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Abstract

The cytolethal distending toxin (CDT) of the oral pathogen Aggregatibacter actinomycetemcomitans induces cell cycle arrest
and apoptosis in various cell types. Western analysis, pharmacological inhibition and siRNA silencing were performed in
human immortalized gingival keratinocytes (HIGK) to dissect the functional role of the ataxia telangiectasia mutated (ATM)
pathway in the signal transduction steps triggered by the CDT. Infection of HIGK was associated with a time-dependent
induction of cytoplasmic histone-associated DNA fragmentation. However, in the absence of CDT, infected HIGK underwent
reversible DNA strand breaks but not apoptosis, while caspase 3 activity, p21 levels, and HIGK viability were unaffected.
Caspase 9 activity was attenuated in the CDT mutant-infected HIGK compared to wild-type infected cells. Pharmacological
inhibition and siRNA-silencing of the ATM downstream effector, the protein kinase checkpoint kinase 2 (Chk2), significantly
impacted CDT-mediated apoptosis. Together, these findings provide insight on the specificity of the ATM-Chk2 pathway in
response to the CDT of A. actinomycetemcomitans in oral epithelial cells, which ultimately leads to apoptosis. We further
propose the existence of an unidentified factor that is distinct from the CDT, and involved with a reversible DNA
fragmentation that does not trigger terminal apoptosis in oral epithelial cells. This model potentially explains conflicting
reports on the biological activity of the A. actinomycetemcomitans CDT.
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Introduction

Aggregatibacter actinomycetemcomitans is the etiologic agent for

localized aggressive periodontitis [1] and can also cause severe

infections outside of the oral cavity, including endocarditis and

brain abcesses [2] and systemic conditions such as cardiovascular

disease and pregnancy complications [3,4]. The pathogenicity of

A. actinomycetemcomitans is influenced by both microbial and host

determinants. A. actinomycetemcomitans produces a cytolethal dis-

tending toxin (CDT) that is part of a family of cytotoxins found in

other pathogenic bacterial species such as Campylobacter jejuni,

enteropathogenic Escherichia coli, Haemophilus ducreyi and Shigella

species [5–7]. In the oral cavity, human immune cells and diverse

non-lymphoid cell types exhibit variable levels of sensitivity to the

CDT of A. actinomycetemcomitans [8,9]. Upon an in vitro challenge

with CDT, many cell types show a cell cycle arrest in G2, cellular

distension, and ultimately cell death. In contrast, the effects of

CDT on lymphocytes are apparently different and the molecular

basis for an increased lymphocyte sensitivity to CDT remains

moot [10,11].

Based on sequence homology across multiple bacterial species, it

has been suggested that CdtB functions as a DNase-like moiety

whereby it cleaves DNA and activates the G2 cell cycle checkpoint

[12,13]. Indeed, it has been shown that purified CdtB exhibits

detectable nuclease activity, although it was almost five orders of

magnitude lower than that observed with control DNAse from

bovine species [7]. In contrast to the popular dogma, it has been

shown that CDT-induced DNA fragmentation in lymphocytes is

not the result of direct effects of the toxin, but rather the

irreversible effects of cell cycle arrest leading to activation of the

apoptotic cascade [14]. Shenker et al. further proposed that the

protein fold of CDT—and thus potentially its reaction mecha-

nism—is homologous with other proteins from functionally

unrelated signaling metalloenzymes, including phosphatidylinosi-

tol (PI)-5-phosphatases [7,15]. In particular, CdtB exhibited PI-

3,4,5-triphosphate (PI-3,4,5-P3) phosphatase activity similar to

that of other phosphatases [7]. Furthermore, mutation analysis

demonstrated that CDT toxicity correlated with phosphatase

activity and that CDT-induced G2 arrest correlated with

intracellular levels of PI-3,4,5-P3 in lymphocytes.

In mammalian cells, DNA damage-signaling pathways are

activated following exposure to different forms of genotoxic stress,

and are essential to maintain the genomic integrity and cellular

viability [16]. The ATM (ataxia-telangiectasia-mutated) and ATR

(ATM and Rad3-related) protein kinases play a central role in

transducing DNA damage signals. Their checkpoint functions are
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mediated partially by the checkpoint effector kinases called

checkpoint kinase 1 (Chk1) and checkpoint kinase 2 (Chk2) [17].

Activation of Chk1 and/or Chk2 causes the phosphorylation and

thereby inactivation of Cdc25 (Cell division cycle 25) tyrosine

phosphatases, which creates a binding site for 14-3-3 proteins and

results in their export to and retention in the cytoplasm [18].

Cyclin-dependent kinase 1 (Cdk1)/Cdc2 complexes remain

phosphorylated in the absence of active Cdc25 phosphatases,

causing cell cycle arrest [19]. Regardless of the CDT biological

activity’s origin—whether related to DNA damage, phosphatase

activity or both—we hypothesized that ATM may be a critical

factor in the transduction pathway related to cell cycle arrest in

keratinocytes. To test that hypothesis and discriminate between

multiple possible downstream effector checkpoint kinases that may

be involved, we used a combination of bacterial mutant analysis,

phenotypic assays, pharmacological and siRNA inhibition studies.

Materials and Methods

Bacterial strains and Growth Conditions
Aggregatibacter actinomycetemcomitans strain VT1169 is a nalidixic

acid and rifampicin-resistant smooth derivative from the serotype

B clinical strain SUNY 465 [20]. A. actinomycetemcomitans strain

D7S-SA is a spontaneously occurring non fimbriated (smooth)

derivative from a serotype A clinical isolate strain D7S [21]. The

CDT mutant strain CHE001 is an isogenic mutant in D7S-SA

obtained by replacing the polycistronic operon of CDT (cdtABC)

with the spectinomycin cassette aad9 [22,23]. A. actinomycetemcomi-

tans strains were grown in Trypticase Soy Broth supplemented

with 0.6% yeast extract (TSB-YE) for 24 h at 37uC in a humidified

atmosphere supplemented with 10% CO2. When necessary, the

media were supplemented with 50 mg mL21 of spectinomycin,

nalidixic acid or rifampicin. P. gingivalis strain ATCC 33277 was

cultured anaerobically to mid log phase at 37uC in trypticase soy

broth supplemented with yeast extract (1 mg mL 21), hemin

(5 mg mL 21), and menadione (1 mg mL 21).

Cell culture
Human immortalized gingival keratinocytes (HIGK) [24] were

maintained in keratinocyte serum-free medium (K-SFM, Gibco/

Invitrogen) supplemented with 0.05 mM calcium chloride and

200 mM L-glutamine (Gibco/Invitrogen) at 37uC in a 5% CO2

atmosphere.

Infection and cell treatments
For all experiments, the bacteria cultured overnight were

subcultured for 3 h at 37uC (mid-log stage), harvested by

centrifugation, and resuspended in antibiotic-free K-SFM media.

HIGK in subconfluent monolayers (80–90% confluence) were

washed with phosphate-buffered saline (PBS; Cambrex) and

inoculated with bacteria in K-SFM at the multiplicity of infection

(MOI) previously shown to result in every HIGK directly

interacting with at least a single bacterium, determined by visual

observation and confirmed by total interaction assay [25]. The

baseline MOI meeting this parameter for wild type strains of A.

actinomycetemcomitans was MOI 3000, whereas MOI 100 was used

for the highly invasive P. gingivalis. Total interaction assays and

LDH toxicity assays (data not shown) were used to optimize

several factors, including degree of total interaction between

bacteria and cells, duration of interaction, and the amount of host

cell damage incurred by HIGK during the co-culture. The

emergent treatment condition that allowed for long term studies

(up to 72 hours post infection) and was thus used for all

experiments, was the treatment of cells with antibiotics (gentamicin

200 mg mL21) at 4 hours following the initial infection. Cell

culture media changes necessary for time course studies past

48 hours also included gentamicin (200 mg mL21).

In inhibition experiments, cells were pretreated for 2 h with

caffeine (5 mM; Sigma), LY294002 (20 mM; Calbiochem), or Z-

VAD (50 mM; Calbiochem) prior to infection with A. actinomyce-

temcomitans. After 4 h of co-culture, the cells were washed two times

with PBS and the media replaced with fresh K-SFM containing

gentamicin (200 mg mL21) and further treated with caffeine,

LY294002 or Z-VAD during the remaining time of the

incubation. As a positive control for apoptosis, HIGK cells were

treated with camptothecin at a final concentration of 2 mg mL21.

Lactate dehydrogenase assay
At different time points post-infection, cellular supernatants

were tested for LDH release using the Cytotoxicity Detection Kit

(Roche Diagnostics) and following the manufacturer’s recommen-

dation. The amount of LDH released to the supernatant (i.e.,

LDH leakage) was expressed as a percentage of the total cellular

LDH content (i.e., sum of the LDH in the supernatant and in the

cell lysate).

Caspase 3 activity assay
After infection, HIGK were harvested, lysed on ice in sterile

filtered lysis buffer for 30 min and tested for levels of caspase 3

activity using a 7-amino-4-methylcoumarin (AMC) release assay

(BD Pharmingen) and following the manufacturer’s protocol. Lysis

buffer composition was according to the Ac-DEVD-AMC

protocol, consisting of 10 mM Tris-HCL, 10 mM NaH2PO4/

NaHPO4, pH 7.5, 130 mM NaCl, 1% Triton-X-100, and 10 mM

sodium pyrophosphate. Protein concentrations were determined in

parallel by a Coomassie Plus Assay Reagent (Pierce Chemicals).

Caspase 9 activity assay
After infection in 6-well plates, HIGK were assayed using the

Caspase-9 Colorimetric Activity Assay Kit (Millipore), and

according to the manufacturer’s instructions. Briefly, cells were

lysed on ice with 500 mL chilled 1x lysis buffer for 10 minutes,

harvested and transferred to a 1.5 mL tube for centrifugation.

50 mL of each clarified sample was assayed in a 96 well plate by

mixture with the appropriate volumes of assay buffer, substrate,

and water. Plates were read at 405 nm, compared to pNA

standard curves, and were reproducible. Caspase 9 was normal-

ized to total protein amounts based on the Coomassie Plus Assay

(Pierce).

DNA fragmentation assay
Inter-nucleosomal DNA fragmentation was quantitatively

assayed by antibody-mediated capture and detection of cytoplas-

mic histone-DNA complexes using a Cell Death Detection ELISA

kit (Roche Diagnostics).

Protein extraction and Western blot analysis
Following infection, HIGK were recovered and resuspended in

30 mL of RIPA buffer (Santa Cruz) supplemented with protease

inhibitors, 1 mM phenylmethylsulphonyl fluoride (PMSF), 50 mM

sodium fluoride and 1 mM sodium orthovanadate. Protein

extraction was performed at 4uC for 30 min. The protein content

of the lysates was measured using a Bicinchoninic Acid Assay Kit

(Pierce). Per sample, 30 mg of protein was subjected to 6–10%

SDS-PAGE under reducing conditions. After electrophoresis,

proteins were transferred onto PVDF-Plus membranes (Osmonics)

and blocked for 1 h in Tris-buffered saline (TBS) containing 5%
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Figure 1. Effects of CDT on LDH release (A), DNA fragmentation (B), and caspase 3 activity (C). HIGK were plated 48 h before infection.
After 4 hours of co-culture with A. actinomycetemcomitans strains VT1169, D7S-SA or CHE001 (DcdtABC) at a MOI of 3000:1 or untreated, cells were

CDT Mediates ATM-Chk 2 Pathway
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non-fat milk and 0.1% Tween 20. Blots were probed with the

appropriate primary antibodies and peroxidase-conjugated goat

anti-mouse or goat anti-rabbit secondary antibodies (1:2000)

(Santa Cruz Biotechnology). Specific signals were developed using

the ECL-Plus system (Amersham). Blots were stripped with

Restore Western Blot Stripping Buffer (Pierce) and re-probed

with a control b-actin antibody (Santa Cruz Biotechnology).

Densitometry was performed using the Kodak 1D Image Analysis

Software v.3.6.1.

Transfection of siRNA
The ON-TARGETplus SMARTpool siRNA against check-

point kinase 2 (Chk2;GenBank Accession No. NM007194,

NM145862; catalog No. L-003256-00) and the non-specific

negative control non-targeting siRNA #2 (catalog No. D-

001210-02-05) used in this study were obtained from Dharmacon.

HIGK were seeded in 6-well-plates 20 h before transfection. The

transfection with siRNA was carried out using Oligofectamine

following the manufacturer’s instructions (Invitrogen). Transfected

cells were rinsed 24 h post transfection with PBS and maintained

in culture medium until further treatment.

Statistical Analysis
The results are reported as the mean 6 SD. Statistical

evaluation was performed using an unpaired, two tailed Student’s-

t test.

Results

Cytolethal Effects of A. actinomycetemcomitans on HIGK
Requires CDT

To investigate the toxic effects of the A. actinomycetemcomitans

CDT on oral epithelial cells, HIGK were challenged with serotype

B strain VT1169, serotype A strain D7S-SA, or CHE001 (an

isogenic mutant for CDT in D7S-SA deficient in all three subunits

of the CDT toxin) to confirm that the HIGK cytotoxicity was

related to the expression of the CDT and was not serotype-

specific. After a brief pulse with live bacteria, toxicity was

indirectly measured by a lactate dehydrogenase release (LDH)

assay following a time course experiment. This enzyme is

exclusively intracellular and is released into the culture superna-

tant upon disruption of the plasma membrane integrity, as a result

of apoptosis or necrosis. As shown in Figure 1A, wild-type strains

VT1169 and D7S-SA induced a time-dependent release of LDH,

which was characterized by a detectable toxicity at 48 hours, and

a significant increase at 72 hours. LDH release was not induced

above background levels by the CDT mutant strain, suggesting

that cytotoxicity was CDT-dependent in HIGK.

DNA fragmentation has often been used as a direct measure-

ment of the final steps leading to apoptosis. HIGK pulsed with two

serotypes of A. actinomycetemcomitans showed a similar and time-

dependent induction pattern of DNA fragmentation (Fig. 1B),

which provided direct evidence of apoptosis induced by two

different wild-type organisms. Like the caspase 3-induction

pattern, DNA fragmentation was detectable at 24 hours post-

infection with both serotypes and sustained over time. Unexpect-

edly, pulsing HIGK with the CDT mutant strain induced

significant levels of DNA fragmentation at 24 hours, which was

reversible in this cell population, and returned to background

levels after 72 hours (Fig. 1B). The transient and reversible nature

of this effect suggested that a bacterial factor distinct from CDT

was capable of inducing DNA fragmentation, and yet failed to

induce appreciable levels of overall toxicity or to induce terminal

apoptosis. Alternatively, we cannot rule out that the conditions

used herein may have selected for a sub-population of cells that did

not undergo DNA fragmentation and consequently outgrew the

apoptotic cell population after multiple cell divisions. Nevertheless,

the irreversible cytolethal effect of A. actinomycetemcomitans on

HIGK was consistently CDT-dependent.

A commonly used biochemical marker of apoptotic cell death is

the induction of caspase 3. Since caspase 3 is an ‘‘executioner’’

caspase and is a reliable marker for impending apoptosis, we

decided to evaluate the levels of caspase 3 in HIGK cells infected

by A. actinomycetemcomitans deficient in the CDT compared to the

wild-type infection. In line with the cytotoxicity (LDH) results

presented above, caspase 3 activation was detectable earlier (at

24 hours) in HIGK exposed to both wild-type strains of A.

actinomycetemcomitans and the activity steadily increased in a time-

dependent manner, reaching a plateau after 72 hours (Fig. 1C). A

dose-dependent increase of caspase 3 activity was also observed in

HIGK exposed to different multiplicities of infection (MOI) by the

wild-type strain VT1169 ranging from 500 to 10,000 although

caspase 3 levels remained significantly elevated at all MOIs tested

(data not shown). In contrast, the CDT isogenic mutant strain did

not induce caspase 3 above background levels (Fig. 1C). This

further suggested that the caspase 3 activation was also CDT-

dependent and preceded the observable cytotoxic effect of A.

actinomycetemcomitans CDT on HIGK by 24 hours.

In order to begin probing the pathway modulation that occurs

upstream from caspase 3 in A. actinomycetemcomitans-induced

apoptosis, we assessed the activation of caspase 9. The results of

our experiments demonstrated that wild-type A. actinomycetemcomi-

tans induced an increase in caspase 9 activity (Fig. 2), as observed

with capase 3. In HIGK cells infected by the CDT mutant strain,

caspase 9 activity was greatly attenuated, although not reduced to

the baseline level of uninfected cells. This may correlate with the

reversible DNA-damage also observed to occur following infection

with the CDT mutant strain of A. actinomycetemcomitans (Fig. 1B).

We are currently investigating the possible role of inhibitor of

apoptosis proteins (IAPs) in this observed attenuation, which are

known to negatively regulate caspases 9 and 3 [26], especially

XIAP (x-linked IAP) [27]. Thus, while caspase 9 is slightly induced

following infection with the A. actinomycetemcomitans CDT-mutant

strain—perhaps in response to the partial DNA damage also

observed—the damage is compensated for and indeed repaired

and does not result in caspase 3 activation as is observed with wild-

type infection.

CDT-Induced Apoptosis channels through the ATM
pathway

We next assessed whether CDT-dependent induction of

apoptosis involved signaling events mapping to the ATM pathway,

as previously predicted by the transcriptional profiling of HIGK in

response to a challenge with wild-type A. actinomycetemcomitans [25].

By Western analysis, the levels of ATM protein overexpression

occurred by 24 hours following infection with the wild-type strain

of A. actinomycetemcomitans (Fig. 3A). In contrast, the protein level of

ATM remained at or below uninfected control levels in cells

washed and incubated for an additional 20, 44, and 68 h with gentamicin (200 mg mL21) to obtain 24, 48, and 72 h time course data. Parameters
were measured as detailed in Materials and Methods. The results are expressed as the mean 6 SD of three independent experiments. *p,0.05;
**p,0.01; ***p,0.001 versus untreated controls.
doi:10.1371/journal.pone.0011714.g001
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infected either with the CDT-mutant strain or Porphyromonas

gingivalis, another periodontal pathogen used as a negative control

(Fig. 3A). To corroborate the functional activation of the ATM

pathway, caffeine and LY294002 were used as pharmacological

inhibitors of the protein kinase activity of ATM [28,29]. Both

caffeine and LY294002 reduced the caspase 3 activation observed

upon infection (Fig. 3B), which further supported the notion that

the induction of apoptosis by CDT was ATM-dependent.

Checkpoint protein kinase 2 is central to CDT-Induced
Apoptosis

The next series of experiments determined whether CDT

treatment could result in the activation of the checkpoint kinase 1

and/or checkpoint kinase 2, two possible downstream effectors of

the ATM/ATR pathway. Uninfected HIGK expressed Chk1

(data not shown) and Chk2, as demonstrated by Western analysis

(Fig. 4A), and the basal levels of expression were determined.

Following A. actinomycetemcomitans infection, the level of Chk1

phosphorylation remained unchanged at basal levels as observed

using specific antibodies against P-(Ser345)-Chk1 and P- (Ser317)-

Chk1 (data not shown). However, infection with the wild-type

strains VT1169 and D7S-SA of A. actinomycetemcomitans induced

accumulation of P-Chk2 (Thr68) after 24 hours, while the infection

by the CDT mutant strain failed to induce Chk2 phosphorylation

(Fig. 4A). Chk2 phosphorylation was also observed following

treatment of HIGK cells with camptothecin, a positive control for

DNA damage and activation of the G2/M checkpoint (Fig 4A). It

was also notable that the protein levels of Chk2 decreased upon

infection with wild-type strains, but remained unchanged upon

infection with the CDT mutant strain (Fig. 4A). Furthermore, the

CDT-dependent phosphorylation of Chk2 was partially abolished

by pretreatment with caffeine and LY294002 (Fig. 4B). Thus,

upregulation of checkpoint kinase signaling resulted from the

specific increase of the phosphorylation level of Chk2.

To further substantiate the effect of Chk2 on the A.

actinomycetemcomitans-CDT induced apoptosis, small-interfering

RNAs (siRNA) were used to specifically downregulate Chk2

expression. HIGK were first transfected with Chk2 or control

siRNAs. After 72 h of incubation, Chk2 silencing was determined

by Western blot (Fig. 5A). b-actin remained unchanged, and the

non-specific control siRNA did not change Chk2 expression levels.

Next, we analyzed the response of siChk2-treated cells to A.

actinomycetemcomitans-CDT-induced cell death. As shown in Fig. 5B,

Chk2 knockdown greatly attenuated/prevented the activation of

caspase 3 by A. actinomycetemcomitans, further supporting the concept

that Chk2 is involved in the transduction of signals involved in

apoptosis events that are induced by the A. actinomycetemcomitans

CDT in HIGK.

Discussion

In different bacterial species, the mechanism by which CdtB

blocks mammalian cell cycling has been well established, and has

shown to be mediated by DNA double strand breaks induced by a

direct DNase action of CDT (as reviewed [30]). In this study, we

investigated the signal transduction steps involved in the CDT-

mediated apoptosis induced by A. actinomycetemcomitans. Previous

studies disagree as to whether this organism’s particular CDT

directly induces DNA double strand breaks leading to cell cycle

arrest and apoptosis, like most bacterial CDTs do, or whether the

DNA fragmentation that is observed is the consequence of the

induction of cell cycle arrest and apoptosis [12,14,31]. Shenker

et al. proposed that CDT toxicity correlates with phosphatase

Figure 2. Attenuation of caspase 9 activity in cells infected by CDT2 A. actinomycetemcomitans. Cells were cultured as described in
Materials and Methods and mock-infected, infected with A. actinomycetemcomitans strains D7S-SA, CHE001 (DcdtABC) (MOI 3000:1), or treated with
camptothecin (2 mg mL21). After 24, 48, and 72 hours, Caspase 9 activity was assessed for all infection conditions in duplicate and normalized to total
protein. Figure is representative of two experiments. i p = 0.40 versus untreated controls; ii p = 0.89 versus untreated controls and p = 0.42 versus wild-
type D7S-SA; iii p = 0.21 versus untreated controls by Student’s T-Test.
doi:10.1371/journal.pone.0011714.g002

CDT Mediates ATM-Chk 2 Pathway
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Figure 3. Modulation of the ATM pathway in CDT-mediated apoptosis. Panel A. Cells were cultured as described in Materials and Methods
and infected with A. actinomycetemcomitans strains VT1169, CHE001 (DcdtABC) (MOI 3000:1) or P. gingivalis (MOI 100:1). After 24 h, Western blot was
performed using antibodies for total ATM and b-actin. Panel B. HIGK were pretreated with or without caffeine (5 mM) or LY294002 (20 mM) for 2 h

CDT Mediates ATM-Chk 2 Pathway
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activity and that CDT-induced G2 arrest correlates with

intracellular levels of PI-3,4,5-P3. Under that model, indirect

effect of the CDT may induce the production of endogenous

DNAses converging to DNA fragmentation [7]. In the present

study, live microorganisms were used to confirm that genotoxic

stress can be sensed and transduced in HIGK as early as 24 hours

post-infection. Furthermore, we demonstrated that the cytotoxic/

apoptotic effect of A. actinomycetemcomitans on HIGK was exclusively

CDT-dependent. Cell toxicity was assessed by LDH release and

correlated with caspase 3 activation. Both phenomena followed a

similar kinetic, and were CDT-dependent. Additionally, infection

of HIGK with wild-type strains of two distinct serotypes induced

DNA fragmentation. Furthermore, mutant analysis provided the

most compelling line of evidence that supports the concept that

reversible and non-lethal DNA fragmentation can be observed in

the absence of CDT. Indeed, despite DNA fragmentation

induction, cells infected with a CDT mutant strain were

morphologically indistinguishable from control uninfected cells,

whereas camptothecin-treated HIGK or HIGK infected with

wild-type A. actinomycetemcomitans displayed clear signs of stress,

damage, or overt cell death (microscopic observation, Figure S1).

This is in line with earlier studies showing that the production of

Haemophilus ducreyi CDT is crucial for cell destruction after

adhesion of H. ducreyi to cultured cells, whereas toxin negative

strains adhere but leave the cells intact [32]. One possible

explanation for these findings is that cells with DNA fragmentation

may have been eliminated from the culture while the surviving

cells kept their ability to proliferate. The current study, however,

provides evidence that in the absence of CDT, a yet unknown

factor induces reversible internucleosomal DNA fragmentation

without lethal cytotoxicity in HIGK. It is also possible that the

antibiotic treatment used in the current study to kill the

extracellular bacteria after 4 hours of incubation may account

for the removal of the A. actinomycetemcomitans effector(s) responsible

for the early DNA fragmentation, allowing the cells to recover and

proliferate. Hence, the cytolethal effect of A. actinomycetemcomitans

on HIGK seems to require CDT toxin.

Additional inhibition studies based on the pan-caspase inhibitor

Z-VAD-Fmk (data not shown) supported a model whereby DNA

fragmentation induced by the CDT from A. actinomycetemcomitans is

caspase 3-dependent in HIGK. Consistently, the CDT of A.

actinomycetemcomitans has been shown to exert its apoptotic action by

activating caspases in other cell types [33,34].

In the present study, cell death was associated with caspase 3

and 9 activation, indicating that the intrinsic mitochondria-

dependent apoptotic pathway is activated by CDT. Additionally,

recent studies have shown that caspase 9 is the direct target of

multiple protein kinases, and the potential role of caspase 9

phosphorylation in the regulation of apoptosis is not well defined

[35,36].

Regardless of the factor responsible for the actual genotoxic

stress, we demonstrated here that the genotoxic stress related to

CDT is sensed by ATM and transduced by Chk2, which would

result in G2/M arrest and ultimately cell death, if the DNA

followed by incubation with A. actinomycetemcomitans strain VT1169 for 4 h. The cells were then washed and further incubated with gentamicin
(200 mg mL21) in the presence or absence of caffeine and LY294002. After a total incubation time of 48 h, cells were harvested and analyzed for
caspase 3 activation. Capase 3 data presented are from two separate experiments each performed in duplicate, and combined results are expressed
as the mean 6 SD. **p,0.01; ***p,0.001 versus A. actinomycetemcomitans VT1169 infected.
doi:10.1371/journal.pone.0011714.g003

Figure 4. Phosphorylation and activation of Chk2 in HIGK exposed to wild type (CDT+) A. actinomycetemcomitans. Panel A. Cells were
co-cultured with A. actinomycetemcomitans VT1169, D7S-SA, or CHE001 (DcdtABC) (MOI 3000:1) for 4 h, washed and incubated for an additional 20 h
with gentamicin (200 mg mL21), or treated with camptothecin (2 mg mL21) for 4 h, as a positive control. Cell lysates were analyzed by Western
blotting using antibodies specific for phospho-(Thr68)-Chk2, Chk2 protein and b-actin. The results are representative of two separate experiments and
were analyzed by densitometry. Panel B. HIGK were pretreated with or without caffeine (5 mM) or LY294002 (20 mM) for 2 h followed by incubation
with A. actinomycetemcomitans strain VT1169 for 4 h. The cells were then washed and further incubated with gentamicin (200 mg mL21) in the
presence or absence of caffeine and LY294002. After a total incubation time of 48 h, cells were harvested and cell lysates were prepared and analysed
by Western blotting using phospho-(Thr68)-Chk2 and b-actin antibodies. The Western blot data are representative of two independent experiments
and were analyzed by densitometry.
doi:10.1371/journal.pone.0011714.g004

CDT Mediates ATM-Chk 2 Pathway
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damage cannot be repaired. In other systems, the checkpoint

functions of ATR and ATM are mediated by the checkpoint

effector kinases Chk1 and Chk2, respectively [17]. These two

checkpoint kinases are structurally distinct but functionally related

enzymes that phosphorylate an overlapping pool of cellular

substrates. Chk1 and Chk2 play a central role in transducing

genotoxic stress and DNA damage signals from ATR and ATM in

which Chk1 seems to be activated by ATR in response to UV-

induced damage, whereas Chk2 primarily functions through ATM

in response to ionizing radiation. Infection with A. actinomycetemco-

mitans did not mediate Chk1 phosphorylation, but induced a

strong Chk2 phosphorylation at Thr68, which is the major

pathway for activation of Chk2. In addition, Chk2 activation

appeared to occur prior to caspase 3 activation, supporting the key

role for Chk2 upstream of the caspase effectors. Pharmacological

inhibition of the ATM pathway and Chk2 silencing with siRNA

further supported the hypothesis that A. actinomycetemcomitans-

induced apoptosis of HIGK follows an ATM/Chk2-dependent

pathway. Because with both strategies we were able to achieve

50% reduction of apoptosis induced by A. actinomycetemcomitans, the

involvement of other mechanisms in CDT-induced apoptosis

remain to be investigated.

Although the mechanism of DNA damage-induced apoptosis

remains poorly understood, the involvement of several pathways in

this process have been suggested. For instance, ATM/ATR

kinases can activate the tumor suppressor protein p53 that in turn

either blocks cell cycle progression or induces apoptosis through

regulation of the Bcl-2 family of proteins [37,38]. In normal

fibroblasts, CDT from Haemophilus ducreyi induced a rapid

stabilization of p53 by phosphorylation, and an increased

expression of the p53-regulated cyclin-dependent kinase inhibitor

p21, suggesting that the checkpoint response is p-53 dependent

[39]. In HS-72 cells transfected with the E6/E7 gene of the human

papillomavirus type 16 (HPV-16) (resulting in the suppression of

endogenous p53 function), A. actinomycetemcomitans CDT induced

an accumulation of p21 but not p53. The cells demonstrated cell

cycle arrest at the G2 stage even in the absence of active p53 [40].

The authors suggested that A. actinomycetemcomitans CDT-induced

G2 arrest and p21 accumulation in a p53-independent pathway

[40]. In contrast, cell lines that carried a nonfunctional p53, such

as HeLa and HaCat, still arrested in G2 and did not up-regulate

p21, indicating the involvement of a p53-independent pathway

[39]. Altogether, these reports demonstrate that CDT induces a

G2 block in susceptible cell lines regardless of the p53 or p21

induction.

Because HPV E6 oncoprotein has been shown to degrade p53

[41], and HIGK are known to have decreased p53 as a

consequence of E6/E7 immortalization, we examined the effect

of A. actinomycetemcomitans CDT on the expression of p21.

Immunoblot analysis showed that p21 is detectable in untreated

HIGK cells. Infection of cells with different strains of A.

actinomycetemcomitans (harboring or mutated for CDT) had almost

no effect on p21 expression, whereas it was upregulated in the

camptothecin positive control treated cells (Figure S2). Our data

suggest that other p53-independent mechanisms may account for

DNA damage-induced apoptosis. In this context, DNA damage

has been shown to down regulate Bcl-XL activity through

deamidation, leading to apoptosis in cells deficient in p53 [42].

It has also been demonstrated that Chk2 phosphorylates the

promyelocytic leukaemia (PML) protein that in turn induces

apoptosis [43]. It remains unclear whether the CDT can mediate

DNA fragmentation at an early time-point upon challenging oral

epithelial cells with live bacteria, but it is evident that the CDT

triggers events that mediate caspase activation and further

precipitates the levels of irreversible DNA fragmentation,

ultimately leading to apoptosis of oral epithelial cells.

In conclusion, this study promotes a better understanding of the

cellular events related to cell cycle arrest and downstream

consequences caused by CDTs. In a larger context, elucidating

the effects of CDT upon epithelium turn-over in a number of

different cell types, in conjunction with the induction of apoptosis in

immune cells, may increase our understanding of aggressive

Figure 5. siRNA-mediated knockdown of Chk2 protein attenuates caspase 3 activation by CDT. HIGK were transfected with 40 nM Chk2
or control siRNAs for 72 h. Panel A. Cells were harvested and processed for Western blot analysis using Chk2 antibody to demonstrate the efficiency
of Chk2 siRNA, and analyzed by densitometry. The results are representative of two separate experiments. Panel B. Transfected cells were co-
cultured with A. actinomycetemcomitans VT1169 (MOI 3000:1) for 4 h, washed and incubated for an additional 48 h with gentamicin (200 mg mL21).
Cells were then collected and caspase 3 activity was assessed. The data are representative of three separate experiments.
doi:10.1371/journal.pone.0011714.g005
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periodontitis. Left untreated, CDT-affected lesions may potentiate

the invasion of deeper tissue and the dissemination of bacteria

through the body, which may in turn have serious consequences in

the etiology of certain cardiovascular diseases and low birth weight.

Supporting Information

Figure S1 HIGK infected by A. actinomycetemcomitans lacking

CDT resemble control normal cells and are distinct from damaged

WT-infected HIGKs. Cells were mock infected (A), co-cultured

with A. actinomycetemcomitans D7S-SA (MOI 3000:1) (B), CHE001

(DcdtABC) (MOI 3000:1) (C), or treated with camptothecin

(2 mg mL 21) (D) for 4 h, washed and incubated for an additional

68 h with gentamicin (200 mg mL21). HIGK were observed 72 h

post-infection microscopically at 2006magnification with a Zeiss

Axiovert 25 microscope and imaged with a Canon Powershot G2

4.0 M pixel digital camera.

Found at: doi:10.1371/journal.pone.0011714.s001 (5.62 MB TIF)

Figure S2 p21 is not significantly modulated in HIGK cells by A.

actinomycetemcomitans CDT. Cells were co-cultured with A. actino-

mycetemcomitans VT1169, D7S-SA, or CHE001 (DcdtABC) (MOI

3000:1) for 4 h, washed and incubated for an additional 20 h with

gentamicin (200 mg mL21), or treated with camptothecin

(2 mg mL21) for 4 h, as a positive control. Cell lysates were

analyzed by Western blotting using antibodies specific for p-21

and GAPDH. The results are representative of multiple experi-

ments and were analyzed by densitometry.

Found at: doi:10.1371/journal.pone.0011714.s002 (0.51 MB TIF)
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