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Abstract

Adult human heart mitochondrial DNA (mtDNA) has recently been shown to have a complex organization with abundant
dimeric molecules, branched structures and four-way junctions. In order to understand the physiological significance of the
heart-specific mtDNA maintenance mode and to find conditions that modify human heart mtDNA structure and replication,
we analyzed healthy human heart of various ages as well as several different heart diseases, including ischemic heart
disease, dilated as well as hypertrophic cardiomyopathies, and several mitochondrial disorders. By using one- and two-
dimensional agarose gel electrophoresis, various enzymatic treatments and quantitative PCR we found that in human
newborns heart mtDNA has a simple organization, lacking junctional forms and dimers. The adult-type branched forms are
acquired in the early childhood, correlating with an increase in mtDNA copy number. Mitochondrial disorders involving
either mutations in the mtDNA polymerase c (PolGa) or mtDNA helicase Twinkle, while having no obvious cardiac
manifestation, show distinct mtDNA maintenance phenotypes, which are not seen in various types of diseased heart or in
mitochondrial disorders caused by point mutations or large-scale deletions of mtDNA. The findings suggest a link between
cardiac muscle development, mtDNA copy number, replication mode and topological organization. Additionally, we show
that Twinkle might have a direct role in the maintenance of four-way junctions in human heart mtDNA.
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Introduction

The heart is the most energy demanding tissue in the human

body consuming 0.1 ml O2/g per minute – an amount that is only

surpassed by insect flight muscles [1]. Heart has also an impressive

reserve capacity; human cardiac muscle oxygen consumption can

rise four-fold without any effect on the steady-state ATP levels.

There is also no accumulation of oxygen debt, as seen in skeletal

muscles under prolonged exercise. The continuous circulatory

pumping of blood by the heart as well as the maintenance of ion

homeostasis in cardiomyocytes is dependent on healthy mitochon-

drial function [2]. The importance of oxidative metabolism is

highlighted by the high mitochondrial content of heart muscle cells,

where up to 40% of the cellular volume can consist of mitochondria.

The high energy requirements of heart manifest also in a high

mtDNA content. The few studies including adult human cardiac

muscle propose a mean copy number of 69706920 to 923565457

mtDNA per cell, with individual numbers ranging from 4 000 to

up to 34 000 [3,4]. For comparison, skeletal muscle cells,

depending on the muscle, have copy numbers ranging from

1000 to 4000 mtDNA molecules per cell.

The human 16,569 bp mitochondrial genome is typically seen

in cells as monomeric, double-stranded, covalently closed circles.

However, according to our recent findings, a major fraction of

human heart mtDNA exist as dimers and is organized in highly

complex, branched molecules, containing sometimes dozens of

genome equivalents [5]. These structures contain three- and four-

way DNA junctions, indicating active replication and recombina-

tion, somewhat resembling DNA replication in T-even phages [6],

malarial mtDNA [7] as well as some plant and yeast mitochondria

[8,9]. Also the human brain has a subpopulation of molecules

having similar features, while other tissues and cultured cells

replicate their mtDNA using a standard theta-mechanism but

incorporating extensive stretches of ribonucleotides on the lagging-

strand [10,11].

For unknown reasons, the recombining-replicating forms of

mtDNA seem at present to be a feature specific to human heart

and they have not been found in mice, rats, rabbits or pigs [5].

Despite the fact that neither the mitochondrial DNA binding

protein TFAM nor Twinkle can promote recombination in

cultured mammalian cells [12,13], the overexpression of either

TFAM or the mtDNA helicase Twinkle in transgenic mouse
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hearts induces an increase in complex DNA forms and

recombination junctions, indicating that recombination

mediating mechanisms occur also in other mammals under

specific conditions [5]. Interestingly, the TFAM overexpressing

mice are protected against the adverse effects of ischemia

suggesting that mtDNA could play a role in cardiac remodeling

[14].

To further characterize conditions that modify of the complex

human heart mtDNA organization, we have analyzed the effect of

age and the consequences of different cardiac diseases on heart

mtDNA maintenance in human heart. While we did not observe

any qualitative changes in the organization or replication of

mtDNA in classified heart diseases, we discovered that cardiomy-

ocytes of human newborns have a simple mtDNA organization,

with relatively little recombination intermediates and dimeric

molecules. The adult-type maintenance mode is acquired in the

first years of life, correlating with a drastic increase in mtDNA

copy number.

A dominant negative Twinkle mutation (aa 352–364 duplica-

tion), associated with a late-onset myopathy, completely abolished

the adult-type mtDNA recombination phenotype and organiza-

tion, including dimeric molecules without any effect on mtDNA

copy number. In contrast, a mutation in the catalytic subumit of

DNA polymerase c (PolGa;p.-G848S/p-S1104C) mutation influ-

enced only the maintenance of dimeric mitochondrial genomes in

adult human heart. These results suggest that Twinkle is directly

involved in the maintenance of mtDNA recombination in adult

human heart.

Results

In order to detect aging related changes in mtDNA replication

intermediates (mtRIs) we analyzed 24 healthy left ventricular heart

samples from individuals aged 0–83 years by using the two-

dimensional agarose gel electrophoresis (2D-AGE) methodology

(Table 1). We also compared the heart mtRI patterns from

individuals with a fatal heart disease or with various mitochondrial

disorders, to the mtRI patterns of age-matched healthy hearts

(Table 2). We screened only for clear-cut effects, such changes in

the replication mode or drastic reduction in the relative quantities

of molecules with four-way junctions.

Lack of junctional mtDNA forms in newborn human
heart

When analyzing the age dependency of junctional mtDNA

forms in healthy humans, we noticed that notably less mtRIs

existed in newborns and that four-way junctional mtDNA

molecules – a feature typical to adult heart – were undetectable

(Figure 1). Instead, some high-molecular weight forms, resembling

a modified slow-moving Y-arc, could be seen (Figure 1B: m).

These arcs were similar to the ones seen in tissues having

ribonucleotide-incorporating replication intermediates [5]. The

mtDNA replication pattern of a case with a fatal, neonatal

mitochondrial disease with biventricular hypertrophic cardiomy-

opathy due to a pathogenic homoplasmic m.1624C.T MT-TV

(see [15] for detailed description), was comparable with the age-

matched controls (Figure 1B). Further analysis of mtRIs from

young children of various ages showed a gradual shift to the adult-

type mtDNA pattern (Figure 2). The four-way junctional forms

seemed to increase already in the first years of life, being

comparable with those of adults before the age of ten. Notably,

unlike in adult human hearts, in 2D-AGE of PvuII digested heart

mtDNA of newborns, a faint bubble arc can be seen (Figure 2B:

bu) indicating that at least some molecules are replicating via the

theta-replication mode typical for cultured cells and most

mammalian tissues [5]. It should be noted that also in normal

mouse heart mtRIs patterns are weak and theta type replication

bubbles can be best detected using single-cut 2D-AGE conditions

[5].

Twinkle mutation modifies the mtDNA replication mode
in adult human heart

In contrast to the clear-cut differences observed in young

children compared to the adult mtDNA, we were unable to detect

any changes in the mtDNA replication or organization in diseased

hearts, including cases with acute ischemic myocardial infarction

without previous heart disease manifestation, old myocardial

infarction with a long history of ischemic heart disease, as well as

with cases with dilating and hypertrophic cardiomyopathy,

ischemic cardiomyopathy and various mitochondrial disorders

(Figure 3). Besides investigating patients with cardiac manifesta-

tions due to specific mtDNA point mutations, our series of

mitochondrial disorders also included three patients with Twinkle

dup352–364 mutation resulting in autosomal dominant progres-

sive external ophtalmoplegia (adPEO) [16,17], a patient with an

Table 1. Details of the left ventricular heart muscle samples
from healthy controls used in this study.

Age Sex Cause of death
Additional
disease Notes

Controls 1 day M Transposition of the
great arteries (TGA)

No

1 day F Intrauterine hypoxia No

1 day M Primary pulmonary
hypertension

No

5 mo M Meningitis No

2 M Accidental poisoning No

3 M Gastroenteritis No

8 F Gastroenteritis No

9 F Grand mal status
epilepticus

Congenital
brain trauma

12 M Traffic accident No

12 F Pneumonia No

16 M Opportunistic mycosis
caused by medication

No

17 F Traffic accident No

18 M Traffic accident No

19 M Suicidal poisoning No

22 M Suicide by rifle No

23 M Suicide by shotgun No

31 F Suicide by motor vehicle No

40 M Suicidal poisoning No

52 M Traffic accident No

53 M Suicide by handgun No

55 M Accidental suffocation No

71 M Drowning No

78 F Suicide by strangulation No

83 F Suicide by strangulation No

Age, sex, cause of death and disease status specified. M = Male, F = Female.
doi:10.1371/journal.pone.0010426.t001

Human Heart mtDNA Maintenance
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extrapyramidal syndrome resulting from a compound heterozy-

gous mutations affecting the a-subunit of the mtDNA polymerase,

PolG (p.-G848S/p-S1104C, see [18]) and a patient carrying a

3978 bp single, large-scale mtDNA deletion (11657:15636),

flanked by a 12 bp direct repeat, who presented with Kearns-

Sayre syndrome (KSS). Of these patients, only the Twinkle

dup352–364 cases showed a phenotype on 2D-AGE (Figure 4). In

these samples almost complete abolishment of the recombination

intermediates was seen (Figure 4B:ii), while the replication bubbles

typical for theta-replication were retained (Figure 4B:iv). As

mentioned earlier, unlike humans, mouse heart mtDNA does not

have abundant recombination intermediates and mtRIs are

seemingly similar as in other tissues [5] (Figure 4D). Whereas

overexpression of wild-type Twinkle promote recombination of

mouse heart mtDNA, mice carrying the Twinkle dup352–364

mutation show a strong mtDNA replication stalling phenotype,

similar to the one observed in cultured cells expressing the same

mutation [19]. The expression level of the transgene in these mice

is comparable to – or even lower than would be expected in

human heterozygous condition [20].

Changes in heart mtDNA replication and organization
correlate with copy number and with mutations affecting
Twinkle or PolGa

When analyzing the topological organization of mtDNA, we

noticed that the high molecular weight (HMW) forms and dimeric

mtDNA molecules seen in adult human heart were undetectable in

infants, but gradually increase together with the appearance of the

recombination junctions (Figure 5A). In the adPEO patients with

Twinkle mutation, almost all complex mtDNA forms were

missing, including dimeric molecules (Figure 5B). The patient

with PolG mutations seem to retain most junctional forms but has

a drastic reduction in all dimeric mtDNA forms.

Overall, in the analyzed adult heart muscle samples there is

some individual variation in the quantities of the different mtDNA

Table 2. Details of the left ventricular heart muscle samples of individuals with a fatal diagnosed heart disease or a mitochondrial
disorder.

Age Sex Cause of death Additional disease Notes

Myocardial infarction 46 M Acute infarct Ischemic cardiomyopathy

50 F Acute infarct Ischemic cardiomyopathy

58 M Old infarct Coronary heart disease

64 M Old infarct Coronary heart disease

65 M Old infarct Coronary heart disease

73 F Acute infarct Ischemic cardiomyopathy

83 F By-pass surgery complication Coronary heart disease

84 M Acute infarct Coronary heart disease

Cardiomyopathies 24 F DCM No

35 F HCM No Ealier cardiac arrest, successful resuscitation

44 M HCM Coronary heart disease

48 M HCM No

55 M Unspecified cardiomyopathy No

59 M Unspecified cardiomyopathy No

76 M DCM No

81 M Ischemic cardiomyopathy Coronary heart disease

84 M DCM, Mitral stenosis No

Mitochondrial 1 day F Lactic acidosis, cardiac failure Fatal neonatal
mitochondrial disease

homoplasmic m.1624C.T MT-TV mutation, [15]

34 F Cardiac arrest following seizure MELAS m.3243A.G MT-TL1 mutation, unpublished

41 F Pneumonia KSS 4.0 kb single, large-scale mtDNA deletion,
unpublished

50 M Cardiomyopathy Hearing loss, myopathy,
heart failure

m.7472Cins + m.7472A.C MT-TS1 mutation, [35]

52 F Pneumonia MELAS m.3243A.G MT-TL1 mutation, unpublished

55 M myocardial infarction Myopathy/ataxia m.14709T.C MT-TE mutation, [36]

59 F Pneumonia MELAS m.3243A.G MT-TL1 mutation, unpublished

59 M Aspiration pneumonia Parkinsonism,
extrapyramidal syndrome

multiple mtDNA deletions - compound POLG
mutations, [18]

60 M Respiratory insufficiency adPEO Twinkle dup352–364 [16]

60 F Respiratory insufficiency adPEO Twinkle dup352–364 [16]

73 F Suicide adPEO Twinkle dup352–364 [16]

DCM = Dilating cardiomyopathy, HCM = Hypertrophic cardiomyopathy.
doi:10.1371/journal.pone.0010426.t002

Human Heart mtDNA Maintenance

PLoS ONE | www.plosone.org 3 May 2010 | Volume 5 | Issue 5 | e10426



Figure 1. Specific change in human heart mtDNA replication and recombination in early childhood. (A) A diagram of human mtDNA
showing the analyzed DraI ND5 probed fragment (nt 12,271-16,010, probe location denoted with *) and resulting molecular forms of the fragment
after digest. Simple, dsDNA replication fork migrate on the Y-arc (y), four-way junctional molecules on the X-arc (X). (B) 2D-AGE of the DraI ND5
fragment from a one-day old newborn, five-month old, three-years old, eight-years old human heart mtDNA and a one-day old neonate with
mitochondrial disease due to a homoplasmic m.1624C.T mutation. Notice the accumulation of X-arc signal and an overall increase in replication
intermediates with aging. Degraded slow-moving Y-arc structures (m), indicators of ribonucleotide-incorporating replication, can be seen on some of
the samples (see also [5].).
doi:10.1371/journal.pone.0010426.g001

Figure 2. Theta-type mtRIs in infant heart. (A) A diagram of human mtDNA showing the probe location (*), the PvuII cut site (nt 2565) and the
resulting molecular forms after digest. In the case of unidirectional theta-replication originating from the OH, the molecules containing replication
bubbles form almost complete bubble-arc (bu) on the 2D-AGE. Y- or Y-like arc likely results from initiation outside OH but can in the case of human
heart mtDNA also contain more diverse forms of mtRIs (see [5] for further explanation). (B) Single-cut PvuII 2D-AGE analysis of the samples in Figure 1.
Faint bubble-arcs seen at younger age are gradually replaced by X- and Y-forms of much stronger intensity. Heart mtRIs from children aged 8–10
years show no difference to the adult mtRI forms.
doi:10.1371/journal.pone.0010426.g002
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forms, but this does not seem to be connected to the pathology or

age. Curiously, in the case of the KSS patient with the ,4.0 kb

common deletion, deleted molecules cannot be detected without

digesting the mtDNA with a restriction enzyme (Figure S1),

indicating that the majority of the deletions in heart is probably

associated with larger molecules.

To see whether the increase in the complexity of mtDNA

organization from newborns to adults also manifests as an increase

in mtDNA copy number, a Real-Time quantitative PCR (qPCR)

assay was performed (Figure 6). As expected, newborn babies seem

to have almost five-fold lower heart mtDNA copy numbers than

adults and the copy number steadily increased concomitantly with

the changes in mtDNA organization and replication. Interestingly

neither Twinkle nor the compound PolG mutations seemed to

deplete mtDNA in heart. As Miller et al. [3], we did not observe

any age dependency in human heart mtDNA copy number in

adults.

Discussion

Relationship of heart mtDNA replication, organization
and copy number

We report here that newborn human heart mtDNA has a

relatively simple organization, lacking dimeric molecules and

abundant recombination intermediates and bearing resemblance

to the mtDNA of mouse heart or human skeletal muscle [5]. The

adult type organization develops gradually in infancy with a

concomitant rise in the mtDNA copy number. It is reasonable that

these changes are related to the switching from fetal heart program

to meet the metabolic requirements of adult heart.

As the highly complex branched forms of adult heart mtDNA

harbor multiple copies of the genome it is likely that they also

represent the nucleoid organization inside the mitochondria,

where several copies may provide more chances for molecules to

recombine. The idea of mtDNA density-induced recombination is

further supported by the appearance of high molecular weight

mtDNA forms and recombination intermediates in tissues with

increased copy number in mice overexpressing Twinkle or TFAM.

[5]. A similar phenomenon is seen in phage T4, where complex

molecular networks are formed only when there are many

genomes present in the same cell [6].

The role of Twinkle and PolGa in heart mtDNA
maintenance

We have earlier shown that the overexpression of wild-type

Twinkle in mouse heart promotes recombination junction

formation together with an increase in mtDNA copy number [5]

(Figure 4D), whereas the Twinkle dup352–364 mutation has been

shown to impair helicase activity, resulting in a strong replication

stalling phenotype in cultured cells as well as in mice [19]. In

cultured cells overexpression of the mutated helicase leads to rapid

mtDNA copy number depletion, however in the heterozygous

stage mice and humans typically do not show any mtDNA

depletion, but accumulation of deleted mtDNA molecules in

various tissues [16,20]. The data presented here further suggests

that the mutation does not have as severe deleterious effects on

mtDNA replication as it has on recombination - resulting in almost

complete abolishment of the otherwise abundant heart mtDNA

recombination intermediates.

Mice carrying the Twinkle dup352–364 mutation did not show

any cardiac phenotype [20]. However in some, but not all the

Twinkle dup352–364 patients of the same family, asymptomatic,

left cardioventricular hypertrophy, sinus bradycardia and ischemic

changes were detected [16]. It is unclear if the heart phenotype of

Figure 3. No qualitative change mtDNA replication and recombination intermediates in diseased human hearts. All analyzed samples
retained the typical strong X-arc (X) and showed no evidence of ribonucleotide-incorporating replication intermediates. (A) A diagram of human
mtDNA showing the analyzed DraI ND5 probed fragment as earlier, followed by 2D-AGE panels of this representing (B) a male 46 years, acute
ischemia, (C) male 84 years, chronic ischemia, (D) male 46, hypertrophic cardiomyopathy, (E) female 24, dilating cardiomyopathy, (F) mitochondrial
cardiomyopathy, m.14709 T.C mutation, (G) mitochondrial cardiomyopathy (m.7472Cins + m.7472A.C), (H) m.3243A.G MELAS, (I) PolG (p.G848S/
p. S1104C) mutation, (J) KSS (,4.0 kb single mtDNA deletion, see also Figure S1), (K) a healthy control male, 19 years and (L) a healthy control female,
83 years.
doi:10.1371/journal.pone.0010426.g003
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the patients is related to the Twinkle mutation. Obviously also the

wild-type mice and adolescent humans can thrive without adult

human-type mtDNA maintenance mode, meaning that the

benefits of such a mode must be restricted to only very special

physiological context.

Based on the data from various other genetic systems, one

would expect replication stalling to result in an increase in double-

strand breaks, which in turn are mostly repaired by recombination

[21,22]. If Twinkle’s effect on recombination junction formation is

as direct as the data suggest, the observed deleted mtDNA

molecules in adPEO patients could equally be an end result of

compromised recombination machinery instead of abortive

replication [23]. A strong indication for such a repair system

comes from the fact that the saturation of mitochondrial DSB

repair machinery by a mitochondrially targeted endonuclease

results in deleted mtDNA molecules that – unlike mtDNA

deletions in healthy heart – do not have homology in the break-

points, indicating that they are generated by non-homologous end

joining [24].

In the adPEO patients the relationship between mtDNA copy

number and structural maintenance is not as straight-forward as

could be inferred from the data from the developmental changes

in childhood. Twinkle seems to be required for the maintenance of

the four-way junctions and complex mtDNA forms in adult heart,

but it seems that this function is separate from the copy number

control in this tissue. However, as we are only observing an end

result in the adult patient hearts it is difficult to address whether

some adaptive mechanisms have been involved.

Otherwise, the importance of Twinkle in mtDNA recombina-

tion is not surprising, as the maintenance of recombination

intermediates requires a helicase [25], albeit generally different

from replicative helicases. However, as many mitochondrial

proteins have functional redundancy and no mammalian mito-

chondrial recombinases are known to-date it might well be that in

certain cellular conditions Twinkle could carry out more functions

than expected. It should be noted that via homology to T7 DNA-

helicase Twinkle is included in the family of DnaB-helicase family

and thus in turn related to the RecA family of recombinases

[17,26].

In the PolG (p. G848S/p.S1104C) mutant patient heart the

mtDNA copy number is not dramatically affected in the heart of

the patient and X-forms are present on the 2D-AGE panel

(Figure 3I), however the dimeric linear 33 kb molecules as well as

HMW mtDNA forms are almost completely absent (Figure 5).

Most of the HMWs that can be resolved in regular agarose gel

electrophoresis consist of dimeric circles [5] and the reduction in

the HMW signal is mostly due to the absence of most dimeric

forms. The p.G848S mutation is located in the catalytic domain of

Figure 4. Theta-type mtDNA replication in heart muscle of adult adPEO patients with Twinkle dup352–364 mutation. (A) Human
mtDNA showing the DraI and PvuII cut sites and probe locations. (B) Comparable exposures of 2D-AGE analysis of DraI ND5 fragment (i–ii) and PvuII
(iii–iv) cut heart mtDNA from an age matched healthy control (i, iii) and adPEO patient (ii, iv). As a striking difference to the control samples, an almost
complete absence of recombination intermediates (X) and a strong bubble arc (bu) in the adPEO heart muscle can be seen. (C) Mouse mtDNA
showing MluI cut site (nt 1771) that is comparable to the human mtDNA PvuII cut site location. (D) 2D-AGE of a MluI cut heart mtDNA from a control
mouse, Twinkle overexpressor (oe) mouse and a mouse expressing the human Twinkle dup342-364 mutation. Whereas wild-type Twinkle enhances
recombination junction formation, dup342-364 results in strong replication stalling phenotype in mouse heart. Unlike in mice, the overall intensity in
the mtRIs of human adPEO patient heart is rather lower when compared to the age matched control hearts.
doi:10.1371/journal.pone.0010426.g004
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the protein and severely impairs the enzyme’s polymerase activity

in vitro [27]. As the Twinkle patients also showed complete absence

of dimeric mtDNA molecules, this could indicate that they are

primarily generated via recombination but later maintained by

replication. As in mouse mitochondria the dimeric circular

molecules take up to three times longer to replicate than

monomers [28], the dimeric and larger genomes might simply

be selected out when the mtDNA synthesis rate is reduced.

The p.G848S mutation in compound heterozygosity has been

reported in patients with Progressive External Ophtalmoplegia

(PEO) and Alpers-Huttenlocher syndrome with mtDNA depletion

[29–31]. Similar to our case, the p.G848S mutation in compound

with a heterozygous p.T251I mutation has been found in a family

with autosomal recessive PEO and multiple mtDNA deletions in

muscle [29]. It is not clear how the same mutation can be

associated with either multiple deletions or depletion of mtDNA,

but variability of clinical and molecular phenotypes seem to be

common in PolG disease mutations [32].

The results from both the Twinkle and PolG patients provide

some insight into the tissue specific features of many mitochondrial

disorders. Overall speed of mtDNA replication synthesis, turnover,

mtDNA organization and the existence of backup mechanisms,

such as active recombination, could be limiting for many disease

mutations of mtDNA maintenance proteins that do not show any

phenotype in cultured cells or in vitro [19,33]. These variables have

been largely neglected when mitochondrial diseases have been

studied. Simple Southern analysis of different topological forms of

mtDNA could prove to be highly informative when characterizing

Figure 5. Human heart mtDNA topology changes in early childhood and in mitochondrial disorders involving mutations in Twinkle
and PolG. The basis of the assignment of the different molecular forms is presented in [5]. (A) Newborns and young children have mainly
monomeric open circular (1n oc), monomeric linear (16.6 kb) and monomeric supercoiled (1n sc) mtDNA molecules. Dimeric molecules, such as
dimeric linears (33 kb) and complex mtDNA forms increase in early childhood. The quantities of different forms vary in adults and do not seem to
depend on age or pathological status (data not shown). However, in an adult adPEO cases having Twinkle dup342-354 or with PolG (p.G848S/p.
S1104C) compound mutation (PolG) the newborn-type mtDNA organization, including the monomeric supercoils are retained (B). T7 endonuclease I
(T7 endoI) cleaves specifically branched DNA structures. Digestion of the heart DNA from the PolG patient shows that majority of the mtDNA
molecules also in the branched structures are monomeric and there are around 14-fold less dimeric molecules than in the age matched control heart
(male 44 years). In control heart, dimeric circular (2n oc) mtDNA molecules among the high molecular weight forms persist after T7 endoI, wheras
they are not present in Twinkle adPEO patients and greatly decreased in the patient with mutant PolG. The other HMW forms being resistant to T7
endoI are catenanes (cat). As a comparison, in human skeletal muscle (ilio-psoas) there are very few T7 endo I sensitive molecules, showing that
complex branched mtDNA forms are still present in the PolG mutant patient heart (See also Ref #5 for the assignment of the different molecular
forms of human heart mtDNA). (C) Phosphoimager quantification of different mtDNA forms in cardiac muscle from one-day old newborns, young
children (2–8 years) and adults. Statistically significant differences in high molecular weight (MW) forms, dimeric and monomeric molecules were
detected (p-values; Students t-test). It should be noted that linear molecules are likely to arise due to artefactual breakage of mtDNA and can vary in
post mortem samples depending on sample preservation.
doi:10.1371/journal.pone.0010426.g005
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the phenotype of mitochondrial disorders. More studies on the

intrinsic and extrinsic factors affecting mtDNA replication and

topology, especially in mouse models, will contribute to the

understanding of the disease mechanisms and the healthy

maintenance of mtDNA organization.

Materials and Methods

Autopsy series
The series comprises of left ventricular cardiac muscle samples

from 24 autopsy cases (ages 0–83 years, Table 1) without any

diagnosed heart disease, 17 cases with various heart diseases

diagnosed at autopsy and 14 cases with a mitochondrial disease

(Table 2). The samples originating from the Newcastle University

were obtained with Institutional Ethical Approval and with a

written consent of the family. The consent was given after the

death and prior to the autopsy of the patient (within 4 hours of

death). The samples from the University of Helsinki were collected

with Institutional Ethical Approval and with verbal consent of

next-to-kin. The consent was given after the death and prior to the

autopsy of the patient (within 2–48 hours of death). The consent is

documented in the medical records of the deceased. Verbal

consent was the standard procedure at the time, acknowledged by

the Institutional Ethical committee and following the national

legislation. Most of the samples come from cases that have been

previously published (see references in the Table 2). The rest of the

myocardial samples were taken as part of the Tampere Coronary

Study, approved by the Ethics Committee of Tampere University

Hospital (DNO 1239/32/200/01) and the Finnish National

Authority for Medico-legal Affairs.

Transgenic animals
Twinkle overexpressor mice were as described in [5] and the

mice expressing Twinkle dup352–364 as in [20].

DNA extraction
Total DNA from frozen autopsy samples was extracted using

proteinase K digestion followed by phenol chloroform extractions

and ethanol precipitation [34].

Enzymatic treatments and agarose gel electrophoresis
1D and 2D-AGE were performed as previously described

[5,17,18]. Restriction digestions and other enzyme treatments

were performed following manufacturers’ recommendations [5].

For a better resolution of dimeric linear molecules on 1D-AGE,

gels presented in figure 5 were 0.5% in contrast to 0.28–0.4% used

in Pohjoismäki et al. [5].

Southern blotting, radiolabelled probes and blot
hybridization

Southern blotting and radioactive detection of DNA was

performed as previously [5,12,34].

Supporting Information

Text S1 Supplementary materials and methods.

Found at: doi:10.1371/journal.pone.0010426.s001 (0.03 MB

DOC)

Figure S1 MtDNA molecules having large scale deletion are

not detected in topology gels in the case of KSS heart sample.

(A) A diagram showing AccI and EcoRI cut sites on human

mtDNA. EcoRI cuts human mtDNA at locations 4121, 5274

and 12640. The 11657:15636 deletion diminishes EcoRI cut

site at nt 12,640, giving rise to a 11.4 kb restriction fragment

instead of a 8 kb one when probed with the OH probe. In

order to estimate mtDNA copy number in the KSS case, the

signal from the full length and deleted OH fragment was

quantified against 18S nDNA signal using phophoimager. The

result was matched against two age-matched controls whose

mtDNA copy number was also measured by qPCR for absolute

values (mtDNA copies per single-copy nuclear gene, APP). (B)

The uncut 12 kb deletion cannot be detected with the same

probe, even after disassembling the high-molecular weight

mtDNA structures using topoisomerase IV (TIV) and T7

endonuclease I (T7). However, large amounts of heterogeneous

molecules are released (seen as smear), suggesting that the

deleted molecules are possibly associated with larger rear-

rangements. (C) 2D-AGE of the 4.8 kb AccI fragment outside

of the KSS deletion shows no difference to the age-matched

control sample.

Found at: doi:10.1371/journal.pone.0010426.s002 (0.26 MB

PDF)

Figure 6. Increase in human heart mtDNA copy number during
childhood correlates with the changes in molecular organiza-
tion. (A) Five-fold increase in mtDNA copy number from newborns to
teen-age. As with the mtDNA organization, individual variation can be
seen in adults. Standard deviation represents three independent
measurements of the same samples. (B) No significant difference in
mtDNA copy number of PolG compound mutant patient heart,
indicating that existence of dimeric mtDNA molecules is independent
of copy number and quantity of branched mtDNA structures. With the
exception of KSS, the mtDNA copy numbers were determined by qPCR
against a single copy nuclear gene (APP). Because of the location of the
cytb amplicon in the deleted region, copy number of the KSS was
determined by Southern hybridization and absolute numbers were
estimated by comparison with two control samples that were
quantified also by qPCR (Figure S1, Text S1).
doi:10.1371/journal.pone.0010426.g006
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11. Pohjoismäki JL, Holmes JB, Wood SR, Yang MY, Yasukawa T, et al. (2010)

Mammalian Mitochondrial DNA Replication Intermediates Are Essentially
Duplex but Contain Extensive Tracts of RNA/DNA Hybrid, J Mol Biol;

doi:10.1016/j.jmb.2010.02.029.
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