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Abstract

Background: Tumor Necrosis Factor alpha (TNFa) is a pleiotropic cytokine extensively studied for its role in the
pathogenesis of a variety of disease conditions, including in inflammatory diseases. We have recently shown that, in vitro,
that TNFa utilizes PLD1 to mediate the activation of NFkB and ERK1/2 in human monocytes. The aim of this study was to
investigate the role(s) played by phospholipase D1 (PLD1) in TNFa-mediated inflammatory responses in vivo.

Methodology/Findings: Studies were performed in vivo using a mouse model of TNFa-induced peritonitis. The role of PLD1
was investigated by functional genomics, utilizing a specific siRNA to silence the expression of PLD1. Administration of the
siRNA against PLD1 significantly reduced PLD1 levels in vivo. TNFa triggers a rapid pyrogenic response, but the in vivo
silencing of PLD1 protects mice from the TNFa-induced rise in temperature. Similarly TNFa caused an increase in the serum
levels of IL-6, MIP-1a and MIP-1b: this increase in cytokine/chemokine levels was inhibited in mice where PLD1 had been
silenced. We then induced acute peritonitis with TNFa. Intraperitoneal injection of TNFa triggered a rapid increase in
vascular permeability, and the influx of neutrophils and monocytes into the peritoneal cavity. By contrast, in mice where
PLD1 had been silenced, the TNFa-triggered increase in vascular permeability and phagocyte influx was substantially
reduced. Furthermore, we also show that the TNFa-mediated upregulation of the cell adhesion molecules VCAM and
ICAM1, in the vascular endothelium, were dependent on PLD1.

Conclusions: These novel data demonstrate a critical role for PLD1 in TNFa-induced inflammation in vivo and warrant
further investigation. Indeed, our results suggest PLD1 as a novel target for treating inflammatory diseases, where TNFa play
key roles: these include diseases ranging from sepsis to respiratory and autoimmune diseases; all diseases with considerable
unmet medical need.
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Introduction

Tumor Necrosis Factor alpha (TNFa) is a pleiotropic cytokine

extensively studied for its role in the pathogenesis of a variety of

disease conditions, which is known to have a wide range of beneficial

and deleterious effects in humans [1,2]. TNFa is produced by a

variety of cells which include: macrophages, monocytes, lympho-

cytes, NK cells, eosinophils, keratinocytes, langerhan cells, kupffer

cells, glial cells, adipocytes and fibroblasts [1–3]. This cytokine is

known to be produced in response to a wide range of stimuli such as,

bacterial toxins (e.g. LPS); infections (bacterial, viral, fungal,

mycobacterial and parasitic); antigen-antibody complexes; injury;

host inflammatory agents (products of the complement activation,

auto-antibodies and cytokines); as well as toxic and non-toxic

environmental challenges [1,3]. TNFa elicits a wide spectrum of

cellular responses which mediates inflammation, regulates immune

response and also induces apoptosis in certain types of cancer cells

[4,5]. Appropriate levels of TNFa are necessary for homeostatic

functions like protection from infection, haematopoiesis, immune

response regulation, cellular growth in wound healing, tumor

regression and immune surveillance [6]. In contrast, dysregulation

in TNFa production or signaling has been associated with a wide

range of inflammatory disorders, ranging from sepsis to anaphylaxis

to autoimmune diseases [1,2,4,6–8]. TNFa mediates its inflamma-

tory functions by inducing the production of various proinflamma-

tory cytokines and chemokines, activation of leukocytes and

lymphocytes, inducing vascular permeability, enhancing the expres-

sion of adhesion molecules in immune cells as well as in the vascular

endothelium, and promoting inflammatory cell migration, prolifer-

ation and differentiation [1–3,5,9]. Therefore, it is not surprising that

much effort has been directed at blocking TNFa in human diseases;

however, with mixed success [8,9]. Incidentally, in spite of a great

body of literature on the inflammatory pathways triggered by TNFa
in various cell types, no significant validation of potential signaling

targets has been documented.

We recently reported that in human monocytes, TNFa activates

the Phosphatidylcholine-specific Phospholipase D1 (PLD1), and
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showed that inhibition of PLD-generated active products, or

genetic-silencing of PLD1, largely inhibits TNFa-triggered key

intracellular signaling pathways pivotal in the TNFa-mediated

proinflammatory responses, suggesting a potential role for PLD1

in TNFa-mediated inflammation [10].

Phosphatidylcholine (PC), in addition to being a structural

constituent of cell membranes, is a source of important signaling

molecules. In particular, PC-derived phosphatidic acid (PA) and

diacylglycerol (DAG) have emerged as a new class of potent

bioactive molecules, implicated in a variety of cellular processes,

such as cell differentiation, apoptosis, and proliferation [11–13].

Phosphatidylcholine-specific Phospholipase D (PLD) is the enzyme

which hydrolyzes phosphatidylcholine, to generate phosphatidic

acid (PA) and choline [11,12]. PA, a potent second messenger by

itself, can be dephosphorylated to Diacylglycerol (DAG), or

hydrolyzed to Lyso-phosphatidic acid (LPA), by Phosphatidic acid

phosphohydrolases and Phospholipase A2 respectively [13–17].

Intracellularly, PLD, or its product PA, is known to regulate a

variety of homeostatic cellular functions such as membrane

trafficking, vesicular transport, cytoskeletal re-organization, cellu-

lar migration, proliferation and survival [16–19]. A role of PLD in

immune cell responses in vitro is supported by a variety of studies

showing PLD to mediate receptor-activated effector responses,

including in phagocytosis (20–21), NADPH-oxidative burst

[22,23], immune cell migration [10,24–25], degranulation

[26,27] and cytokine production [10,28]. PLD comprises two

major isoforms, PLD1 and PLD2, expressed in a wide range of

almost all the mammalian tissues [18,26]. PLD1 has been

associated with the activation of monocytes/macrophages, neu-

trophils and mast cells [10,23,29–31], whereas PLD2 has been

associated with responses in T lymphocytes [32,33]. However, due

to lack of isoform-specific inhibitors for in vivo work and knockout

mice, the role of PLDs, and indeed of individual PLD isoforms in

in vivo physiology or pathophysiology remains largely unknown.

Here we show for the first time that TNFa-triggered

inflammation in vivo can be attenuated by targeting PLD1. We

show here that the TNFa-triggered temperature changes,

cytokine/chemokine production, vascular permeability, cell adhe-

sion molecule expression and neutrophil and monocyte infiltration

into the peritoneal cavity, are inhibited in mice where PLD1 has

been knocked down. Thus, our data demonstrate a critical role for

PLD1 in TNFa-mediated inflammation.

Materials and Methods

Ethics
All the animal experiments performed in this study were

conducted by strictly adhering to the guidelines stated by National

University of Singapore (NUS) Institutional Animal Care and Use

Committee (IACUC). The IACUC ethics committee approved

this study under the approved IACUC protocol No: 108/

06(A1)08).

Materials
All materials unless stated otherwise were bought from Sigma-

Aldrich.

Mice
All the in vivo experiments were carried out on male BALB/c

mice (8–10 weeks old) weighing 20–25 grams. The animals were

obtained from the NUS, Sembawang Laboratory Animals Centre

and housed in the animal holding unit, NUS, prior to and during

the experiments. The animals were housed in appropriate cages

with free access to food and water.

siRNA administration and gene knockdown in vivo
The mice were anesthetized and siRNAs were administered via

intravenous tail vein injections. Based on our earlier in vivo siRNA

optimization experiments [34], the dose of synthetic siRNAs

injected was 4 mg/mouse of siRNA in a final volume of 100 ml,

and repeated three times at 24 hour intervals) to achieve an

effective knockdown effect. The siRNA specific for mouse PLD1

used to knockdown mouse PLD1 is (AGAGGUGGUUGAUA-

GUAAA)dTdT & (UUUACUAUCAACCACCUCU)dTdT. A

scrambled siRNA (Allstar negative control) was used as control.

Gel electrophoresis and Western blot
40 mg of lysate for each sample was resolved on 10%

polyacrylamide gels (SDS-PAGE) under denaturing conditions

and then electrophoretically transferred to 0.45 mm nitrocellulose

membranes. After blocking overnight at 4uC with 5% nonfat milk

in Tris-buffered saline and 0.1% Tween 20, and washing, the

membranes were incubated with rabbit polyclonal anti-PLD1 or

anti-PLD2, and mouse monoclonal anti-a-tubulin (Santa Cruz

Biotechnologies, CA) primary antibodies for 2 h at room

temperature. The membranes were washed extensively in the

washing buffer and incubated with the appropriate horseradish

peroxidase-conjugated secondary antibodies (Sigma-Aldrich, Sin-

gapore). Bands were visualized using the ECL Western blotting

detection system (GE Healthcare, UK).

TNFa-induced peritonitis model in mice
Acute inflammation in the peritoneal cavity of BALB/c was

induced by the intraperitoneal injection (i.p) of recombinant mouse

TNFa (PeproTech Inc.Rocky Hill, NJ, USA), at 5 mg/mouse in a

final volume of 100 ml. Six mice were used for each group (n = 6 per

group) per experiment. All the basal category or control mice were

injected (i.p) with 100 ml of sterile saline (PBS). TNFa was

administered 24 h after the third dose of the siRNA treatment.

The inflammatory parameters measured are explained below.

Rectal temperature measurements
Temperature changes in the mice as a result of the TNFa-

induced inflammatory response were measured rectally using a

digital rectal thermometer (Natsume Seisakusyo Co., Tokyo,

Japan). The thermometer probe was dipped in oil prior to

measurements. The mice were held in a custom built restrainer

during the measurements. The probe was inserted into the rectum

up to 2 cm deep and held in the same position for 15 seconds until

a stable temperature readout was obtained. Temperature was

recorded at the times indicated in the figure.

Peritoneal inflammatory reaction
Acute inflammation in the peritoneal cavity was induced by an

i.p. injection of recombinant mouse TNFa (5 mg/mouse in a final

volume of 100 ml) into mice either pretreated with siRNA or saline

control. At the indicated times, mice were sacrificed, and their

peritoneal cavity was washed with 2 ml of ice-cold PBS, 0.1%

BSA. The recovered peritoneal lavage fluid was analyzed for

vascular permeability, different cell infiltrates and the level of

cytokines was measured. Six mice were used for each group per

experiment, and the experiments were conducted three times.

Permeability changes
For permeability analysis, the Evans blue dye at 1% in a final

volume of 100 ml of PBS was i.v. administered 10 min before the

TNFa or PBS-(vehicle) i.p. administration. At the indicated times,

mice were sacrificed, and their peritoneal cavity was washed with
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2 ml of ice-cold PBS, 0.1% BSA. The cells were spun down and

the OD of the supernatant at 620 nm was measured as an

indicator of Evans blue leakage into the peritoneal cavity. Five

mice were used for each group per experiment, and the

experiments were conducted three times.

Collection of serum
Following the TNFa challenge for 12 h, whole blood was

collected, by cardiac puncture, placed in collection tubes and

allowed to clot spontaneously on ice. Once the clot was formed,

the serum was gently pipetted out to a fresh tube. This collected

serum was further clarified by centrifugation at 3000 rpm for 10

minutes and the supernatant (serum) was collected gently, without

disturbing the pellet, and stored at 220uC until use.

Measurement of cytokine production
The levels of mouse IL-6, MIP-1a and MIP-1b in the peritoneal

lavage and serum were measured using mouse IL-6, mouse MIP-

1a and mouse MIP-1c OptEIATM Kit (BD Biosciences, San Jose,

CA, USA), following the manufacturer’s instructions.

Histology
For morphological investigation, the peritoneal membranes of

mice, 12 h after the TNFa challenge, were carefully dissected out

and immersed in 10% formalin fixative for 1 day. The specimens

were then dehydrated through an ascending series of ethanol and

cleared in toluene, before being embedded in paraffin. The tissue

blocks were cut at 4 mm thickness by means of a Leica Rotary

Microtome (Model 2165) and processed for Hematoxylin and

Eosin (H&E) staining, as described before [34]. Once dried, the

sections were observed using a light microscope (Leica DM IRB

microscope) and the images were captured using a Leica DC 300F

digital camera. The images were analyzed with the Leica IM500

Image Manager software.

Immunofluorescence of CAMs
Peritoneal membrane sections, prepared as described above, were

deparaffinized in two changes of xylene, 5 minutes each. Then they

were hydrated in two changes of 100% ethanol for 3 minutes each,

95% and 80% ethanol for 1 minute each and rinsed in distilled

water. Then the sections were incubated with 2N HCl solution for 20

minutes, for antigen retrieval. The tissues were marked with a circle

using a DAKO pen (DAKO Biotech, Inc. Glostrup, Denmark).

Then they were permeablized using 0.2% Saponin for 10 minutes

and washed in 16TBS, 365 min. Goat serum (1:30) was added for

30 min at room temperature and drained with blotting paper. The

tissues were incubated with the primary antibody, VCAM1 or

ICAM1 (Santa Cruz Biotechnology, Inc., USA), for the respective

cell adhesion molecule to be probed overnight in a humidity

chamber at 4uC. Then they were washed with TBS, three times for 5

minutes. The corresponding secondary antibody (DAKO Biotech,

Inc. Glostrup, Denmark), labeled with FITC, was added at room

temperature for 1 hr. The tissues were then washed with TBS, three

times for 5 min. Finally the slides were mounted with a cover slip,

using fluorsave. The sections were visualized with an inverted

fluorescence Leica DM IRB microscope and the images were

captured using a Leica DC 300F digital camera. The images were

analyzed with the Leica IM500 Image Manager software.

Statistical analysis
Statistical differences between control and treated groups/

samples were calculated using the unpaired Student’s t-test.

Student’s t test p values (*p,0.05 and **p,0.01).

Results

In vivo knockdown of PLD1
We and others have shown that intravenous administration of

siRNA is known to result in a significant knockdown of the gene

products in mice [32–34]. Figure 1a shows a significant decrease in

the protein level of murine phospholipase D1 (mPLD1) in

peripheral blood leukocytes of mice, following intravenous

administration of siRNA (4 mg/mouse) to knockdown mPLD1

(Fig. 1A). Since both the PLD isoforms are expressed in BALB/c

mice [35], we determined the isoform-specific knockdown of

PLD1 by evaluating the expression of PLD2 as well, following the

above-mentioned siRNA intravenous administration. The level of

mPLD2 expression remained unaffected subsequent to siRNA

treatment specific for PLD1 (Fig. 1B), indicating the efficiency

and specificity of the isoform-specific siRNA knockdown of PLD1

in vivo.

Role of PLD1 in TNFa— induced temperature changes
and serum cytokines

One of the characteristic systemic responses related to TNFa
administration is pyrexia or increase in body temperature.

Therefore, the change in body temperature of mice following

TNFa intra-peritoneal administration and the role of PLD1 in this

response was evaluated. Mice injected with TNFa developed a

marked increase in body temperature in an hour (Fig. 2A). This

increase in body temperature was considerably reduced in mice

pretreated with the PLD1 siRNA. However, the rise in

Figure 1. Specific knockdown of PLD1 in BALB/c mice using
siRNA. (A) Western blot analysis shows the knockdown of murine
phospholipase D1 (PLD1) in BALB/c mice PBMNCs, by the use of specific
siRNA for PLD1 (4 mg/mouse). (B) Western blot analysis shows the
expression of murine phospholipase D2 (PLD2) in the same set of
samples as indicated. Lysates probed for PLD1 and PLD2 from PBMCs
were obtained from: untreated mice which served as control (Control);
mice injected with siRNA-PLD1 (siRNA-PLD1); and from mice injected
with scrambled siRNA (Scr-siRNA). In addition, a-tubulin was probed for
loading control.
doi:10.1371/journal.pone.0010506.g001
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temperature in mice pretreated with the negative control siRNA

was identical to that of the TNFa treated mice positive control.

A key event in the inflammatory process is the production of

proinflammatory cytokines. TNFa is capable of amplifying its

inflammatory response by promoting the generation and release of

several proinflammatory cytokines and chemokines. Therefore we

investigated the levels of IL-6 (Fig. 2B), MIP-1a (Fig. 2C) and

MIP-1b(Fig. 2D) in the serum following TNFa administration.

We found there was a significant rise in the levels of these

proinflammatory cytokine and chemokines in the serum of mice

treated with TNFa (Fig. 2B–D). In contrast, an inhibition in this

response was observed when the mice were treated with siRNA-

PLD1 prior to TNFa injection (Fig. 2B–D). This indicates the

necessity of PLD1 in this response.

TNFa-triggered vascular permeability and peritoneal cell
adhesion molecule expression

One of the characteristic events in an inflammatory response is

the increase in vascular permeability, and vascular cell adhesion

molecule expression. Alterations in vascular permeability were

determined by i.v. injection of Evans blue dye, which binds to

serum proteins and thus can be used to quantify alterations in

vascular permeability. Intra-peritoneal injection of TNFa into the

peritoneal cavity caused a steady influx of Evans blue into the

peritoneal cavity, with a continued increase from 2 to 12 h

(Fig. 3A).

It is well known that cell adhesion molecules are important

mediators in cellular migration and infiltration. Therefore, we

evaluated the expression of ICAM1 and VCAM1 on the vascular

endothelium, using immunohistochemistry in peritoneal tissues.

Intra-peritoneal injection of TNFa caused an increase in the

expression of VCAM-1 and ICAM-1 (Fig. 3B) on the vascular

endothelium. However, in mice pretreated with the siRNA-PLD1,

there was a substantial decrease in the TNFa-triggered expression

of the cell adhesion molecules (Fig. 3B).

TNFa-triggered peritoneal cytokine and chemokine
production

A key event in localized inflammatory processes is the

production of proinflammatory cytokines and chemokines.

Localized cytokines and chemokines amplify the inflammatory

response, by promoting vascular permeability and the influx of

immune cells into the affected area. Therefore, we investigated the

levels of IL-6 (Fig. 4A), MIP-1a (Fig. 4B) and MIP-1b (Fig. 4C)

in the peritoneal lavage, following TNFa administration. We

found there was a significant rise in the levels of these

proinflammatory cytokine and chemokines in the peritoneal

lavage of mice treated with TNFa (Fig. 4A–C). In contrast, an

inhibition in this response was observed when the mice were

Figure 2. TNFa-induced changes in temperature and serum
cytokine levels is dependent on PLD1. (A) TNFa-induced
temperature changes observed over the time points indicated. TNFa
temperature changes in: control mice (TNF); in mice pretreated with the
siRNA-PLD1 (siRNA-PLD1+TNF); and in mice pretreated with the
scrambled siRNA (Scr-siRNA+TNF). TNFa-induced changes in serum
levels of: IL-6 (B); MIP-1a (C), and MIP-1b (D) levels in control mice
(Basal); in mice injected with TNFa (TNF); in mice pretreated with the
siRNA-PLD1 prior to TNFa administration (siRNA-PLD1+TNF); and in
mice pretreated with the scrambled siRNA prior to TNFa administration
(Scr-siRNA+TNF). Data showed as means 6 SD of triplicate measure-
ments from three different experiments. Student’s t test p values
(*p,0.05, **p,0.01). Six mice were used per treatment group per
experiment.
doi:10.1371/journal.pone.0010506.g002
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Figure 3. TNFa-induced vascular permeability and VCAM-1 and
ICAM-1 expression in peritoneal tissues is dependent on PLD1.
(A) Peritoneal lavage was collected, and the OD was measured, from
mice: untreated following the i.p. injection of PBS (Basal); following the
i.p. injection of TNFa (TNF); following the i.p. injection of TNFa in mice
pretreated with the siRNA-PLD1 (TNF +siRNA-PLD1); following the i.p.
injection of TNFa in mice pretreated with the scrambled siRNA (TNF
+Scr-siRNA). Data showed as means 6 SD of triplicate measurements
from three different experiments. Student’s t test p values (*p,0.05,
**p,0.01). Six mice were used per treatment group per experiment. (B)
VCAM-1 and ICAM-1 expression pattern using immunohistochemistry in
peritoneal tissues after 2 h of TNFa administration. The panels indicate
the peritoneal tissues from control mice (Basal); from mice injected with
TNFa (TNF); from mice pretreated with the siRNA-PLD1 prior to TNFa
administration (TNF+siRNA-PLD1); and from mice pretreated with the
scrambled siRNA prior to TNFa administration (TNF+Scr-siRNA). Results
shown are representative of three different experiments and of multiple
sections and fields.
doi:10.1371/journal.pone.0010506.g003

Figure 4. TNFa-induced peritoneal cytokine/chemokine levels.
TNFa-induced changes in serum levels of: IL-6 (A); MIP-1a (B), and MIP-
1b (C) levels in control mice (Basal); in mice injected with TNFa (TNF); in
mice pretreated with the siRNA-PLD1 prior to TNFa administration
(siRNA-PLD1+TNF); and in mice pretreated with the scrambled siRNA
prior to TNFa administration (Scr-siRNA+TNF). Data showed as means 6
SD of triplicate measurements from three different experiments.
Student’s t test p values (*p,0.05, **p,0.01). Six mice were used per
treatment group per experiment.
doi:10.1371/journal.pone.0010506.g004
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treated with siRNA-PLD1 prior to TNFa injection (Fig. 4A–C).

This indicates that PLD1 is required for the localized generation of

these proinflammatory mediators.

TNFa-triggered neutrophil and monocyte infiltration into
the peritoneal cavity

Acute inflammatory responses are characterized by the rapid

recruitment of phagocytic cells to the site of inflammation. Intra-

peritoneal administration of TNFa induced a significant influx of

neutrophils (Fig. 5A) and monocytes (Fig. 5B) into the peritoneal

cavity, compared to that of the untreated controls. This TNFa-

triggered increased influx of neutrophils and monocytes into the

peritoneal cavity was significantly inhibited in mice pretreated

with PLD1 siRNA (Fig. 5A–B).

The role of PLD1 in TNFa-triggered migration of leukocytes

into the site of inflammation was further evaluated using

Haematoxilin and Eosin (H&E) staining of the peritoneal tissues.

The peritoneal tissues from mice challenged with TNFa exhibited

a marked increase in cellular infiltration (indicated by green

arrows) (Fig. 5C), when compared to basal levels (Fig. 5C top

panel). However, this TNFa-triggered increase in cellular

infiltration was markedly inhibited in the peritoneal tissues of

mice pretreated with the siRNA against PLD1 (Fig. 5C third

panel). In contrast, the TNFa-induced cellular infiltration was

unchanged in mice pretreated with the scrambled siRNA (Fig. 5C
bottom panel).

Taken together, our data demonstrate a critical role for PLD1

in the inflammatory responses triggered by TNFa in vivo.

Figure 5. TNFa-induced immune cell infiltration into the peritoneal cavity. (A) Neutrophil, and (B) monocyte infiltration into peritoneal
cavity following TNFa administration for the indicated times, measured in the peritoneal lavage of: control mice injected with saline alone (Basal); of
mice injected with TNFa (TNF); of mice pretreated with the siRNA-PLD1 prior to the TNFa administration (TNF+siRNA-PLD1); and of mice pretreated
with the scrambled siRNA prior to the TNFa administration (TNF+Scr-siRNA). Data showed as means 6 SD of triplicate measurements from three
different experiments. Student’s t test p values (*p,0.05, **p,0.01). Six mice were used per treatment group per experiment. (C) Haematoxilin and
Eosin staining of peritoneal tissues after TNFa administration. The panels indicate the peritoneal tissues from: control saline injected mice (Basal);
mice injected with TNFa (TNF); from mice pretreated with the siRNA-PLD1 prior to TNFa administration (TNF+siRNA-PLD1); and from mice pretreated
with the scrambled siRNA prior to TNFa administration (TNF+Scr-siRNA). Results shown are representatives of multiple experiments and of multiple
sections and fields. Green arrows indicate a high number of cellular infiltrates.
doi:10.1371/journal.pone.0010506.g005
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Discussion

In this study we have attempted to elucidate some of the

molecular mechanisms utilized by TNFa, during the inflam-

matory response. This is an important area of research, as TNFa
is known to be linked to a wide range of inflammatory

pathologies.

Inflammation is involved in the maintenance of tissue

homeostasis, defense against infection and mediating immune

responses. However, a dysregulated or prolonged inflammatory

process contributes to tissue injury and morbidity, especially in

systemic-acute and chronic inflammatory conditions, such as in

sepsis and autoimmune diseases. This leads to the necessity of

dampening the inflammatory response. TNFa is well known for

its role in host defense against bacterial, viral and parasitic

infections. However, aberrant TNFa responses have been

associated with a spectrum of inflammatory disorders. Biological

agents, antibodies and soluble receptors, which target TNFa
actions, are being increasingly used in the management of

inflammatory disorders. A range of them are currently licensed as

TNFa-blocking agents and are being used in the management of

inflammatory diseases, including rheumatoid arthritis, ankylosing

spondylitis and Crohn’s disease, with a varying degree of success

[36–38].

However, TNFa blockade has been associated with an increase

in susceptibility to bacterial, viral and parasitic infections,

including Listeria, Mycobacteria and granulomatous infections

[36–39]. It has also been found to be associated with the

incidence of opportunistic infection, demyelinating syndromes

and autoimmune conditions like lupus. A recent report by Jan

Lin et al [7], has discussed in detail the adverse effects induced

by TNFa blockade, which clearly indicates the limitations of the

use of such biopharmaceuticals. The lack of responsiveness to

certain disorders, susceptibility to infections and resistance in

long-term use has increased the search for alternative therapeutic

agents.

This study is the first study which validates the in vivo relevance

of PLD1 in the process of inflammatory responses. Increase in

body temperature is a systemic response to infection or

inflammation and it is known to be mediated by endogenous

pyrogens, including TNFa and IL-6 [40]. Interestingly, it has also

been reported that TNFa-induced pyrexia in mice was largely

mediated by IL-6 production [41]. Our study shows that TNFa-

induced pyrexia was inhibited when PLD1 was knocked down.

We have also shown that PLD1 is necessary for TNFa-induced

IL-6 production in vivo. The production of proinflammatory

cytokines are one of the characteristic features of inflammation.

Our study shows that PLD1 is essential in a TNFa-induced

increase in the levels of proinflammatory cytokines/chemokines,

which are important in the amplification of the inflammatory

process. Thus, the knockdown of PLD1 in vivo prevented the

TNFa-triggered increase in IL-6, MIP-1a and MIP-1b, both

localized and systemic. IL-6, apart from modulating homeostatic

functions like proliferation, differentiation, survival and apoptosis,

also plays a major role in the amplification of inflammatory

responses [42,43]. Increased or abnormal IL-6 levels are

associated with a plethora of inflammatory conditions, such as

inflammatory bowel disease, asthma, multiple myeloma, rheu-

matoid arthritis and other autoimmune diseases [44–49]. MIP-1a
and MIP-1b produced in response to inflammatory stimuli also

contribute to the inflammatory process by inducing responses

such as chemotaxis, degranulation, phagocytosis and eicosanoid

generation [50]. Dysregulation of MIP-1 has been associated with

inflammatory disorders including arthritis [50,51]. Thus, block-

ade of PLD1 may have the potential for reducing the IL-6 and

MIP1a/b adverse effects in inflammatory conditions.

The peritoneal Arthus reaction is characterized by acute

inflammation that involves the migration of PMN, vascular

leakage, and cytokine production in the peritoneal cavity. We

report here that the TNFa i.p. administration triggered an

inflammatory response that was inhibited in mice where PLD1

had been knocked down. We observed that the TNFa i.p.

injection triggered a fast recruitment of neutrophils, later followed

by monocytes, into the peritoneal cavity. Vascular permeability

was also observed: when we i.v. injected Evans blue prior to TNFa
i.p. injection, we could observe a continued influx of the dye into

the peritoneum. However, in mice pretreated with the siRNA-

PLD1, there was a significant reduction in the TNFa-triggered

neutrophil and monocyte infiltration, as well as a marked

reduction in the Evans blue influx. We also show here that the

i.p. administration of TNFa caused an increase in CAMs and

cytokine/chemokine levels in the peritoneal cavity, and that this

increase was substantially inhibited in mice pretreated with the

siRNA-PLD1.

It is well-established that phagocytic cell infiltration and

proinflammatory cytokine production are universal components

of a wide range of inflammatory conditions and diseases, such as

nephritis [52], arthritis [53], and acute graft rejection [54]. Thus,

agents that can inhibit phagocyte infiltration and/or the

production of cytokines and chemokines may have wide

therapeutic applications in the prevention and treatment of

inflammatory diseases. The present study indicates that genetic

silencing of PLD1, leading to the knockdown of PLD1 expression,

very effectively blocked the cytokine/chemokine production,

vascular permeability and leukocyte recruitment triggered by

TNFa in vivo. Interestingly, at the cellular level, it has been

reported that upregulation in the expression of ICAM-1, VCAM-

1, IL-6 and MIP1a/b is mediated by ERK1/2 and NFkB

activities [reviewed in ref. 4]. This is in agreement with our earlier

finding that TNFa-triggered ERK1/2 and NFkB activities and

proinflammatory cytokine/chemokine production are downstream

of PLD1 activation [10].

Taken together, these observations suggest a potential role for

PLD1 in the TNFa-triggered proinflammatory responses in vivo.

However, it is possible that the knockdown of PLD1 has an effect

not only on the TNFa-mediated signaling, but also on other

receptors that may be stimulated as secondary events, following

TNFa-triggered responses.

The results presented here are relative to changes in mice

during i.p. injection of TNFa, compared to mice that have been

injected with saline alone. Whether the observed changes in the

inflammatory responses triggered by TNFa, under these experi-

mental conditions, are representative of a pathological state, is not

currently known. However, these observations regarding the

molecular basis of the inflammatory response are likely to improve

our knowledge of the mechanisms, by which TNFa may

contribute to the overall activation of the immune response.

Thus, blockade of PLD1 has potential clinical implications for

improving not only acute inflammatory conditions, but also other

inflammatory diseases where TNFa plays a role.
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