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Abstract

Next-generation DNA sequencing coupled with chromatin immunoprecipitation (ChIP-seq) is revolutionizing our ability to
interrogate whole genome protein-DNA interactions. Identification of protein binding sites from ChIP-seq data has required
novel computational tools, distinct from those used for the analysis of ChIP-Chip experiments. The growing popularity of
ChIP-seq spurred the development of many different analytical programs (at last count, we noted 31 open source methods),
each with some purported advantage. Given that the literature is dense and empirical benchmarking challenging, selecting
an appropriate method for ChIP-seq analysis has become a daunting task. Herein we compare the performance of eleven
different peak calling programs on common empirical, transcription factor datasets and measure their sensitivity, accuracy
and usability. Our analysis provides an unbiased critical assessment of available technologies, and should assist researchers
in choosing a suitable tool for handling ChIP-seq data.
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Introduction

Chromatin immunoprecipitation followed by high-throughput

sequencing (ChIP-seq) is a technique that provides quantitative,

genome-wide mapping of target protein binding events [1,2].

Identifying putative protein binding sites from large, sequence-

based datasets presents a bioinformatic challenge that has required

considerable computational innovation despite the availability of

numerous programs for ChIP-Chip analysis [3,4,5,6,7,8,9]. With

the rising popularity of ChIP-seq, a demand for new analytical

methods has led to the proliferation of available peak finding

algorithms. Reviewing literature from the past three years, we noted

31 open source programs for finding peaks in ChIP-seq data (Table

S1), in addition to the available commercial software. The sheer

abundance of available software packages and technical variability

with which they identify protein binding sites makes an assessment

of the current methods timely. An appraisal of available analytical

methods will better equip researchers to bridge the ‘‘next-generation

gap’’ between sequencing and data analysis [10].

Recently, Pepke et al. published a review of the major steps in

ChIP-seq analysis and detailed the algorithmic approaches of 12

available programs for detecting peaks (the signals of putative

protein binding) from ChIP-seq data [11]. For clarity, we have

provided a brief overview of the main algorithmic treatments of

ChIP-seq data; however, our focus here is evaluative rather than

purely descriptive. The purpose of this study is to provide an

impartial analysis to help readers navigate the myriad of options.

Laajala et al. [12] provide some metrics for evaluating different

methods, but leave many areas unexplored. Our work offers

several improved ways to assess algorithm performance and

address the question: which of the available methods for ChIP-seq

analysis should I consider using?

The ChIP protocol ideally produces a pool of DNA fragments

that are significantly enriched for the target protein’s binding site.

High throughput sequencing of these fragments generates millions

of short sequence ‘tags’ (generally 20 to 50 bp in length) that are

subsequently mapped back to the reference genome. By recognizing

regions in the genome with increased sequence coverage, ChIP-seq

experiments identify the genomic coordinates of protein binding

events. ChIP-seq peak finders must discriminate these true peaks in

sequence coverage, which represent protein binding sites, from the

background sequence.

When examining tag density across the genome, it is important

to consider that sequence tags can represent only the 59-most end

of the original fragment due to the inherent 59 to 39 nature of

current generation of short-read sequencing instruments. This

pattern results in a strand-dependent bimodality in tag density

most evident in sequence-specific binding events, such as

transcription factor-cis regulatory element binding (Figure 1).

Most programs perform some adjustment of the sequence tags to

better represent the original DNA fragment, either by shifting tags

in the 39 direction [13,14,15] or by extending tags to the estimated

length of the original fragments [16,17,18,19,20,21,22,23]. When

the average fragment length can be accurately inferred (either

computationally or empirically), the combined density will form a

single peak where the summit corresponds closely to the binding

site. If paired-end sequencing technologies are used, the fragment

length can actually be measured directly allowing more precise

determination of binding sites, a feature currently supported by

only a handful of peak calling algorithms [13,24,25].
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The first step in peak finding is to identify genomic regions with

large numbers of mapped sequence tags. One approach to this task

is to identify regions where extended sequence tags (XSETs) either

overlap [19,21,26] or are found within some fixed clustering

distance [16,20,22,27]. Another commonly used method for

finding enriched regions calculates the number of tags found in

fixed width windows across the genome, an approach known as a

sliding window algorithm [13,15,18,23,28,29,30,31,32]. As this

histogram-type density estimator can produce edge effects

dependent on the window or bin size, some programs instead

employ a Gaussian kernel density estimator (G-KDE) that

generates a continuous coverage estimate [14,33,34]. All these

methods specify some minimum height criteria at which

enrichment is considered significant, and some minimum spacing

at which adjoining windows, clusters or local maxima (G-KDE)

are merged into a single peak region.

Rather than searching for peaks in coverage, several methods

leverage the bimodal pattern in the strand-specific tag densities to

identify protein binding sites, either as their main scoring method

[31,32] or in an optional post-processing filtering step [19,28].

Programs that use this signal exclusively, which we call

‘‘directional scoring methods,’’ are more appropriate for proteins

that bind to specific sites (transcription factors), rather than more

distributed binders, such as histones or RNA polymerase

(Figure 1B).

CSDeconv, a recently published algorithm, uses both G-KDE

and directional information in conjunction with a deconvolution

approach, which enables detection of closely spaced binding sites

[34]. Such an approach has been shown to have higher spatial

resolution, though the intense computational demands limit the

size of genomes that can be analyzed. Developed expressly for use

on a bacterial genome, CSDeconv and programs like it may

represent an excellent choice for microbial ChIP-seq experiments

with only a few binding sites, small genome size and high sequence

coverage.

More specialized programs for the analysis of RNA polymerase

[35,36] and epigenetic modifications [37,38,39,40,41] ChIP-seq

also have been developed. These proteins bind DNA over larger

regions, producing relatively broad, low-intensity peaks that can be

difficult to detect. Though we focus on identifying transcription

factor binding sites from ChIP-seq data, we mention these

additional methods should readers find them appropriate for their

specific experiments.

Peak finding programs must determine the number of tags (peak

height) or directionality score that constitutes ‘‘significant’’

enrichment likely to represent a protein binding site. An ad hoc

method for dealing with this issue is simply to allow users to select

some threshold value to define a peak [16]. However, this

simplistic approach does little to assist the user in assessing the

significance of peaks and is prone to error. Other, more

sophisticated methods assess the significance of sequence tag

enrichment relative to the null hypothesis that tags are randomly

distributed throughout the genome. The background modeled by

the null hypothesis has been described previously using either a

Poisson [15,32] or negative binomial model [28,30] parameterized

based on the coverage of low-density regions in the ChIP sample.

Figure 1. Strand-dependent bimodality in tag density. The 59 to 39 sequencing requirement and short read length produce stranded bias in
tag distribution. The shaded blue oval represents the protein of interest bound to DNA (solid black lines). Wavy lines represent either sense (blue) or
antisense (red) DNA fragments from ChIP enrichment. The thicker portion of the line indicates regions sequenced by short read sequencing
technologies. Sequenced tags are aligned to a reference genome and projected onto a chromosomal coordinate (red and blue arrows). (A) Sequence-
specific binding events (e.g. transcription factors) are characterized by ‘‘punctuate enrichment’’ [11] and defined strand-dependent bimodality, where
the separation between peaks (d) corresponds to the average sequenced fragment length. Panel A was inspired by Jothi et al. [32]. (B) Distributed
binding events (e.g. histones or RNA polymerase) produce a broader pattern of tag enrichment that results in a less defined bimodal pattern.
doi:10.1371/journal.pone.0011471.g001
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The actual background signal, however, shows decidedly non-

random patterns [42,43] and is only poorly modeled [44] by these

methods, which have been demonstrated to systematically

underestimate false discovery rates [31].

To account for the complex features in the background signal,

many methods incorporate sequence data from a control dataset

generated from fixed chromatin [16] or DNA immunoprecipitated

with a nonspecific antibody [18,42]. Control data can be used to

make adjustments to the ChIP tag density prior to peak calling.

Some methods implement background subtraction by calling

peaks from the difference between ChIP and normalized control

tag densities [15,28,31], while others use control data to identify

and compensate large duplications or deletions in the genome

[23].

Control tag densities are also used to assess the significance of

peaks in the ChIP sample. One straightforward approach is to

calculate the fold enrichment of ChIP tags over normalized

control tags in candidate regions, to account for the fluctuating

background signal [16,18,27,32]. More statistical sophistication

can be incorporated by employing statistical models parameterized

from the normalized control sample to assess the significance of

ChIP peaks. Different programs have implemented models of

varying complexity, such as Poisson [14,27], local Poisson [13], t-

distribution [23], conditional binomial [15,21,28], and hidden

Markov [29,30] models. These statistical models are used

primarily to assign each putative peak some significance metric,

such as P-value, q-value, t-value or posterior probability. Control

data can also be used to calculate empirical false discovery rates,

by assessing the number of peaks in the control data (FDR = #
control peaks / # ChIP peaks). Peaks are identified in control data

either by swapping the ChIP and control data [13,31,34] or by

partitioning the control data, if enough control sequence is

available [14,22]. The goal of all these different methods is to

provide more rigorous filtering of false positives and accurate

methods for ranking high confidence peak calls.

In this work, eleven peak calling algorithms are benchmarked

against three empirical datasets from transcription factor ChIP-seq

experiments. Our goal was to provide quantitative metrics for

comparing available analysis programs based on the similarity of

peaks called, sensitivity, specificity and positional accuracy. We

find that many programs call similar peaks, though default

parameters are tuned to different levels of stringency. While

sensitivity and specificity of different programs are quite similar,

more differences are noted in the positional accuracy of predicted

binding sites.

Results

Overview
Peak calling programs employ a wide variety of algorithms to

search for protein binding sites in ChIP-seq data; however, it

remains unclear to what extent these differences in methodology

and mathematical sophistication translate to substantial variation

in performance. Definitively benchmarking the performance of

different peak calling programs is challenging, since there exists no

comprehensive list of all genomic locations bound by the target

under the experimental conditions (true positives). In lieu of using

empirical data, an in silico ‘‘spike-in’’ dataset can be generated by

adding a known number of simulated ChIP peaks to control

sequence [15]. However, such methods are, as yet, relatively

unreliable due to challenges in mimicking the form and variability

of empirical ChIP peaks.

We chose to test programs against three published transcription

factor ChIP-seq datasets with controls: human neuron-restrictive

silencer factor (NRSF) [16], growth-associated binding protein

(GABP) [14], and hepatocyte nuclear factor 3a (FoxA1) [13]. Each

of these transcription factors has a well-defined canonical binding

motif (see Materials and Methods) that can be used to assess ChIP-

seq peak quality and confidence. NRSF represents a particularly

attractive test case, as the 21 bp canonical binding motif, NRSE2

[45], has been rigorously defined and is relatively high information

content relative to the shorter GABP (12bp) and FoxA1 (10 bp)

motifs. For further validation, we also make use of extensive lists of

qPCR verified sites that are available for NRSF (83 sites) [45] and

GABP (150 sites) [46] (available online as Dataset S1). While the

empirical ChIP-seq datasets analyzed herein do not address

interesting issues concerning biological replicates, we feel that

interesting facet of ChIP-seq analysis has been studied expertly in

previous publications [12,21].

Eleven peak calling methods capable of using control data were

selected from the available open source programs, to represent the

diversity of approaches in the different peak calling stages

(Figure 2). To best approximate typical implementation by non-

expert users, all programs were run with the default or

recommended settings from the same desktop machine equipped

with 4 Gb of RAM. While we note that some programs have

many tunable parameters, we forgo extensive parameter optimi-

zation, which might have improved the results for some methods

on the NRSF data, as this task is beyond the ken of most users.

Sensitivity. For each of the three datasets, all peak callers

reported a different number of peaks (Figure 3). The variation in

the quantity of identified peaks indicates that default stringency

levels are tuned differently among programs. A core set of peaks

shared by all eleven programs was identified and found to

comprise 75–80% of the smallest peak list for each ChIP-seq

dataset (Figure 3). The set peaks shared by all methods suggests

that smaller peak lists may, by and large, simply represent subsets

of peaks called by programs with less stringent default parameters.

Previous comparisons have offered only qualitative insights by

examining the average overlap of a peak list will any different

methods [12]. To more rigorously address this question, we

conducted a series of pair-wise comparisons between the peak lists

from each method to determine which peaks were shared. These

comparisons are presented in Figure 4 as the percentage of each

peak list (column) shared with another method (row). For all three

datasets, a smaller peak list shared an average of 92% of its peaks

with a larger peak list from a different method, whereas larger

peak lists shared an average of only 45–55% of peaks with smaller

peak lists. These figures indicate that more stringent peak lists from

some programs are nearly completely contained within the larger

number of calls by other methods, similar to the more general

findings of Laajala et al. [12].

This issue begs the question: what is gained by calling more

peaks? To address this matter, we began by examining qPCR-

validated true positive sites available for NRSF [45] and GABP

[46]. The sensitivity of the methods was assessed by calculating the

percentage of these true positives found by each program

(Figure 5A,C). For NRSF, sensitivity of the different methods is

remarkably similar up to the 1800 peak mark, after which

SISSRS, E-RANGE and QuEST are slightly less sensitive. After

2500 peaks, the rate at which validated sites are discovered

plateaus, yielding little gain in verified sites from the tail of the

remaining peak lists. Sole-Search and CisGenome, which only

identify about 1800 peaks, missed several positive sites picked up

by programs calling more peaks. GABP showed more divergence

in the sensitivity of the different programs to qPCR verified sites,

with Sole-Search, CisGenome, and SISSRS falling well below the

sensitivity of other algorithms. One of the most notable differences

Testing of ChIP-Seq Algorithms
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in performance between the NRSF and GABP datasets came from

the Kharchenko’s spp package, wtd and mtc, which were less

sensitive in the GABP dataset. The decreased sensitivity of the spp

methods on the GABP dataset may be caused by the broader

enrichment regions noted in this dataset (see Figures S6, S7 and S8

and further discussion in the ‘‘Spatial Resolution’’ section).

Directional scoring methods are known to be less useful for

identifying broad enrichment signals, such as histone modification

or RNA polymerase binding, due to blurring of the signal between

the forward and reverse reads (Figure 1B).

Though high in confidence, the qPCR gold-standards cover

only a handful of sites across the genome, perhaps limiting our

ability to assess more subtle difference in sensitivity. To gain a

more comprehensive picture of sensitivity between these methods,

a whole genome scan for the presence of high confidence

canonical binding motifs was conducted. This approach, which

permits an assessment of sensitivity from a larger database,

generated a list of more than 3000 potential NRSF and 6500

GABP binding sites. The coverage of these motif occurrences

largely recapitulates the patterns seen with the qPCR binding site

analysis, suggesting that the similarities observed with the high

confidence qPCR database are not simply artifacts of the small

sample size (Figure 5B,D). In summary, the sensitivity of all

methods on the NRSF dataset remains remarkably similar over

most of the peak-lists, while more noticeable differences emerge in

examining the GABP data. The similarities from the NRSF data

likely emerge from the fact that many algorithms may have been

tested and trained on this same dataset, thereby optimizing their

default settings. The differences seen with GABP highlight the

potential variability in performance and seem to indicate that, for

this dataset, directional scoring methods were less sensitive

(SISSRS, mtc, wtd), corroborating the findings from our qPCR

analysis.

It is important, however, to consider that high confidence motif

sites represent putative binding sites for the transcription factor.

Some sites may not be occupied under the experimental

conditions and may not even be present in the cell line’s genome,

given that cell lines are prone to genomic instability. Thus, while

the co-occurrence of motif instances and detected peaks likely

represent true binding sites, the failure to identify a peak at a motif

site has a several possible explanations.

Specificity. Assessing the rate of false positives in the peak

lists is a challenging task. The available set of qPCR-determined

negative sites for NRSF provides only 30 ‘‘true negatives’’, defined

as sites where enrichment was less than 3 fold [45]. By this

standard, nine of eleven programs called a total of two putative

false positives (CisGenome and QuEST found none). The same

two ‘‘true negative’’ sites (chr20: 61280784–61280805 and

chr6:108602345–108602365 in hg18) were identified by all nine

programs. Although this could indicate some systematic bias in

peak calling, Kharchenko et al. argue that, based on sequence tag

distributions, these sites are likely bound by NRSF under the

ChIP-seq experimental conditions (see Supplementary Fig. 9 from

Kharchenko et al. [31]). Thus, we find these ‘‘negative’’ sites and

their corollaries in the GABP dataset unreliable for assessing the

specificity of the different programs using metrics such as a

receiver operator curve (ROC), despite the fact that other groups

have used this metric previously [12].

In the absence of an appropriate dataset for rigorous false

positive testing, many investigators prefer to examine a stringent

set of binding sites. Thus, programs must provide accurate means

for ranking peaks according to some confidence metric. To assess

Figure 2. ChIP-seq peak calling programs selected for evaluation. Open-source programs capable of using control data were selected for
testing based on the diversity of their algorithmic approaches and general usability. The common features present in different algorithms are
summarized, and grouped by their role in the peak calling procedure (colored blocks). Programs are categorized by the features they use (Xs) to call
peaks from ChIP-seq data. The version of the program evaluated in this analysis is shown for each program, as the feature lists can change with
program updates.
doi:10.1371/journal.pone.0011471.g002
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peak ranking accuracy, we calculated the rate of canonical motif

occurrence for NRSF, GABP and FoxA1 within additive intervals

of 50 peaks (top 50, top 100, top 150, etc; Figure 6 and Figures S1,

S2). The percentage of peaks containing high confidence motifs

decays with decreasing peak rank, suggesting that rank generally

discriminates well between high confidence and lower confidence

peaks. The performance of the different ChIP-seq methods at

detecting high confidence NRSF binding sites is very similar; the

percentage of motif-containing peaks varied by less than 3% with

the exception of PeakSeq and HPeak. More variability is seen in

the ranking of the top 50 peaks, though the methods still differ by

only 10% when the outliers (PeakSeq and HPeak) are excluded.

Over the first 2000 peaks, PeakSeq and HPeak detect between 10

and 20% fewer peaks with strong motifs than other algorithms.

However, when a larger window (1 kb) surrounding the peak

center is examined, the performance of these methods is

comparable to other programs (Figure S3). This result suggests

that both PeakSeq and HPeak identify peaks with lower positional

resolution than other methods for the NRSF dataset. The decay of

motif content in ranked peaks for the other two datasets were

similarly tightly clustered, showing relatively little variation with

the exception of slightly poorer performance for Sole-Search in the

GABP dataset and QuEST in the FoxA1 dataset (Figure S1 and

S2, respectively). While changes in the significance threshold set

for defining a motif occurrence impacted absolute percentage of

peaks containing motifs, such changes did not alter the

performance of the programs relative to one another (Figure

S5). Another interesting point with regards to peak ranking is that

the different statistics provided by the same program can produce

substantially different rankings, with variable success at determin-

ing high-quality peaks (Figure S4).

This peak ranking analysis provides considerably more practical

information to the user than does the motif analysis conducted by

Laajala et al. [12], which simply reports the average significance of

motif overlap with all peaks. Our results support their general

conclusion that the whole peak lists from all programs show

significant proportion of the canonical binding motif and also

demonstrate the significance of peak rank in recovering high

confidence motif sites.

We note that the absence of a strong motif occurrence does not

definitively classify peaks as false positives, as some such peaks

could represent true binding sites with weak or non-canonical

binding motifs. Nonetheless, high confidence motif occurrences

within peaks are a good indicator of an actual binding event and

can be used to assess how well peak ranking identifies the most

confident binding sites. Furthermore, previous studies of non-

canonical motifs suggest that these sites makes up a relatively

minor fraction of overall motif occurrences [16].

Given the vagaries of ChIP enrichments, it is important to

consider the robustness specificity in peak calling with ‘‘noisy’’

data. Less efficient ChIP enrichments will produce datasets with a

larger ratio of non-specific background sequence to ChIP-targeted

sequence. Such datasets will thus be characterized by higher

background noise, lower peaks and under-sampling of low-

intensity peaks. The complexity of features in the background

sequence (discussed in Introduction) makes modeling ‘‘noise’’

features extremely challenging. We have simulated noisy datasets

in silico by removing randomly sampled ChIP reads from Johnson

et al. ’s NRSF dataset and introducing an equal number of reads

from the background data. Datasets were simulated where the

noisy ChIP sample was composed 10%, 30% and 50% reads

sampled from the background control dataset. These increasingly

noisy datasets are meant to simulate decreasing efficiency ChIP

enrichments with the same sequencing coverage.

As expected, the number of peaks called decreases in

simulations of less efficient ChIP (Figure S6). The size of the

decrease tended to be most marked for programs that called larger

peak lists, suggesting that it was the smaller peaks were lost in the

noise. This conclusion was borne out in by searching for canonical

motifs in the ranked peak lists from our simulated noisy data. Few

differences were observed between variable noise datasets in the

motif content of ranked peaks (Figure S7), indicating that though

all programs lost some peaks in the noise, they tended not to

increase spurious peak calls. QuEST showed the most notable

decay of motif content in noisier datasets, likely because this

algorithm’s background filtering method relies on larger control

datasets. In noisier simulations, HPeak and PeakSeq showed

increasing motif content in the top 500 peaks, such that it seems

that their ranking algorithms performed better on noisier datasets.

Further investigation is needed to discover the origin of this

phenomenon, though we suspect that this may be due to better

spatial precision in their identifications. In summary, however, we

find few substantial differences between the performance of these

programs on our simulated datasets at increasing noise thresholds.

Spatial resolution. In addition to discriminating the true

binding sites, a ChIP-seq peak finder should identify that binding

site with some degree of precision to facilitate the location of

DNA-protein binding. The width of identified peaks can be an

important consideration for de novo motif searches of peaks

identified by ChIP-seq, since extraneous sequence around the

true protein binding adds significant noise that can obscure the

motif signal. Most programs will report a peak region of variable

width, given by start and stop coordinates. However,

directionality-scoring methods tend to report either narrow fixed

width peaks (SISSRS) or single coordinate peaks (spp package),

Figure 3. Quantity of peaks identified. Programs report different
numbers of peaks, when run with their default or recommended
settings on the same dataset. Number of reported peaks is shown for
the GABP (green bars), FoxA1 (red bars) and NRSF (blue bars) datasets.
To assess how different these peak lists were, those peaks identified by
all 11 methods were calculated (core peaks).
doi:10.1371/journal.pone.0011471.g003
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Figure 4. Pair-wise comparison of shared peaks. Pair-wise comparisons of the peak lists for A) NRSF, B) GABP and C) FoxA1 were conducted to
determine the number of shared peaks between each pair of two methods. Each panel shows the percentage of total peaks from one method
(column) that shared with another method (row). Programs in rows and columns are sorted by increasing number of peaks and entries are shaded by
color gradients such that red represents the highest shared proportion and blue, the lowest.
doi:10.1371/journal.pone.0011471.g004
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rather than the wider regions reported by other methods. For both

the FoxA1 and NRSF datasets, the median peak width was

between 250 and 400 bp for all methods reporting peak width

ranges, with the exception of CisGenome which had smaller

median peak width (72 bp for NRSF and 90 bp for GABP; Figure

S8 and S9). In contrast, peaks called from the GABP dataset

tended to be wider, with median peak widths ranging from 300 to

800 bp, excepting CisGenome which was only 90 bp (Figure S10).

This observed variance between datasets emerges either from

actual differences in transcription factor binding (GABP binding in

a more distributed manner), from variation in the preparation of

samples (such as differences in antibody specificity or size selection

during the preparation of the sequencing library) or a combination

of such factors.

In general, programs also provide an estimate of the exact

binding position, given as a single coordinate calculated either as

the highest point of tag coverage in the peak or by some other

scoring metric. This coordinate is meant to aid the researcher in

honing in on section of DNA originally cross-linked by the target

protein during the ChIP-enrichment step. Though there is no

single nucleotide at which cross-linking occurs, this estimate is

meant to facilitate the precise discovery of cis-regulatory elements

[11]. To assess the positional accuracy of these estimates made by

different programs, the distance was calculated between each

predicted binding coordinate and the centers of high confidence

binding motifs within 250 bp (Figure 7, Table S3). Binding

positions were estimated as the center of the reported peak region,

if the program did not provide a predicted binding coordinate

(HPeak, PeakSeq and Sole-Search; starred in Figure 7). Unsur-

prisingly, all three datasets revealed that these centered estimates

provided much less positional resolution than the precise

predictions of binding positions by other programs.

For all programs, the positional accuracy was lower for the

GABP dataset (Figure 7C) than for either FoxA1 or NRSF.

Figure 5. Sensitivity assessment. The percentage of qPCR verified positives that were detected by different programs is shown as a function of
the increasing number of ranked peaks examined for the (A) NRSF dataset and its 83 qPCR-verified sites, or (C) the GABP dataset and its 150 qPCR-
verified GABP binding sites. qPCR sites were classified as ‘‘found’’ if the center of the sites occurred within 250 bp of a program’s predicted binding
site (peak summit or peak region center). (B) Coverage of high confidence (FIMO p,161027) NRSE2 motifs or (D) high confidence (FIMO p,161026)
GABP motifs throughout the human genome as a function of increasing ranked peaks examined. Motif occurrences were covered if the center of the
motif occurred within 250 bp of a program’s predicted binding site (peak summit or center of peak region).
doi:10.1371/journal.pone.0011471.g005
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Keeping in mind the wider peak regions called for the GABP

dataset, we conclude that the signal from binding events in this

GABP dataset is likely broader, which makes precise estimation of

the binding location more challenging. However, the same trends

in each program’s positional accuracy were observed throughout

the three datasets, despite changes in the absolute magnitude. The

predictions for QuEST and HPeak were both consistently shifted

downstream from the nearest high confidence motif occurrence (39

direction, positive shift in Figure 7), indicating some unknown,

systematic bias in these unrelated algorithms. MACS and the three

directionality dependent methods (SISSRS and Kharchenko’s wtd

and mtc programs) were provided some of the best spatial

resolution of binding events. The success of directionality scoring

methods follows logically from their search strategy which, unlike

other methods, hinges upon identifying a single ‘‘transition point’’

between the tag densities on the sense and antisense strands.

Discussion

Selecting a peak detection algorithm is central to ChIP-seq

experimental studies. Though the algorithmic details may seem

arcane to many biologists, computational analysis is the key to

leveraging meaningful information about biology from sequence-

based data. We demonstrate that eleven ChIP-seq analysis

programs of varying algorithmic complexity identify protein

binding sites from common empirical datasets with remarkably

similar performance with regards to sensitivity and specificity. We

find few substantial differences between the performance of these

programs on our simulated datasets at increasing noise thresholds.

A more complete analysis of the origin of noise and improved

metrics for determining the noisiness of datasets would certainly

benefit future in ChIP-seq experiments.

The programs differed most significantly in the spatial

resolution of their estimates for the precise binding region. The

best estimates of precise binding location were provided by

Kharchenko et al. ’s ChIP-seq processing pipeline (spp) [31], which

uses directionality scoring, followed shortly by Zhang et al. ’s

popular MACS program [13]. These tools would be an excellent

choice especially for applications such as de novo motif discovery in

regions with multiple motifs, where it is important to accurately

minimize sequence search space. We base our observations on the

analysis of sequence data generated exclusively from transcription

factor ChIPs. Since different physical factors inherently influence

peak profiles from non-transcription factor ChIPs (e.g. RNA

polymerase, epigenetic modifications) we expect algorithm perfor-

mance to differ significantly for such datasets. Several algorithms

have been written to specifically address this issue and should be

chosen in lieu of those evaluated herein if non-transcription factors

are being studied [35,36,37,38,39,40,41].

Given the similarities in performance, the implementation and

general usability of the different programs is an important factor in

choosing an analysis tool (Figure 2). Most programs are run from

the command line and require variable degrees of data formatting

and computation expertise to implement. Kharchenko et al. ’s

ChIP-seq processing pipeline (spp) is run as a package from within

the statistical program R, which facilitates data visualization and

downstream analysis for the statistically-inclined user. CisGenome

[28] and Sole-Search [23] can be implemented with a graphical

user interface (GUI) which is important consideration for the

bench-top biologist. CisGenome provides an integrated platform

for ChIP-chip and ChIP-seq analysis, combined with downstream

motif finding and an integrated genome browser; however, the

CisGenome GUI is currently restricted to the Windows platform.

Sole-Search runs a cross-platform compatible Java-based GUI that

locally formats and compresses the data before uploading it to a

web-server for remote analysis, a useful feature for users with

limited computing resources and expertise.

An important consideration for ChIP-seq peak detection

concerns the desired balance between sensitivity and specificity

in compiling the final candidate peak list. Depending on the

biological question, the user may want to examine either a

stringent list of the most-confident peaks or a more comprehensive

set of peaks that may include more false positives. It is crucial that

this balance of stringency and sensitivity be a tunable to the needs

of the user. Changing various parameters in each program and re-

running the analysis can adjust the number of peaks reported.

Alternatively, the user can simply rank called peaks according to

some peak statistic (such as number or tags, fold enrichment over

background, or p-value) and analyze only the top n-peaks where n

is adjusted according to the researchers’ desired stringency.

Relative to previous reviews of ChIP-seq algorithms [12], our

analysis provides considerably more resolution throughout the

peak lists (50 peak intervals) and offers a better glimpse at how

peak ‘‘quality’’ declines with decreasing rank.

We have demonstrated that ChIP-seq peak callers need not be

overly sophisticated in their algorithmic approach to achieve

comparable performance identifying relatively stringent lists of

binding sites. While our assessment suggests that improvements in

peak calling specificity and sensitivity are possible, it seems clear

that the field faces a conundrum. It is challenging to rigorously

assess subtle improvements due to the scarcity and unreliability of

verified binding sites for any ChIP-seq dataset. Furthermore,

without adequate verification data for false positive testing, the

decision of how many peaks to evaluate as putative binding sites

remains a matter of biological intuition combined with trial and

error, despite layers of statistical sophistication. Recent studies

[21,22] suggest that using full biological replicates in ChIP-seq

experiments may provide the most reliable manner of filtering

Figure 6. Ranking accuracy. Ranked peak lists were examined in
increasing 50 peak intervals (50 peaks, 100 peaks, etc.). Peaks were
deemed to contain a high confidence NRSE2 motif if a MAST search of
the region surrounding the predicted binding site (peak summit or
peak region center) yielded a motif within 500 bp (p,161026) of the
center. The percentage of peaks containing motifs was evaluated for
each interval for all eleven methods.
doi:10.1371/journal.pone.0011471.g006

Testing of ChIP-Seq Algorithms

PLoS ONE | www.plosone.org 8 July 2010 | Volume 5 | Issue 7 | e11471



false positives from true binding sites, a practice already

encouraged by several groups such as the ENCODE consortium

[21,47]. We suggest that rather than focus solely on algorithmic

development, equal or better gains could be made through careful

consideration of experimental design and further development of

sample preparations to reduce noise in the datasets.

Methods

Chip-seq data
Raw sequencing reads for the NRSF dataset [16] (kindly

provided by A. Mortazavi) and GABP dataset [14] (downloaded

from the QuEST website, http://mendel.stanford.edu/SidowLab/

downloads/quest/) were aligned to the human genome (NCBI

Build 36.1) using Bowtie [48]. The FoxA1 dataset [13] was

downloaded as reads aligned to the human genome (NCBI Build

36.1) from the MACS website (http://liulab.dfci.harvard.edu/

MACS/Sample.html). The datasets had the following number of

uniquely mapped sequence reads, NRSF ChIP: 2,088,238 with

3,079,013 input control reads; GABP ChIP: 7,829,282 with

17,299,213 input control reads; FoxA1 ChIP: 3,909,805 with

5,233,683 input control reads.

Program implementation
Unless otherwise specified all peak calling programs were run

with default or recommended setting from a 2.66 GHz Intel Core

i5 MacOSX desktop machine equipped with 4 GB of RAM.

CisGenome GUI mode was tested on a virtualized instance of the

Windows OS running from the aforementioned Mac. The Sole-

Search program runs by default via submission to a web-server.

Peaks with overlapping coordinates from different program’s peak

lists were determined by pair-wise comparison using BEDTools

[49].

Ranking peaks. Peak lists that were not ranked automatically

by programs were sorted according to peak characteristics reported

by each program (Supplemental Table S2). PeakSeq and

CisGenome return ranked lists by default. The Minimal ChIP-seq

Peak Finder peak list was sorted by the number of reads in the

cluster, E-RANGE by the fold enrichment and then by p-value,

HPeak by peak’s maximum coverage, SISSRS by fold enrichment

and then p-value, MACS by the 10*2log10(p-value) and then by

fold enrichment, the wtd and mtc methods from the spp package by

the false discovery rate and then by the score, and Sole-Search by

the peak’s read count and then by the effect size. The regions in the

QuEST peak list were sorted by q-value rank and only the most

significant peak in each region was retained as QuEST’s estimate of

the exact binding site.

Positional Accuracy and Peak Motif Content. All motif

searching was conducted using programs from the MEME/

MAST package [50] and the following instances of the TF’s

canonical binding motif: the well-defined NRSE2 motif [45] was

Figure 7. Positional accuracy and precision. The distance between
the predicted binding site and high confidence motif occurrences
within 250 bp was calculated for different peak calling programs in the
(A) NRSF, (B) FoxA1, and (C) GABP datasets. Negative distances indicate
that the motif was found before the peak coordinate (e.g. a motif
centered at chr1:1000 and predicted binding site at chr:1050
corresponds to a distance of 250bp). The variation in distances from
predicted binding sites to motif center is presented as a box-and-
whisker plot for each program. Starred programs (*) indicate that these
methods did not provide a predicted binding coordinate; so binding
positions were estimated as the center of the reported peak region.
Exact numbers are available in Table S3.
doi:10.1371/journal.pone.0011471.g007
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used for NRSF, while the TRANSFAC [51] database motifs were

used for GABP (M00341) and FoxA1 (M01261). An exact binding

site prediction was available from all programs except PeakSeq,

Sole-Search and HPeak (though HPeak 2.1 has this feature, this

version was available only for the Linux OS at the time of writing).

In the absence of a predicted binding site, the center of each peak

region was substituted as an exact binding site prediction. Regions

250 base pairs upstream and downstream from the predicted

binding site were searched using MAST [50] for the high

confidence hits of the canonical motif for the TF. Positional

accuracy was assessed for the top 1500 peaks from each method as

the distance from the predicted binding site to the center of the

closest high confidence motif occurrence within 250 bp. The

percentage of peaks containing at least one significant motif within

250 bp of the predicted binding site was calculated for additive 50

peak increments throughout the each program’s ranked list of

peaks.

Sensitivity analysis. Eighty-three qPCR validated NRSF-

positive sites were obtained from Mortazavi et al. [45] and 150

qPCR GABP-positive sites were found in Collins et al. [46]. A set

of 3002 high confidence NRSE2 motif [45] occurrences in the

human genome were identified by FIMO [50] search of human

genome build NCBI Build 36.1, using cutoff of p ,161027. For

GABP, a set of 6670 motif occurrences in the human genome were

identified by FIMO [50] search using a cutoff of p ,161026. The

corresponding FIMO search for the FoxA1 motif returned

.40,000 highly repetitive motif occurrences, having only 2

distinct p-values. Unable to define a subset of high confidence

motifs in the whole genome, sensitivity analysis was not conducted

for FoxA1. For NRSF and GABP, the number of high confidence

motif occurrences found within peak regions was determined for 1-

peak increments throughout each ranked peak list, using a

combination of custom Perl scripts and BEDTools [49].

Supporting Information

Table S1 Survey of open-source ChIP-Seq analysis programs.

References that also appear in the main text are numbered

accordingly. Supplementary references are indicated by S1 (etc)

and NA indicates that the program has not yet been published.

Websites hosting the code are provided for each method, unless

the code was not publicly released at time of writing (usually

available on request from authors).

Found at: doi:10.1371/journal.pone.0011471.s001 (0.07 MB

DOC)

Table S2 Methods used to rank peak lists from different

programs. If programs returned a sorted peak list by default, no

further sorting was conducted (NA). Secondary sorting method

was used to break ties following the primary sorting.

Found at: doi:10.1371/journal.pone.0011471.s002 (0.03 MB

DOC)

Table S3 Median and standard deviation of positional accuracy

data. Median and standard deviation of the distance from

estimated binding sites to the nearest high confidence motif

occurrence, measured in base pairs. Measurements conducted for

the top 1500 peaks in each peak list. Represented graphically in

Figure 7 of the main text.

Found at: doi:10.1371/journal.pone.0011471.s003 (0.04 MB

DOC)

Dataset S1 qPCR verified sites for NRSF and GABP. qPCR

sites studied from previous publications are presented as regions in

hg18 coordinates. Data available in separate tabs of this multitab

Excel file.

Found at: doi:10.1371/journal.pone.0011471.s004 (0.03 MB

XLS)

Figure S1 GABP ranking accuracy. Ranked peak lists were

examined in increasing 50 peak intervals (50 peaks, 100 peaks,

etc.). Peaks were deemed to contain a high confidence GABP

motif if a MAST search of the region surrounding the predicted

binding site (peak summit or peak region center) yielded a motif

within 500 bp (p,161024) of the center. The percentage of peaks

containing motifs was evaluated for each interval for all eleven

methods.

Found at: doi:10.1371/journal.pone.0011471.s005 (0.56 MB EPS)

Figure S2 FoxA1 ranking accuracy. Ranked peak lists were

examined in increasing 50 peak intervals (50 peaks, 100 peaks,

etc.). Peaks were deemed to contain a high confidence FoxA1

motif if a MAST search of the region surrounding the predicted

binding site (peak summit or peak region center) yielded a motif

within 500 bp (p,161024) of the center. The percentage of peaks

containing motifs was evaluated for each interval for all eleven

methods.

Found at: doi:10.1371/journal.pone.0011471.s006 (0.54 MB EPS)

Figure S3 NRSF Ranking accuracy revisited (1 kb regions).

Ranked peak lists were examined in increasing 50 peak intervals

(50 peaks, 100 peaks, etc.). Peaks were deemed to contain a high

confidence NRSE2 motif if a MAST search of the region

surrounding the predicted binding site (peak summit or peak

region center) yielded a motif within 1 kb bp (p,161026) of the

center. The percentage of peaks containing motifs was evaluated

for each interval for all eleven methods for the top 2000 peaks.

Found at: doi:10.1371/journal.pone.0011471.s007 (0.51 MB EPS)

Figure S4 Different confidence metrics yield different rankings.

Peak confidence measures provided by the same program can

produce quite different rankings with different proportions of high

confidence motifs. Ranking of MACS peak list by three different

confidence measures (1st in figure legend indicates the primary

means of sorting, the 2nd measure is used to break any ties).

Analysis as in Figures S1–S3.

Found at: doi:10.1371/journal.pone.0011471.s008 (0.82 MB EPS)

Figure S5 Motif stringency thresholds. Using either A) less

stringent (p,161025) or B) more stringent (p,161028) thresh-

olds for defining ‘‘significant’’ NRSE2 motifs found by MAST

search within 500 bp of the peak did not change the relative

ranking of the eleven tested methods. Compare with main text

Figure 6.

Found at: doi:10.1371/journal.pone.0011471.s009 (0.50 MB EPS)

Figure S6 Peaks called from simulated. A) Number of peaks

called in from normal and simulated datasets at different noise

levels. B) Percent decrease in the number of peaks called by each

program was calculated as the difference between the normal and

simulated datasets divided by the size of normal dataset.

Found at: doi:10.1371/journal.pone.0011471.s010 (1.08 MB EPS)

Figure S7 Motif content in ranked peaks from simulated noisy

datasets. Panels show the change in motif content throughout the

peak lists in Johnson et al. ’s unpertubed ChIP sample and 10–

50% noise introduction from background sequence for each

program.

Found at: doi:10.1371/journal.pone.0011471.s011 (0.08 MB

PDF)

Figure S8 Variation in width of peak regions reported by

different ChIP-Seq peak callers for the NRSF dataset. The width

of each peak was calculated as the difference between start and
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stop coordinates. Continuous density plots were generated to

display the frequency with which different peak widths were

observed in the lists reported by different peak calling programs.

SISSRS and spp package programs (mtc and wtd) were not

included as these methods report fixed width or single coordinate,

respectively.

Found at: doi:10.1371/journal.pone.0011471.s012 (2.38 MB EPS)

Figure S9 Variation in width of peak regions reported by

different ChIP-Seq peak callers for the FoxA1 dataset. The width

of each peak was calculated as the difference between start and

stop coordinates. Continuous density plots were generated to

display the frequency with which different peak widths were

observed in the lists reported by different peak calling programs.

SISSRS and spp package programs (mtc and wtd) were not

included as these methods report fixed width or single coordinate,

respectively.

Found at: doi:10.1371/journal.pone.0011471.s013 (3.40 MB EPS)

Figure S10 Variation in width of peak regions reported by

different ChIP-Seq peak callers for the GABP dataset. The width

of each peak was calculated as the difference between start and

stop coordinates. Continuous density plots were generated to

display the frequency with which different peak widths were

observed in the lists reported by different peak calling programs.

SISSRS and spp package programs (mtc and wtd) were not

included as these methods report fixed width or single coordinate,

respectively.

Found at: doi:10.1371/journal.pone.0011471.s014 (3.90 MB EPS)
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