membranome genes up-regulated in

primary tumors therefore lose their de-regulation in cell lines, i.e.

following immortalization and in the context of in-vitro growth

conditions. Conversely, the majority of Membranome genes down-

regulated upon tumor transformation maintain lower expression

levels also in the cell lines. Noteworthy, tumors of different types

always show the most significant overlap with the cell lines of same

tissue origin (Table 3).

Discussion

Characterization of general transcriptional similarities and

differences between cell lines and primary tumors has been

addressed by a variety of studies [27–32]. Higher proliferation rate

and the adherent growth conditions of in-vitro cultured cell-lines

appear to be the major factors clearly differentiating the two

systems [33]. However, despite the crucial role of the cell surface

in the cancer biology, and the common use of cell lines as an

in-vitro model for cancer, little is known on how cell surface

properties change when tumor cells move to in-vitro growth

conditions. Here we examined the problem with a very focused

perspective, specifically looking at genes codifying for plasma

membrane proteins – the Membranome. These genes not only play a

crucial role in the genesis and development of cancer, by

mediating complex interactions between the tumor cells surface

and the surrounding cellular environment [1], but constitute the

target of election of monoclonal antibodies based therapies [2].

First we demonstrated that the expression of Membranome genes

has greater power, as compared to the rest of the transcriptome,

when used for the automatic classification of tumor samples

according to their tissue of origin. This is also true for cell lines,

although they are more difficult to classify and give rise to higher

misclassification rates. These observations reinforce the role of

Figure 2. Classification power of Membranome genes. Classification power of Membranome genes in primary tumors (top panel) and cell lines
(bottom panel). PAM algorithm was applied to compute the misclassification rate of both Membranome and not- Membranome genes using classifiers
of increasing size. Dotted lines represent exponential fits of the data points resulting from the analyses. Membranome genes showed a lower
misclassification rate in classifying both tumor samples and cell lines according to their tissue origin.
doi:10.1371/journal.pone.0011742.g002

Membranome Expression Analysis
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Membranome genes determining the tumor specificity and indicate

that much of the specificity of tumors originating from different

tissues resides in their cell surface components. The higher

promiscuity of cell lines in classification analysis mirrors - at a

transcriptional level - the notion that in-vitro stabilized tumor cells

have lost the tissue organization - and therefore the membrane

characteristics - of the in-vivo tumor.

In order to quantify the degree to which cell lines are

representative of their tumor of origin, with respect to Membranome

expression, we have run a correlation analysis between primary

tumors and cell lines. We showed that, with the exception of breast

and lung, primary tumors show cell surface maximal similarity

with the cell lines of same tissue origin (t-test p-value,0.01). In

particular, brain, leukemia, colon and ovary were the tumors with

the most pronounced correspondence, suggesting their membrane

composition being mostly preserved in the cognate cell lines. The

lack of maximal correlation between breast and lung cell lines with

their respective tumors can probably be ascribed to their

heterogeneous gene expression patterns, already pointed out by

previous clustering analysis, in this case performed at the whole-

genome level [8].

To understand which cell surface biological themes are

differentially regulated between primary tumors and cell lines, a

gene set enrichment analysis against a large sets of databases and

cancer data extracted from the literature was performed.

This type of analysis is significantly more interpretable than a

standard gene-level approach as it allows for a global overview of

the cell surface processes differentiating the two systems,

potentially hidden from a gene-centric perspective.

With gene set enrichment analysis lists of up- and down-

regulated genes are translated into a more interpretable view of the

biological pathways, which – as wholes - are differentially

regulated in primary tumors and cell lines. Another important

advantage lays in the fact that the perturbation of each pathway is

quantified by an ‘‘aggregated’’ value, inferred from the statistical

integration of dozens of genes taking part to the same pathway.

This makes this analysis intrinsically more resistant to the presence

of false positive/negative genes, which could potentially affect a

‘‘gene-centric’’ analysis, based on the evaluation of individual data

points.

Among the dominant themes up-regulated in primary tumors

emerge those related to the immune response, pathways known to

be up-regulated in all tumors, regardless of their tissue of origin

[27] (Fig. 4A). Tumor infiltrating lymphocytes (TIL) present in the

extracted tumor samples are probably responsible for part of these

molecular phenotypes. However, also pathways related to MHC

class I antigen presentation emerge from the analysis, indicating an

active role of tumor cells in the activation of immune response

pathways and mirroring the complex interplay between tumor

cells and TIL. We also observed the up-regulation of the

‘‘chemotaxis’’ and ‘‘cytokine and chemokine mediated signaling’’

pathways, respectively in five and three tumor types. Taken

together these data are coherent with a recently proposed model of

interaction between tumor and immune system cells [34]. The

model suggests that TIL provide cytokines and growth factors

necessary for tumor growth with tumor cells producing chemo-

tactic factors that actively recruit mononuclear cells, mainly

lymphocytes and macrophages, to tumor sites [34].

Figure 3. Correlation of Membranome gene expression profiles between primary tumors and cell lines. Each boxplot represents the
distribution of correlation coefficients obtained comparing gene expression profiles of cell lines and primary tumors of various tissue origins. The y-
axis represents the Pearson’s correlation coefficients. The origin of the cell lines is labelled on the x-axis. Boxes corresponding to cell lines and primary
tumors with the same tissue origin are labelled in red. Excepted for breast and lung, the primary tumors always showed the highest similarity with
their cognate cell lines (t-test p-value,0.01).
doi:10.1371/journal.pone.0011742.g003
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Other themes generally up-regulated in primary tumors are those

related to ‘‘cell adhesion’’, ‘‘extracellular matrix’’, ‘‘signal transduc-

tion’’ and ‘‘cell-cell communication’’ (Fig. 4B). The up-regulation of

many genes involved in these pathways apparently reflects the

organization of primary tumor cells in tissues, in contrast to the

altered environment of cells growing in-vitro in defined cell-culture

media [35–37]. The ‘‘cell differentiation’’ and ‘‘organ develop-

ment’’ pathways appear also up-regulated in different tumor types

reflecting a general higher level of differentiation of primary tumor

cells. Additional pathways/gene sets are instead up-regulated in a

more tissue specific manner. Examples are ‘‘nervous system

development’’ and ‘‘melanoma prognosis’’, specifically up-regulated

in brain and melanoma tumors, respectively. Interestingly, although

brain tumors show up-regulation of some immune-related process-

es, many immune related gene sets do not show up. This divergence

from other tumor types can possibly be explained by the particular

characteristics of the CNS cellular environment, which influences its

receptivity to immune activity. For example the existence of the

blood-brain barrier (BBB), lower T-cell numbers within the CNS

under normal circumstances and unconventional lymphatics [38].

The ‘‘breast cancer mutated kinases’’ gene set – composed of

kinases found to be genetically mutated in primary breast tumors

[25] - was found to be up-regulated only in breast and ovary

tumors, as compared to cell lines. Both these tumors are

originating from estrogen responsive tissues and are known to

share hereditary genetic predisposition factors [39].

Only a limited number of pathways and gene sets were found to

up-regulated in cell lines vs primary tumors. This is consistent with

the results of the Membranome tumor deregulated genes (MTDG)

analysis discussed below, showing that a significant portion of

the Membranome loses its up-regulated state passing from in-vivo to

in-vitro conditions. Noticeably, the gene sets we identified as up-

regulated in cell lines, have limited conservation across cell lines of

different origin (Fig. 5). These include the ‘‘c-myc transcription

factor targets upregulated’’ (brain, leukemia, lung), the ‘‘RAS

oncogenic pathway signature’’ (brain, lung, kidney) and the ‘‘G-

protein signaling, coupled to cAMP’’ (‘‘colon, ovary, kidney’’). The

up-regulation of these pathways is likely to reflect cell-line specific

activation of signal transduction pathways through the cell surface

and are related to the higher proliferation rate of the in-vitro

cultures. Of interest is also the up-regulation of pathways related to

drug metabolism such as ‘‘detoxification’’, ‘‘ABC transporter’’

(colon and ovary), ‘‘drug binding’’ (kidney) and ‘‘response to

drugs’’ (ovary). The differential regulation of these pathways can

possibly underpin the different anticancer drug sensitivities

observed in-vitro and in-vivo [27].

With the analysis of MTDG, we enquired whether Membranome

genes deregulated in primary tumor samples as compared to their

normal tissue counterparts retain their altered state also in the cell

lines. This information is of key importance when using the cell

lines as an in-vitro model for surface cancer targets. Examples are

the screening of anticancer therapeutics targeting cell surface

Figure 4. Gene sets enriched in genes up-regulated in tumors. Heatmap showing the gene sets significantly enriched in Membranome genes
up-regulated in tumors as compared to cell lines of the same tissue origin. A) Immune-related pathways B) Other pathways. Gene set enrichment p-
values, calculated using Fisher-exact test are represented by color codes (see legend).
doi:10.1371/journal.pone.0011742.g004
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receptors [40] or the use of cell lines for the selection of cell-surface

cancer specific mAbs from random peptide libraries [6,41].

Importantly, a significant portion of MTDG over-expressed in

primary tumors are lost in cell lines. Conversely, the majority of

MTDG down-regulated upon tumor transformation are retained

in in-vitro cultured cells (Fig. 6). The observation that cell lines tend

to lose the tumor-specific gene up-regulations is in agreement with

what previously reported at global transcriptional level [29].

Another interesting observation is that tumors of different origin

always have the most significant overlap of MTDG with the cell

lines originating from the same tissue (Table 3). This is true even

for lung tumors, where the correlation analysis demonstrated a

high level of similarity also with cell lines other than lung. It

therefore appears that cell lines - despite some loss of the overall

tumor characteristics - preferentially retain the tumor specific

Membranome deregulation observed in primary tumors as compared

to their normal counterparts.

As a further development of this study, the Membranome analysis

at the protein level would be very useful to complement and

validate our observations at the transcriptional level. In fact,

mRNA abundances do not necessarily correspond to the levels of

the protein functionally available and expressed on the cell surface.

However, while recognizing the importance of this information for

the detailed dissection of individual pathways, we believe the

statistical approach that was undertaken in our study guarantees

the general observations and conclusions to be valid also at the

Figure 5. Gene sets enriched in genes down-regulated in tumors. Heatmap showing the gene sets significantly enriched in Membranome
genes down-regulated in tumors as compared to cell lines of the same tissue origin. Gene set enrichment p-values, calculated using Fisher-exact test
are represented by color codes (see legend).
doi:10.1371/journal.pone.0011742.g005
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protein level. Indeed, despite single mRNA-protein levels

divergences (high mRNA-low protein and vice-versa) can exist,

their effects are expected to reciprocally compensate – and

therefore to be strongly mitigated – in the context of a ‘‘global’’

scale analysis, one involving thousands of genes.

Additional comments need to be made regarding the samples

we considered in the analysis. Our study has been constrained by

the availability of transcriptional data sets publically available on a

coherent microarray platform (the integration of data sets deriving

from different technologies would have introduced too much noise

in the meta-analysis). As a result, we created a meta-dataset, all

based on the Affymetrix HG-U95Av2 platform, which to our

knowledge was the platform covering the broadest spectrum of

tumor samples. It encompasses 10 independent studies, covering a

total of 409 human samples deriving from 8 different tissues.

Additional tumors (e.g. sarcoma tumors, because of their

particular biology involving the interactions with the extracellular

matrix) and in-vitro tumor models (e.g. cell lines grown in three-

dimensional conditions such as mammospheres or neuroshperes) could

add further interest to our observations.

Using transcriptional data from a large set of primary tumors,

normal tissue and cell lines of different origin we have

demonstrated a central role of Membranome genes in characterizing

the tumor phenotype. The comparative analysis of primary tumors

and corresponding cell lines reemphasizes the caution that should

applied when using these model systems in the study of the cancer.

The presented results contribute to a more informed use of cell

lines and interpretation of results with regards to specific aspects of

tumor biology involving the cell surface.

Materials and Methods

Microarray data
Expression data for NCI60 cell lines were made publicly

available through the Developmental Therapeutics Program of

NCI/NIH. The NCI60 dataset includes data from 59 cell line.

Cell culture growth conditions are described in [8]. The two cell

lines of prostate origin (PC3 and DU-145 [8]) were not included

because previous studies showed a low correlation with primary

prostate tumors [30] as well as with other tumors [29]. We further

Figure 6. Membranome Tumor Deregulated Genes in tumors and cell lines. Percentages of the Membranome Tumor Deregulated Genes
(MTDG) consistently deregulated in primary tumors and cell lines with the same origin. The number of MTDG in tumors and cell lines is reported in
Table 2.
doi:10.1371/journal.pone.0011742.g006

Table 2. Membranome differentially regulated genes (MTDG) in primary tumors and cell lines.

Data Brain Lung Colon Ovary Kidney

Cell lines UP 353 183 48 334 179

Cell lines DOWN 528 503 311 363 418

Tumor tissue UP 363 158 76 193 273

Tumor tissue DOWN 277 366 227 207 355

Intersection: cell lines and tumor tissue UP 199(55%) 60(38%) 12(16%) 111(58%) 78(29%)

Intersection: cell lines and tumor tissue DOWN 217(78%) 277(76%) 122(54%) 148(71%) 169(48%)

Intersection: cell lines and tumor tissue UP or Down 416(65%) 337(64%) 134(44%) 259(65%) 247(39%)

The percentages of MTDG identified in primary tumors showing coherent regulation in the cell lines are shown in parentheses.
doi:10.1371/journal.pone.0011742.t002

Membranome Expression Analysis
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removed the MDA-MB-435 cell line [8] because of its uncertain

classification: originally considered as breast, it has also been

reported to originate from melanoma [8,29,42].

No specific information is reported in the existing literature

regarding the cell passage number at which cell lines were

processed for microarray analysis. However, interesting informa-

tion regarding this point can be found in the work of Ross and

collaborators: ‘‘[…]RNA samples from two cell lines (MCF7 breast and

K562 leukaemia) were collected on three different occasions (at different

passage numbers), then labelled, hybridized and scanned independently. These

replicates (labeled MCF7 I, II and III, and K562 I, II and III) clustered side

by side, with approximately the same degree of similarity as shown by the

MDA-MB435/MDA-N pair […]’’ [8].

These data, although limited to two cell lines only, point

towards a relative transcriptional stability of these cell line samples

across different passage numbers.

The set of primary tumors included 21 classic glioblastoma and

anaplastic oligodendroglioma [15], 19 infiltrating ductal breast

adenocarcinomas [19], 21 colorectal adenocarcinomas [19], 11

clear cell carcinoma of the kidney [19], 14 serous papillary ovarian

adenocarcinomas [19], 72 leukemia samples (including 20 mixed-

lineage leukemias, 24 acute lymphoblastic leukemias and 28 acute

myelogenous leukemias) [11], 127 lung adenocarcinomas [12] and

9 melanoma tumors [16].

Normal tissue samples data were available for five different tissue

types: brain [17,18], colon [14,19], kidney [13,17–19], lung [12,19]

and ovary [18,19]. All data are MIAME compliant and the raw data

have been deposited in a MIAME compliant database. Expression

data can be obtained from the following sources: [8], Developmental

Therapeutics Program of NCI/NIH at http://dtp.nci.nih.gov/

mtargets/download.html; [11,12,15], supplementary material

available at http://www.broadinstitute.org/cgi-bin/cancer/datasets.

cgi; [13], GEO accession GSE1563; [14], GEO accession GSE405;

[16], supplementary material available at http://www.mskcc.org/

genomic/ccsmsp/; [17], GEO accession GSE803; [18], GEO

accession GSE96; [19], supplementary material available at http://

public.gnf.org/cancer/epican/.

The meta-dataset deriving from the integration of the individual

data sets described above represent to our knowledge the largest

study publicly available based on the Affymetrix HG-U95Av2

array. More detailed information on samples included in this study

is provided in Table S2.

Data processing
All datasets were processed using the MAS5 algorithm

implemented in R [43] and scaled to a trimmed mean value of

500. Expression values across technical replicates were averaged

for lung tumors, brain normal, kidney normal and ovary normal

samples. All arrays were normalized using a quantile normaliza-

tion algorithm [44]. Finally, data was log 2 transformed prior to

analysis.

Classification of Membranome genes
A semi-automated procedure was applied to identify the human

Membranome, here defined as the ensemble of all human genes

coding for proteins integral to or covalently associated with the

plasma membrane,

All human genes reported in the NCBI CCDS database (NCBI

Build 37.1) [45–46] were surveyed using a combined analysis of

the available Gene Ontology annotations [20] and the results of

the Phobius algorithm for the prediction of trans-membrane

domains and signal peptides [21]. The list of membrane protein

genes thus created was manually revised to exclude proteins

localized in intracellular compartments (false positives) and to

include additional membrane-associated proteins known from

literature (false negatives). These proteins were initially not

included by the automated analysis because of missing annotation

and/or lack of transmembrane domains, for example GPI–

anchored proteins.

Classification Analysis
To compute the ‘discriminative power’ of Membranome and Not-

Membranome genes the PAM method (‘‘Prediction Analysis of

Microarrays’’, PAM) [47] was applied to classify samples

according to their tissue of origin.

PAM is based on nearest shrunken centroids classification and

builds a classifier by identifying those genes that best characterize

each group of samples. The size of the gene list used as the

classifier, and the corresponding misclassification rate, depend on

the shrinkage parameter D provided as input. PAM was run

independently on primary tumors and cell lines using gene lists of

decreasing sizes. Parallel analyses were performed using equally

sized lists of Membranome and Not-Membranome genes, randomly

chosen. For each list size (and therefore for each value of D) the

analysis was run 1.000 times and the results of misclassification

were averaged.

Correlation analysis of cell lines and primary tumors
Cell lines and primary tumors were grouped according to their

origin: brain, leukemia, lung, melanoma, breast, colon, ovary and

kidney. All possible pairs of tumor and cell line samples were

compared using the Pearson’s correlation coefficient as the metric

of similarity. Pearson’s correlation values were computed between

all tumor samples and all cell lines of two given groups (e.g. all lung

tumors vs all breast cell lines). The resulting distributions of

correlation values were represented as a box plots in Fig. 3. Mean

values of correlation distributions were compared by Student’s

t-test with Bonferroni multiple comparison correction.

Differential expression of Membranome genes
For each of the eight tissues in analysis, we computed the list of

Membranome genes up- and down-regulated in the primary tumors

as compared to the corresponding cell line, with the same tumor

tissue origin (Table S3). For the five tissues for which also the

normal samples were available (brain, colon, kidney, lung, ovary),

we identified the MTDG (Membranome tumor deregulated genes)

defined as Membranome genes up- or down-regulated in primary

tumors or cell lines as compared to the normal samples of same

tissue origin. Gene up- and down-regulations were in all cases

assessed using the significance analysis of microarrays (SAM) [26],

Table 3. 2log10 Fisher exact test p-values of the overlaps
between MTDG in primary tumors (T) and cell lines (CL).

Brain (T) Lung (T) Colon (T) Ovary (T) Kidney (T)

Brain (CL) 23.5 0.0 0.0 0.0 0.0

Lung (CL) 0.0 40.6 2.8 0.0 0.0

Colon (CL) 0.0 8.8 23.8 0.0 0.0

Ovary (CL) 0.0 2.6 0.0 30.3 0.0

Kidney (CL) 0.0 0.2 0.1 0.0 3.2

The table shows that all the primary tumors analyzed have the highest
statistically significant overlap with the cell lines originating from the same
tumor type.
doi:10.1371/journal.pone.0011742.t003
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available as an R package. In a conservative approach we set

FDR,0.01 for each pair wise comparison. For each tissue type,

two lists of MTDG were compiled, respectively from the Tumor vs

Normal and Cell line vs Normal comparisons.

The significance of the overlap between pairs of the lists was

computed by using the Fisher’s exact test and are reported in

Table 3 as the negative log10 of the p-value obtained.

Gene Set Enrichment Analysis
Lists of genes differentially up- or down- regulated were

compared to annotated gene sets in order to identify functional

classes that are significantly over-represented. Enrichment p-values

were computed according to the Fisher’s exact test. Gene sets were

obtained from publicly publically available sources (Gene

Ontology [20], KEGG [48], InterPro [49], Panther [22],

Swissprot keywords, chromosome localization, miRNA targets

identified after miRNA transfection [50], gene sets of relevance for

cancer taken from several published sources [51–60]) and

additional sources (GeneGo (GeneGo Inc., St Joseph, MI, USA),

Ingenuity (Ingenuity Systems Inc, Mountain View, CA, USA),

TRANSFAC [61]).

We decided to use and report the uncorrected p-values and not to

correct for multiple testing. The latter decision was based on the

observation of a very high degree of overlap between different

gene sets. As a consequence, single tests performed on the

individual gene sets are strongly dependent on each other,

violating the assumption of independence required by standard

correction methods such as ‘Bonferroni’, ‘Holm’ and ‘FDR’. Thus,

in this context, standard correction for multiple testing would have

resulted as too conservative. To be noted also that most of the

pathways discussed have a p-value much lower than the standard

threshold of 0.01.

Supporting Information

Table S1 List of the 4,329 Human Membranome genes. Gene

identifiers are based on the NCBI Build 37.1.

Found at: doi:10.1371/journal.pone.0011742.s001 (0.56 MB

XLS)

Table S2 Detailed description of the 409 samples analyzed in

this study.

Found at: doi:10.1371/journal.pone.0011742.s002 (0.10 MB

XLS)

Table S3 Results of differential expression analysis (SAM,

FDR,0.01). The file contains the complete list of 2,247

Affymetrix probes mapping to 1,701 Membranome genes represent-

ed on the HG-U95Av2 array. For each probe the table shows

(from left to right): Affymetrix ID; Entrez GeneID; whether the

probe is differentially expressed (SAM, FDR,0.01) in tumor-to-

cell line, tumor-to-normal and cell line-to-normal comparisons;

whether the probe is consistently differentially expressed in tumor-

to-normal and tumor-to cell line comparisons. CL: cell line, T:

primary tumor, N: normal sample.

Found at: doi:10.1371/journal.pone.0011742.s003 (1.62 MB

XLS)

Table S4 Results of gene set enrichment analysis. The file

includes the 639 gene sets significantly enriched (p,0.05) in at

least one of the comparisons tumor-to-cell line, tumor-to-normal

and cell line-to-normal. For each gene set the table shows (from

left to right): gene set ID; source of the gene set; gene set name; p-

value enrichment (Fisher’s exact test) for the genes differentially

expressed (SAM, FDR,0.01) in each comparison; the number of

overlapping genes; the Entrez Gene IDs of the overlapping genes.

CL: cell line, T: primary tumor, N: normal sample.

Found at: doi:10.1371/journal.pone.0011742.s004 (1.96 MB

XLS)
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