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Abstract

We developed an enhanced green-emitting luciferase (ELuc) to be used as a bioluminescence imaging (BLI) probe. ELuc
exhibits a light signal in mammalian cells that is over 10-fold stronger than that of the firefly luciferase (FLuc), which is the
most widely used luciferase reporter gene. We showed that ELuc produces a strong light signal in primary cells and tissues
and that it enables the visualization of gene expression with high temporal resolution at the single-cell level. Moreover, we
successfully imaged the nucleocytoplasmic shuttling of importin a by fusing ELuc at the intracellular level. These results
demonstrate that the use of ELuc allows a BLI spatiotemporal resolution far greater than that provided by FLuc.
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Introduction

Bioluminescence reporters are widely used in various aspects of

biological functions, such as gene expression, post-translational

modification, and protein-protein interaction in vitro and in vivo

[1,2]. Recent advances in luciferase technology permit the

quantitative visualization of gene expression at single-cell resolu-

tion by imaging its luminescence in real-time using a highly

sensitive charged-coupled device (CCD) camera [3,4]. Although

fluorescence imaging techniques that use fluorescent proteins (e.g.,

green fluorescent protein (GFP) and its derivatives) as probes have

greatly contributed to the advancement of cell biology studies, BLI

is emerging as a new and sensitive approach for understanding cell

physiology.

Luciferase (i.e., enzyme) emits light by oxidizing luciferin (i.e.,

substrate) in a specific manner. Among the possible luciferase/

luciferin combinations, the beetle luciferase and D-luciferin

(benzothiazole) pair is the best probe for long-term and non-

invasive reporting of cellular events, as the luminescence generated

by their reaction is highly quantitative and has an extremely low

background, and luciferin is highly stable and permeates easily

into cells or tissues. In addition, external light illumination, which

in fluorescence-based methods causes phototoxic damage to cells

and bleaches the probes by repetitive illumination, is not required

for the luminescence reaction; thus, the characteristic properties of

the beetle luciferase/luciferin enable longitudinal and quantitative

BLI. However, the light output of the luciferases currently

available, which include FLuc from living cells, is insufficient for

analyses at higher temporal and/or spatial resolution. In

particular, BLI at the subcellular level is difficult because of the

insufficient light output of available probes. A brighter luminescent

probe is therefore required to improve the sensitivity and

resolution of BLI at single-cell and intracellular resolution. To

overcome the technical limitations of luciferase technology in BLI,

we have developed an enhanced beetle luciferase from the

previously cloned Brazilian click beetle Pyrearinus termitilluminans

luciferase, which emits green light (lmax = 538 nm) with D-

luciferin, and whose emission color is pH-insensitive [5], by

optimizing its cDNA sequence for mammalian expression.

Results and Discussion

Improvement of P. termitilluminans green-emitting
luciferase for mammalian expression

Pyrearinus termitilluminans luciferase displays the most blue-shifted

spectrum among the beetle luciferases [5]. Recently the purified

enzyme has been shown to display high catalytic properties and

thermostability in vitro among the pH-insensitive luciferases,

producing to bright signals [6]. To improve the expression of P.

termitilluminans luciferase in mammalian cells, we optimized codons

of its cDNA sequence for mammalian expression and deleted

putative transcription factor binding sites within the cDNA,

without changing the deduced amino acid sequence (Figure S1).

We refer to this luciferase as ELuc. We first compared the
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expression levels and bioluminescence intensities of the wild-type

luciferase and the sequence-optimized luciferase, ELuc, in mouse

fibroblast NIH3T3 cells (Figure S2A and B). The transient

expression of ELuc in these cells under the control of the

cytomegalovirus (CMV) promoter led to a dramatic increase in

both the expression at the protein level and in the intensity of the

bioluminescent signal (260-fold) in cell extracts when compared

with those observed for wild-type luciferase. ELuc exhibits a

bioluminescence spectrum in cell extracts with a peak at 538 nm

that is identical to the wild-type form [5].

Comparison of light output from FLuc and ELuc using a
photomultiplier recording of clock gene expression in
fibroblasts

Next, we compared the light output of ELuc with that of FLuc

from Photinus pyralis (luc(+), Promega) in live cells. Both luciferases

were fused with the PEST element of mouse ornithine decarbox-

ylase and were expressed in NIH3T3 cells under the control of the

mouse clock gene (mPer2) promoter using the same vector

backbone. The bioluminescence of these molecules after stimula-

tion with dexamethasone was recorded in real-time for 96 h in the

presence of D-luciferin using a luminometer. Interestingly,

although both luciferases monitored the circadian oscillation of

mPer2 with a slight delay in phase, ELuc produced a biolumines-

cent signal that was 14-fold higher than that of FLuc (Figure 1A).

It is assumed that differences in the light output from cells may

have been caused by differences in the level of expression and/or

stability of the luciferases in these cells. The protein expression

level of ELuc was 3-fold higher than that of FLuc, and the

functional half-life of ELuc (t1/2 = 4 h) in NIH3T3 cells was

significantly longer than that of FLuc (t1/2#1 h) (Figure 1B and

C), indicating that ELuc is highly expressed and moderately stable

in the cells compared with FLuc.

Measurement of the FLuc and ELuc spectra in viable cells
It has been reported that the emission spectrum of FLuc is

influenced by reaction conditions, which include pH and

temperature, with concomitant changes in quantum yield [7-11].

This property is probably also affected by the reaction condition in

viable cells. In addition, the characteristic properties of the emission

spectrum in living cells are a critically important feature in the

multicolor luciferase assay method [12-14], in which the expression

of multiple genes is monitored simultaneously using different color-

emitting luciferases. We determined the emission spectra of ELuc

and FLuc in NIH3T3 cell extracts and in living cells. ELuc

exhibited a similar spectrum in cell extracts (data not shown) and in

live cells (Figure 1D), with a peak at 538 nm. In contrast, FLuc

exhibited a yellow-green light with a peak at 560 nm in cell

extracts, as reported previously [7,10,11], whereas its peak was red-

shifted to 610 nm (with a small shoulder at 560 nm) in living cells

(Figure 1D), similar to in vivo observations [9]. Previous observations

revealed that FLuc emits red light, the spectrum of which is similar

to that observed in live cells (Figure 1D) at low pH or high

temperature. In addition, the light output and the quantum yield

drastically decrease under these conditions [8,11]. These findings

suggest that reaction efficiency, which includes the quantum yield of

FLuc, was lower in live cells than in cell extracts, whereas the

reaction efficiency of ELuc may be similar in the two contexts.

Furthermore, the color of the stable bioluminescence produced by

ELuc in live cells demonstrates the feasibility of its use in multicolor

BLI in combination with other types of luciferases that emit at

different wavelengths, whereas the sensitive spectral emission of

FLuc is not amenable to this type of application.

In vitro luminescence and kinetic measurements of
purified FLuc and ELuc

To examine the difference in light output from FLuc and ELuc

in living cells, we measured the luminescence intensity and kinetics

of purified recombinant FLuc and ELuc. The emission spectra of

both purified luciferases were consistent with those measured in

cell extracts (data not shown). Figure S3A shows representative

kinetics of the light output from purified FLuc and ELuc when

PicaGene (Toyo Ink) was used as the luminescent substrate. After

the addition of the substrate, the FLuc signal remained constant,

whereas the ELuc signal gradually increased. The sustaining

luminescence kinetics of FLuc are partly attributed to coenzyme A

(CoA), a vestigial substrate of beetle luciferase included with the

PicaGene reagent, by which CoA removes from the FLuc active

site the inhibitors that are produced by luciferin–luciferase

reaction [15,16]. Similarly, CoA also seems to participate in the

long-lasting light production of ELuc, as discussed by Silva Neto

et al. [6]. In contrast to the light output from living cells, the

resulting bioluminescence intensity of purified ELuc protein

(normalized to the amount of protein) was unexpectedly slightly

lower than that of FLuc, (Figure S3B), suggesting that the brighter

luminescent signal from viable cells is not simply attributable to the

enzymatic activity of the lucifearase.

Recently, several physicochemical properties of recombinant

wild-type P. termitilluminans luciferase (the amino acid sequence of

which is the same as that of ELuc, with the exception of a deletion

of the duplicated first methionine, as described in the Materials

and Methods section) have been determined, and these have been

compared with those of other beetle luciferases, including FLuc

[6]. The Michaelis–Menten constant (Km) of the wild-type P.

termitilluminans luciferase for D-luciferin is rather higher than that

of FLuc, whereas their Km values for adenosine triphosphate (ATP)

are almost identical. The catalytic constants of both luciferases are

also similar. Therefore, these kinetic properties may not

contributed to the high light output of ELuc in living cells. In

contrast, the decay constant of the luminescence of the wild-type

luciferase is higher than that of FLuc [6]. When we measured the

luminescence kinetics of purified FLuc protein by adding ATP and

Mg2+ as cofactors and D-luciferin, the luminescence displayed

flash-like kinetics (Figure 1E), as descried previously [10]. In

contrast, the purified ELuc protein displayed a low increase and a

slow apparent decay rate compared with those of FLuc, suggesting

a faster release of the luciferin–luciferase reaction product and

slower inhibition by the product. In a preliminary study, we also

measured the quantum yield of the purified ELuc protein and

estimated it to be 1.5-fold higher than that of FLuc (unpublished

data). Thus, the slow luminescence decay kinetics and the slightly

higher quantum yield of ELuc should facilitated the producing of a

stronger bioluminescent signal. However, we can not attribute the

greater light intensity (over 10-fold) measured in living cells to

these physicochemical properties alone. Therefore we assume that

the higher expression of ELuc, achieved by the optimization of the

cDNA sequence, and its stability in living cells contribute more to

its much brighter signal in cells than do its physicochemical

properties.

Time-lapse BLI of clock gene expression in primary
astrocytes using ELuc

Next, we performed single-cell time-lapse BLI of ELuc

luminescence driven by the mPer2 promoter in rat primary

astrocytes, as a bright luminescent probe is required to capture the

emission from primary cultured cells at single-cell resolution

because of the low transfection efficiency inherent to this type of

Enhanced Beetle Luciferase
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culture. The reporter plasmid mPer2-ELuc-PEST was transiently

transfected into cultured astrocytes by electroporation and ELuc

luminescence after stimulation with dexamethasone was recorded

using 9 min of exposure time at 10 min intervals for 96 h on a

luminescence microscope (CellGraph, ATTO) (Figure 2A). Using

a photomultiplier to record luminescence signals, we noted that

Figure 1. Comparison of the characteristic properties of FLuc and ELuc in NIH3T3 cells. (A) Photomultiplier recording of mPer2
transcriptional oscillation in NIH3T3 cells expressing destabilized ELuc (green filled circles) and FLuc (orange filled circles). The reporter plasmids mPer2-
dELuc or mPer2-dFLuc were cotransfected with pCMV-CLuc and cells were stimulated with 100 nM of dexamethasone. The respective luciferase
activities were normalized to CLuc activity. Error bars indicate the standard deviation (n = 4). The inset shows recordings in the case that the peak values
of the curves were set to 1. Schematic drawings of the reporter plasmids are shown on the left. (B) Western blot analysis of FLuc and ELuc in NIH3T3
cells. The expression plasmids pCMV-Flag::FLuc or pCMV-Flag::ELuc were transfected into NIH3T3 cells, which were harvested and disrupted 48 h later.
Both luciferases were detected using the anti-Flag M2 antibody. Tubulin was used as an internal control. The positions of molecular weight markers are
indicated on the left margin of each panel. (C) Stability of destabilized FLuc (orange filled circles) and ELuc (green filled circles) in NIH3T3 cells. NIH3T3
cells were independently transfected with SV40-dFLuc or SV40-dELuc and the culture medium was replaced with DMEM supplemented with 10% FBS
and 100 mM cycloheximide. After 20 min (time = 0), incubation was continued in DMEM supplemented with 10% FBS and 100 mM cycloheximide. At the
indicated times, cells were disrupted and luciferase activity was measured. Error bars indicate the standard deviation (n = 6). (D) Emission spectra of
FLuc (orange line) and ELuc (green line) in viable cells. NIH3T3 cells seeded in 35 mm dishes were transfected with pGVC2 (for FLuc) or pCMV-ELuc and
incubated for 48 h. To obtain the spectra, the culture medium was replaced with DMEM without phenol red supplemented with 10% FBS and 200 mM
D-luciferin, and incubated for 12 h. Spectra were then measured. (E) Kinetics of light production by purified FLuc (orange filled circles) and ELuc (green
filled circles) exposed to D-luciferin, ATP and Mg2+. The peak values were set to 1. Error bars indicate the standard errors (n = 3).
doi:10.1371/journal.pone.0010011.g001
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ELuc expressed in primary cultures emitted a signal that was 16-

fold higher than that of FLuc (Figure S4A), which was similar to

the measurements obtained in NIH3T3 cells (Figure 1A). As

shown in Figure 2A (and Movie S1), we obtained a significantly

bright signal that allowed the quantification of gene expression.

Expression profiling in individual cells (n = 40) revealed that

almost all cells showed circadian oscillation of mPer2-driven ELuc

luminescence, without remarkable damping, however, this oscil-

lation progressively drifted out of phase after three cycles. This

finding may be attributed to the loss of synchrony among cells

(Figure S4C), similar to that observed in cultured fibroblasts

[3,17].

Time-lapse BLI of clock gene expression in the
suprachiasmatic nucleus (SCN) using ELuc

To verify whether ELuc can be used at the single-cell level to

quantify gene expression in tissues, we generated transgenic mice

that expressed ELuc under the control of the mBmal1 clock gene

promoter [18]. Among the 10 transgenic lines obtained, we chose

the Bmal1-ELucA4 line because it exhibited the highest light

output in several tissues (data not shown). ELuc luminescence from

slice cultures of the SCN, which functions as a central clock and is

located in the hypothalamus, was imaged using a luminescence

microscope. Luminescence was recorded using 10 min of exposure

time at 15 min intervals for 120 h without binning. We

successfully detected a significantly bright signal that allowed the

quantification of gene expression in individual cells, even at the

10 min exposure (Figure 2B and Movie S2). The 44 individual

cells quantified in this way exhibited robust circadian oscillation of

the Bmal1-driven-ELuc luminescence, with a tightly regulated

period (Figure S5). An exposure of 30–60 min is generally needed

for the recording of mPer1- or mPer2-driven-FLuc luminescence

from transgenic mouse SCN slices [19–21]. Therefore, our result

demonstrates that ELuc allows single-cell imaging analysis of tissue

cultures with a much higher temporal resolution than that

available using FLuc, although the promoter and the imaging

equipment used in the two situations were different.

Subcellular BLI using FLuc and ELuc
Subcellular BLI has been performed in luminescent dinoflagel-

lates by capturing their endogenous luciferase emission using an

image-intensifier system [22]. However, as far as we know,

subcellular BLI with introduction of an exogenpus luciferase gene

has never been performed. Although FLuc is used to monitor gene

expression by BLI at the single-cell level, it is difficult to perform

luminescence imaging at the subcellular level in mammalian cells

because of the insufficiency of its light output intensity. Therefore,

we next attempted to perform BLI of organelles using ELuc.

Figure 2. Long-term single cell imaging of transcriptional oscillation in living cells using ELuc. (A) Representative CCD image of mPer2
promoter-driven ELuc luminescence in rat primary astrocytes (scale bar, 100 mm) (left panel) and recordings of luminescence from 40 individual cells
(right panel). Images were acquired using 9 min of exposure time at intervals of 10 min with a 46 objective lens (numerical aperture (NA), 0.5).
Signals were normalized to maximum count. (B) CCD image of mBmal1 promoter-driven ELuc luminescence from SCN slices of Bmal1::ELuc
transgenic mice (Bmal1-ELucA4, upper left panel) and merged photograph of bright-field and luminescence images (green) (lower left panel). Images
were taken using 10 min exposures at intervals of 15 min and a 46objective lens (scale bars, 100 mm). V and OC are third ventral and optic chiasm,
respectively. Recordings of luminescence from 44 individual cells were plotted (right panel).
doi:10.1371/journal.pone.0010011.g002
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Peroxisome-, cytosol- and nucleus-localized ELuc and FLuc were

transiently expressed in NIH3T3 cells under the control of the

CMV promoter, and their luminescence was recorded using 3 min

of exposure time (Figure 3A). We found that ELuc localized to

peroxisomes and nuclei, which was verified by confocal fluores-

cence imaging using peroxisome- and nucleus-targeted GFP

(Figure S6), as reported for FLuc [23,24]. As shown in

Figure 3A, the quantification of the signal intensity from 150

individual cells revealed that ELuc produced 6-, 18-, and 15-fold

higher luminescent signals in the peroxisome, cytosol, and nucleus,

respectively, when compared with FLuc. Interestingly, the

subcellular localization of ELuc was clearly imaged when images

Figure 3. Representative luminescence CCD images of subcellular-targeted ELuc and FLuc in NIH3T3 cells. (A) Luminescence images of
peroxisome- (left panels), cytosol- (middle panels), and nucleus- (left panels) targeted ELuc (upper panels) and FLuc (bottom panels). Expression
plasmids for the subcellular-targeted expression of luciferases under the control of the CMV promoter were transiently transfected into NIH3T3 cells.
Images were acquired when the signals reached the maximum using 3 min of exposure time and a 46objective lens without binning (scale bars,
100 mm). The contrast of all images was adjusted equally. (B) Luminescence images of the luciferase-expressing cells shown in A, as acquired with a
406objective lens (NA, 0.9) (scale bars, 30 mm). Images were acquired using a 3 min exposure without binning.
doi:10.1371/journal.pone.0010011.g003
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were captured using a 406 objective lens (Figure 3B). Notably,

peroxisome-targeted ELuc exhibited a typical peroxisomal dot-like

pattern. In contrast, the subcellular localization images for FLuc

were less clear (i.e., low resolution), even though FLuc allows

nuclear imaging.

To investigate the differences in the resolution of subcellular

imaging when ELuc and FLuc are used as probes, we examined

the relationships between the D-luciferin concentration and the

light intensities of the luciferases in living cells (Figure S7A). The

cytosol-targeting expression vector pCMV–Flag::FLuc or pCMV–

Flag::ELuc(cyto) was transiently transfected into NIH3T3 cells,

and the luminescence was measured for 72 h in real-time with a

luminometer (Kronos). We noted that each luciferases-expressing

cell displayed the same kinetic pattern at all the luciferin

concentrations tested, although the ELuc-expressing cells showed

slower increase and decay profiles compared with those of FLuc,

similar to the measurements made in vitro (data not shown). The

inset of Figure S7A shows the dose–response of the D-luciferin

concentrations against the peak luminescence intensities of the

luciferases-expressing cells, in which each value was normalized to

the count at 2000 mM luciferin. The light intensities of both

luciferases increased with increasing D-luciferin concentrations in

the same dose-dependent manner, and reached a plateau at

1000 mM. However, the light output of the FLuc-expressing cells

was markedly lower than that of ELuc-expressing cells at all the

luciferin concentration tested (Figure S7A). We next examined

whether high-resolution CCD images of subcellular-localized

FLuc could be captured. Imaging was performed at the highest

luciferin concentration (2000 mM), which was 10-fold higher than

the concentration used for the measurements shown in Figure 3.

However, the images were still unclear even at that luciferin

concentration (Figure S7B), indicating that the lower-resolution

images of FLuc were simply the result of its insufficient

luminescence in living cells. We noted that the subcellular images

were also not sharp, even when taken using longer exposure times

(data not shown). Thus, although FLuc is used for BLI at the

single-cell level, the light intensity produced is inadequate for

subcellular imaging, as performed under our experimental

conditions. These results appear to indicate that ELuc allows the

live imaging of changes in intracellular localization of proteins

fused to this molecule.

Time-lapse BLI of the intracellular trafficking of importin
a using ELuc

To explore the possibility of performing time-lapse BLI of

intracellular trafficking of proteins using ELuc, we attempted to

image the trafficking pattern of mouse importin a (mRch1) [25,26],

which is a representative nucleocytoplasmic shuttling protein. We

removed the peroxisome targeting signal located at the extreme C-

terminus of ELuc and fused importin a at this C-terminus. The fusion

construct was transiently expressed in NIH3T3 cells under the control

of the CMV promoter. Immunoblot analysis demonstrated that the

fusion protein was expressed in these cells at the expected molecular

size of 120 kDa (Figure S8). Time-lapse BLI was recorded 3 h after

transfection using 3 min of exposure time at 4 min intervals (Figure 4

and Movie S3). The luminescence signal was initially detected in the

cytosol at 480 min after commencement of measurements (time = 0);

the signal increased gradually in the nucleus after 28 min,

accompanied by a decrease of the signal in the cytosol. Conversely,

the signal in the nucleus gradually decreased after 44 min, with a

concomitant increase in cytosolic signal, up to 76 min. Accumulation

of the signal in the nucleus was again observed from 80 to 112 min.

In previous studies, time-lapse fluorescence imaging using GFP-fused

importin a demonstrated that this protein reversibly migrates into the

nucleus from the cytosol after treatment with UV irradiation in a

time-dependent manner [27], almost identical to what was observed

in the present study. This demonstrates the accuracy of intracellular

BLI using ELuc as a probe.

When we performed continuous time-lapse imaging for up to

20 h, the ELuc::improtin a protein was completely retained

within the nucleus after two cycles of shuttling (data not shown).

It has been reported that the nuclear accumulation of importin

a induced by cellular stress is triggered by the collapse of the

gradient of Ran, a small GTPase that is involved in the nuclear

cytoplasm shuttling of importin a, resulting in the rapid nuclear

accumulation importin a with impairment of its nuclear export

[27]. Therefore, it is reasonable to assume that the nuclear

retention of the ELuc::improtin a protein here was caused by

the collapse of the Ran gradient, although we can not correlate

the nucleocytoplasmic shuttling observed under our experimen-

tal conditions and the ambient stress condition. It is also noted

that the repeated nuclear migration of ELuc::improtin a protein

shown in Figure 4 was observed in approximately 10% of

luminescent cells, whereas this protein was continuously

retained in the nucleus in the other 90% of cells. This may

reflect the excessive expression levels of the fusion protein, as a

moderate expression level is required for retention of the protein

in the cytosol [27].

Thus, we successfully used ELuc to visualize the nucleocyto-

plasmic shuttling of importin a at a periodicity of approximately

30 min. This represents the first reported observation of time-lapse

imaging of the intracellular movement of a protein by means of

BLI.

Conclusions
In conclusion, we have developed ELuc, which is a luciferase

with enhanced brightness compared with FLuc. This allowed us to

successfully image not only longitudinal gene expression in

primary cells and tissues with high temporal resolution, but also

the intracellular trafficking of a nucleocytoplasmic shuttling

protein with high spatial resolution. Therefore, ELuc is greatly

advantageous for the achievement of high spatiotemporal

definition BLI for the continuous visualizing gene expression and

trafficking of proteins at the single-cell and subcellular levels.

Furthermore, in combination with red- and/or orange-emitting

luciferases [13,28], the system developed in this study can be

applied to multicolor BLI, thereby enabling the simultaneous

analysis of multiple cellular events.

Materials and Methods

Optimization of the P. termitilluminans luciferase
sequence for mammalian expression

To optimize the codons of P. termitilluminans luciferase [5]

(GeneBank accession number AF116843) for mammalian expression,

codon usage data were obtained from the Mus musculus database of

the Kazusa DNA Research Institute (http://www.kazusa.or.jp/

codon/cgi-bin/showcodon.cgi?species=10090). To delete putative

transcription factor binding sites within the cDNA sequence, the sites

were identified and deleted using MatInspector sequence analysis

software (Genomatix, Munich, Germany). All nucleotide substitu-

tions were designed without changing the deduced amino acid

sequence, with the exception of the duplicated first methionine,

which was deleted. The designed 1,629 bp double-strand cDNA was

synthesized using a customized DNA synthesis service at TOYOBO

(Osaka, Japan). To generate pBlue-ELuc, the cDNA was ligated to

the HindIII/XbaI site of pBluescript KS(+) (Stratagene, La Jolla,

CA).

Enhanced Beetle Luciferase
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Plasmid construction
To construct expression plasmids carrying Flag-tagged wild-

type luciferase and ELuc, cDNA sequences in which the start

codon was replaced by an EcoRV site were amplified by

polymerase chain reaction (PCR) using pB1py311 [5] and pBlue-

ELuc, respectively, as the templates. The amplified products were

ligated into the EcoRV/KpnI (for wild-type luciferase) and

EcoRV/XhoI (for ELuc) sites of pCMV-Tag2B (Stratagene)

downstream of the immediate CMV promoter, which resulted in

the pCMV-Flag::PTLuc and pCMV-Flag::ELuc constructs.

pSV40-ELuc was generated by replacing the NcoI and XbaI

fragment of the FLuc expression vector pGVC2 (Toyo Ink, Tokyo,

Japan) with ELuc excised from the pBlue-ELuc plasmid. To

generate destabilized luciferases in which the PEST element of the

mouse ornithine decarboxylase was fused in-frame to the C-

terminus of ELuc (dELuc) and FLuc (dFLuc), the PEST sequence

(in which the NcoI site was deleted without changing the deduced

amino acid sequence) was PCR-amplified using pd1EGFP-N1

(Clontech, Palo Alto, CA) as a template. To generate pGEM-

PEST, the amplified fragment was subcloned into pGEM-TEasy

(Promega, Madison, WI). ELuc and FLuc in which the stop codon

was replaced by an EcoRV site were PCR-amplified using pBlue-

ELuc and the pGVC2 as templates, respectively. The amplified

fragments were ligated into the NcoI/EcoRV site of pGEM–

PEST. To generate the pSV40–dELuc and pSV40–dFLuc

constructs, PEST-fused ELuc (dELuc) and FLuc (dFLuc) were

excised using NcoI and XbaI and ligated into the NcoI/XbaI site of

pGVC2, in which the FLuc was removed.

To construct reporter vectors carrying the mPer2 promoter, the

mPer2 promoter fragment (2279 to +112 bp, where +1 indicates

the putative transcription start site) was PCR-amplified from

C57BL/6J mouse genomic, and cloned into the NheI/XhoI site of

pGL3–Basic (Promega). The FLuc was replaced with the NcoI and

XbaI fragments of pSV40–dELuc and pSV40–dFLuc, resulting in

mPer2-dELuc and mPer2-dFLuc, respectively.

To generate the cytosol-targeting ELuc expression vector

pCMV-Flag::ELuc (cyto), the ELuc cDNA in which the

peroxisome-targeting signal (PTS; Ser-Lys-Lue) at the extreme

C-terminus was deleted by PCR using pBlue-ELuc as the

template, and the product was ligated to the EcoRV/XhoI site

of pCMV-Tag2B. To construct the peroxisome-targeting FLuc

expression vector pCMV-Flag::FLuc (pox), the FLuc cDNA in

which a PTS was introduced at the extreme C-terminus was PCR-

amplified using pGVC2 as the template, and the product was

ligated to the EcoRV/XhoI site of pCMV-Tag2B. To construct

expression plasmids carrying nucleus-targeting ELuc and FLuc,

the cDNA sequences in which the PTS of ELuc and the STOP

codons of both luciferases were replaced by a NotI site, and were

PCR-amplified using pBlue-ELuc and pGVC2 as templates,

respectively. To obtain the pCMV-Myc::ELuc (nuc) and pCMV-

Myc::FLuc (nuc) constructs, the amplified fragments were ligated

into the NocI/NotI site of pCMV/myc/nuc (Invitrogen, Carlsbad,

Figure 4. Time-lapse luminescence imaging of the nucleocytoplasmic shuttling of ELuc::importin a in NIH3T3 cells. The expression
plasmid carrying ELuc::importin a was transiently transfected into NIH3T3 cells. Images were acquired after 3 h of transfection using 3 min of
exposure time at intervals of 4 min with a 406objective lens without binning. Numbers indicate minutes. A schematic drawing of the expression
plasmid is shown on the upper panel.
doi:10.1371/journal.pone.0010011.g004
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CA) in which a triple nuclear localization signal (NLS) from SV40

large T antigen was introduced downstream of the multiple

cloning site, for C-terminal fusion to the luciferases.

For confocal fluorescence imaging analysis, we generated a

peroxisome-targeting EGFP in which a PTS was introduced at the

extreme C-terminus of EGFP. The EGFP cDNA was PCR-

amplified using EGFP-N1 (Clontech) as a template, and the

product was cloned into pcDNA3.1/V5-His TOPO (Invitrogen)

to yield pCMV- EGFP (pox).

To construct an expression plasmid carrying ELuc::importin a,

the ELuc cDNA in which the PTS and the STOP codon were

replaced by an EcoRV site was PCR-amplified using pBlue-ELuc

as a template, and the product was ligated into the HindIII/

EcoRV site of pcDNA3 (Invitrogen). The importin a-coding

sequence (mRch1, GeneBank accession number D55720) in which

the start codon was replaced by an EcoRV site was PCR-amplified

using pGEX-2T-PTAC58 [25] (kind gift from Dr. Y. Yoneda of

Osaka University) as a template, and the product was ligated to the

EcoRV and XhoI sites downstream of ELuc to yield pCMV-ELuc::

importin a. All constructs were verified by sequencing.

Cell culture
Mouse NIH3T3 cells (RCB1862) were grown in Dulbecco’s

Modified Eagle medium (DMEM, Sigma-Aldrich, St. Louis, MO)

supplemented with 10% fetal bovine serum (FBS, ICN Biochemicals,

Aurora, OH) in a humidified atmosphere containing 5% CO2 at

37uC. To prepare rat primary astrocytes, cerebral cortices were cut

into small pieces, incubated in papain solution at 37uC for 15 min,

and then separated by gentle trituration passes. Cells were plated

onto a flask and cultured in DMEM supplemented with 10% FBS at

5% CO2 for 3–4 h and the cultures were washed with phosphate

buffered-saline twice. The dissociated cells were cultured in DMEM

supplemented with 10% FBS for over 2 weeks. Confluent cells were

harvested and placed in a new flask after a two-fold dilution.

Mice and preparation of SCN slices
The reporter plasmid mBmal1 915-ELuc, which carried the 59

flanking region (2816 to +99 bp) of the mBmal1 promoter, was

constructed by replacing the NcoI/XbaI fragment of the Bp/915-

Luc vector [18] (a kind gift from Dr. M. Ikeda of Saitama Medical

University) with ELuc. Transgenic mice were generated on the

C57BL/6J background as described elsewhere. Among the 10

transgenic lines obtained, we used the Bmal1ELuc-A4 line because it

showed the highest light intensity of the various tissues examined.

The mice were kept in the heterozygous state and maintained in

LD12:12. Six-month-old mice were decapitated and the brain was

removed. Coronal sections of the brain (250 mm thickness) were

prepared using a microslicer (Dosaka, Osaka, Japan) and were

transferred to ice-cold Hank’s balanced salt solution supplemented

with 10 mM Hepes/NaOH (pH7.0), 1.76 mg/ml NaHCO3,

97 U/ml penicillin, and 100 mg/ml streptomycin. Bilateral SCNs

connected with optic chiasms were trimmed to approximately

2 mm squares. The procedure was strictly in accordance with the

protocols approved by the Institutional Animal Care and Use

Committee of the National Institute of Advanced Industrial

Science and Technology.

Real-time measurement of bioluminescence using a
luminometer

NIH3T3 cells were seeded in 35 mm dishes one day before

transfection. One hundred nanograms of mPer2-dELuc or

mPer2-dFLuc were cotransfected into NIH3T3 cells with

100 ng of the expression plasmid pCMV-CLuc [29] carrying

secreted luciferase from Cypridina noctiluca (CLuc) and 1 mg of

pBluescript SK(2). Rat primary astrocytes were cultured and

26106 cells were suspended in 100 ml of rat astrocyte Nucleo-

factor (Amaxa, Köln, Germany), which was followed by the

cotransfection of 4 mg of mPer2-dELuc or mPer2-dFLuc with

1 mg of pCMV-CLuc using electroporation and the program T-

20 of the Nucleofactor electroporator (Amaxa). Transfected cells

were seeded on 35 mm dishes. Transfected NIH3T3 cells and

primary astrocytes were cultured for 1–2 days until confluence,

and an aliquot of the culture medium containing secreted CLuc

was collected. CLuc activity was measured using the CLuc

reporter assay system (ATTO, Tokyo, Japan), according to

manufacturer’s instructions. Transfected cells were treated with

100 nM dexamethasone (Nacalai Tesque, Kyoto, Japan) for 2 h

and the medium was replaced with DMEM without phenol red

(Gibco-BRL, Grand Island, NY) supplemented with 10% FBS

and 200 mM D-luciferin (TOYOBO) and overlaid with mineral

oil (Sigma-Aldrich) to prevent evaporation. Bioluminescence was

recorded for 1 min at intervals of 19 min under a 5% CO2

atmosphere at 37uC using the dish-type luminometer AB2500

Kronos (ATTO).

CCD imaging of bioluminescence
Transfected NIH3T3 cells or primary astrocytes were grown

on 35 mm glass-bottom dishes (Iwaki, Tokyo, Japan) until

confluence, and an aliquot of medium was collected to measure

CLuc activity. For BLI of subcellular-localized luciferases, 2 mg

of expression plasmids were cotransfected with 100 ng of

pCMV-CLuc into NIH3T3 cells. For imaging of mPer2-driven

luciferase luminescence, cells were treated with 100 nM

dexamethasone for 2 h before measurement. The culture

medium was replaced with DMEM without phenol red and

supplemented with 10% FBS, 25 mM Hepes/NaOH (pH7.0),

and 200 mM D-luciferin, and was overlaid with 2 ml of mineral

oil. For imaging of ELuc BLI in SCN slices, the slices were

placed on a culture membrane (Millicell-CM, Millipore, Bill-

erica, MA) with 1.3 ml of DMEM without phenol red

supplemented with 10 mM Hepes/NaOH (pH7.0), B27 supple-

ment (Invitrogen), and 200 mM D-luciferin, and the dish was

sealed with parafilm. BLI was performed using the luminescence

microscope CellGraph (ATTO) at 37uC. CCD images were

acquired using a 46 (NA, 0.5; ATTO) or 406 (NA, 0.9; Nikon,

Tokyo, Japan) objective lens at 161 binning of the 5126512

pixel array. The luminescence intensity was quantified using

Metamorph (Universal Imaging, Brandywine, PA).

Measurement of luciferase activity in cell extracts
NIH3T3 cells were seeded one day before transfection in 24-

well plates at a density of 56104 cells per well. One hundred

nanograms of expression plasmid and 10 ng of the Renilla

luciferase expression vector phRL-TK (Promega) were cotrans-

fected using Lipofectamine PLUS (Invitrogen) according to the

manufacturer’s instructions. Two days after transfection, cells were

lysed with 200 ml of Passive Lysis Buffer, unless otherwise noted.

The ELuc and FLuc activities were measured by mixing 50 ml of

cell lysate with 50 ml of Luciferase Assay Reagent II (Promega) or

PicaGene (Toyo Ink) containing D-luciferin as a substrate for 20 s

using an AB-2250 luminometer (ATTO). Renilla luciferase activity

was measured separately for 20 s by mixing 50 ml of lysate and

50 ml of 200 mM coelenterazine (Sigma-Aldrich) dissolved in

10 mM Tris/HCl (pH 7.4). The activities of wild-type P.

termitilluminans luciferase, ELuc, and FLuc were normalized to

the Renilla luciferase activity.
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Spectrum measurement
To measure the bioluminescent spectrum in cell extracts and in

live cells, 400 ng or 2 mg of expression plasmid was transfected

into NIH3T3 cells that were seeded in a 24-well plate or in a

35 mm dish, respectively, and cultured for 2 days. Cells in the 24-

well plate were lysed in 200 ml of Passive Lysis Buffer and the

spectrum was measured by mixing 15 ml of Luciferase Assay

Reagent II into 15 ml of the cell extract. For measurement of the

spectrum in live cells, the culture medium of cells grown in a

35 mm dish was replaced with DMEM without phenol red

supplemented with 10% FBS and 200 mM D-luciferin, and the

dish was placed on the sample stage of a spectrophotometer.

Spectrum measurement was carried out using an AB-1850

spectrophotometer (ATTO) for 1 min with 1 mm slit width. All

spectra were corrected for the spectral sensitivity of the equipment

and normalized.

Expression and purification of recombinant luciferase
To generate the plasmids for the expression of the recombinant

proteins in Escherihia coli, the FLuc and ELuc cDNAs were

subcloned into the XhoI/XbaI and HindIII/XbaI sites, respectively,

of the pCold II vector (Takara Bio, Kyoto, Japan), so that the

hexahistidine tag was fused in-frame to the N-terminus of the

luciferase. The resulting plasmid was transformed into E. coli BL21

(DE3), and grown in Luria–Bertani medium. Luciferase expression

was induced at 15uC for 24 h in the presence of 0.1 mM

isopropyl-b-D-thiogalactopyranoside. The harvested cells were

resuspended in buffer A (50 mM sodium phosphate (pH 7.0),

300 mM sodium chloride) containing 10 mM imidazole, sonicat-

ed, and centrifuged. The histidine-tagged luciferase was then

bound to Ni–NTA agarose beads (Qiagen, Valencia, CA), washed

twice with buffer A containing 20 mM imidazole, and eluted with

buffer A containing 250 mM imidazole. Glycerol was added to the

eluates to a final concentration of 8% (w/v). SDS–PAGE was used

to confirm the amounts and purity of the recombinant luciferases.

Activity and kinetics measurements of the purified
luciferase

The activities and temporal kinetics of the luciferases were

measured with an AB-2250 luminometer (ATTO) after 0.1 mg of

purified luciferase was mixed with 100 ml of PicaGene for 60 s.

The decay kinetics were measured by mixing 10 ml of 0.1 mg/ml

purified luciferase solution that was diluted in 25 mM Hepes/

NaOH (pH 7.0) with 90 ml of luciferin solution containing

0.4 mM D-luciferin potassium salt (TOYOBO), 3 mM ATP

disodium salt, and 8 mM magnesium sulfate (Wako) using an auto

injector. Luminescence was measured for 20 s at 0.2 s intervals

using a microplate-type luminometer (AB2350 Phelios, ATTO).

All measurements were made at room temperature.

Immunoblot analysis
NIH3T3 cells were seeded in 6-well plates at a density of 16106

cells per well one day before transfection. Two micrograms of

expression plasmid was transfected into cells, incubated for 2 days,

and the cells were then lysed using the M-PER extraction reagent

(Pierce Biotechnology, Rockford, IL). SDS-urea-PAGE and

blotting were carried out as described previously [30]. We used

mouse anti-Flag M2 (Sigma-Aldrich) and mouse anti-a-tubulin

(Sigma-Aldrich) as primary antibodies. The rabbit anti-ELuc

polyclonal antibody was raised against purified recombinant ELuc.

We used horseradish peroxidase-conjugated anti-mouse IgG

(BioRad, Hercules, CA) and anti-rabbit IgG (Jackson Immmu-

noResearch, West Grove, PA) as secondary antibodies. Antibodies

were diluted in Can Get Signal solution (TOYOBO). Immunor-

eacted bands were detected using the ECL plus kit (GE

Healthcare, Freiburg, Germany) according to the manufacturer’s

instructions.

Measurement of the stability of luciferases in NIH3T3
cells

To estimate the functional half-life of ELuc and FLuc in

NIH3T3 cells, we used destabilized luciferases (dELuc and dFLuc)

fused to the PEST element, as we could not precisely estimate the

half-life of ELuc (.8 h) because of its high stability in cells (data

not shown). Stability measurement was performed as described

previously [31]. One hundred nanograms of the expression

plasmids pSV40-dELuc and pSV40-dFLuc were independently

transfected into NIH3T3 cells seeded in 48-well plates. One day

after transfection, the culture medium was replaced with DMEM

supplemented with 10% FBS and 100 mM cycloheximide and

incubated for 20 min, to block protein synthesis. After 20 min

(time = 0), the incubation was continued in the same medium. At

the indicated times, cells were lysed with 200 ml of the Passive

Lysis Buffer and luciferase activity was measured by mixing 20 ml

of the cell lysate with 20 ml of the Luciferase Assay Reagent II and

using an AB-2250 luminometer.

Confocal fluorescence imaging
NIH3T3 cells seeded in 35 mm glass-bottom dishes were

cotransfected with 2 mg of pCMV-Flag::ELuc(pox) and 0.5 mg of

pCMV-EGFP(pox) or 2 mg of pCMV-Myc::ELuc(nuc) and 0.5 mg

of pAcGFP1-Nuc (Clontech). One day after transfection, cells

were fixed with 4% (w/v) paraformaldehyde and treated with

0.3% (w/v) TritonX-100. Cells were then incubated with anti-Flag

M2 or anti-Myc (9E10, Santa Cruz Biotechnology, Santa Cruz,

CA) antibodies and stained with Cy5-conjugated anti-mouse IgG

(Santa Cruz). ELuc and GFP were visualized using laser confocal

microscopy (BioRad).

Supporting Information

Figure S1 Nucleotide sequences of P. termitilluminans wild-type

luciferase and ELuc. cDNA sequences of wild-type luciferase and

sequence-optimized luciferase, ELuc, are shown in the upper and

lower rows, respectively. Identical sites are marked by asterisks.

Found at: doi:10.1371/journal.pone.0010011.s001 (1.19 MB TIF)

Figure S2 Improvement of the expression and light intensity of

ELuc in NIH3T3 cells. (A) Western blot analysis of the expression

of wild-type luciferase and ELuc in NIH3T3 cells. NIH3T3 cells

were transfected with expression plasmid carrying wild-type

luciferase (pCMV-Flag::PTLuc) or sequence-optimized luciferase,

ELuc (pCMV-Flag::ELuc) and cells were harvested and disrupted

48 h later. Both luciferases were detected using the anti-Flag M2

antibody. Tubulin was used as an internal control. The positions of

molecular weight markers are indicated on the left margin of each

panel. (B) Luminescence intensity of wild-type luciferase- and

ELuc-expressing cell extracts. One hundred nanograms of the

expression plasmids pCMV-Flag::PTLuc or pCMV-Flag::ELuc

was cotransfected with 10 ng of phRL-TK into NIH3T3 cells.

One day after transfection, cells were disrupted using 10 mM

Tris/HCl (pH 7.4). The luminescent activities of wild-type

luciferase and ELuc were measured and normalized to Renilla

luciferase activity. The light intensity of normalized wild-type

luciferase was set to 1. Error bars indicate the standard deviation

(n = 6).

Found at: doi:10.1371/journal.pone.0010011.s002 (0.69 MB TIF)
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Figure S3 Comparison of the kinetics and light output from

purified FLuc and ELuc. (A) Representative kinetics of light output

from purified FLuc (orange line) and ELuc (green line). The

kinetics was measured for 60 s by mixing purified protein (0.1

ÎJg) and PicaGene as a substrate. (B) Luminescence intensity of

FLuc and ELuc. Signals were accumulated for 60 s, as shown in

(A), and normalized to ÎJg of protein. Error bars indicate

standard deviation (n = 6).

Found at: doi:10.1371/journal.pone.0010011.s003 (0.66 MB TIF)

Figure S4 Real-time monitoring and single-cell imaging of

mPer2 promoter-driven transcriptional oscillation in rat primary

astrocytes. (A) Photomultiplier recording of mPer2 transcriptional

oscillation in primary astrocytes expressing ELuc (green filled

circles) and FLuc (orange filled circles). The reporter plasmids

mPer2-dELuc or mPer2-dFLuc were cotransfected with pCMV-

CLuc and cells were stimulated with 100 nM of dexamethasone.

Bioluminescence was counted for 1 min at intervals of 19 min

using luminometer (Kronos), and the respective luciferase activities

were normalized to CLuc activity. The inset shows recordings

where the peak values of the curves were set to 1. (B)

Representative CCD image of mPer2 promoter-driven ELuc

luminescence in primary astrocytes (scale bar, 100 ÎJm). We

quantified 40 individual cells (yellow squares). (C) Recordings of

luminescence from the 40 individual cells shown in B.

Found at: doi:10.1371/journal.pone.0010011.s004 (1.89 MB TIF)

Figure S5 Time-lapse BLI of mBmal1 promoter-driven tran-

scriptional oscillation in an SCN slice of Bmal1-ELuc transgenic

mice. (A) Representative CCD image of mBma1 promoter-driven

ELuc luminescence from SCN (scale bar, 100 ÎJm). We

quantified 44 individual cells (yellow circles). (B) Serial CCD

images of the SCN slice. Numbers indicate hours. (C) Recordings

of luminescence from the 44 individual cells shown in A.

Found at: doi:10.1371/journal.pone.0010011.s005 (1.77 MB TIF)

Figure S6 Confocal micrographs of peroxisome- and nuclear-

localized ELuc in NIH3T3 cells. pCMV-Flag::ELuc(pox) and

pCMV-EGFP(pox) or pCMV-Myc::ELuc(nuc) and pAcGFP1-

Nuc were cotransfected into NIH3T3 cells. Twenty-four hours

after transfection, cells were fixed and peroxisome-localized ELuc

and nuclear-localized ELuc were detected using the anti-Flag M2

and anti-Myc antibodies, respectively.

Found at: doi:10.1371/journal.pone.0010011.s006 (1.80 MB TIF)

Figure S7 Effects of increasing concentration of D-luciferin on

the light output from FLuc- and ELuc-expressing live cells and

luminescence CCD images of cytsol-targeted FLuc at higher D-

luciferin concentration. (A) Relationships between the concentra-

tion of D-luciferin and peak intensities of FLuc-expressing (orange

filled circles) and ELuc-expressing (green filled circles) NIH3T3

cells. Two micrograms of expression plasmid pCMV-Flag::FLuc

or pCMV-Flag::ELuc(cyto) was transfected into NIH3T3 cells.

One day after transfection, bioluminescence was measured using

luminometer (Kronos), in real-time at various D-luciferin concen-

trations. Peak intensities at each luciferin concentration, as

obtained by real-time measurement, are plotted in the figure.

The inset shows the D-luciferin dose dependencies of FLuc and

ELuc luminescence where the counts at 2000 ÎJM was set to 1.

(B) Luminescence images of the cytosol-localized FLuc in NIH3T3

cells captured at 2000 ÎJM D-luciferin. NIH3T3 cells were

transiently transfected with pCMV-Flag::FLuc(pox). Images were

acquired when the signals reached the maximum, using a 3 min

exposure time and 406 objective lens without binning.

Found at: doi:10.1371/journal.pone.0010011.s007 (1.31 MB TIF)

Figure S8 Western blot analysis of the ELuc::importina fusion

protein in NIH3T3 cells. NIH3T3 cells transfected with pCMV-

ELuc::importin a were harvested and disrupted 48 h after

transfection. The ELuc::importin Î6 fusion protein was detected

using an anti-ELuc antibody. Tubulin was used as an internal

control. The positions of molecular weight markers are indicated

on the left margin of each panel.

Found at: doi:10.1371/journal.pone.0010011.s008 (0.82 MB TIF)

Movie S1 Time-lapse BLI of mPer2 promoter-driven ELuc

luminescence from the rat astrocytes shown in Figure 2A and

Figure S4. CCD images were acquired using 9 min of exposure

time at 10 min intervals for 96 h with a 46 objective lens.

Found at: doi:10.1371/journal.pone.0010011.s009 (2.59 MB AVI)

Movie S2 Time-lapse BLI of mBmal1 promoter-driven ELuc

luminescence from the SCN slice of Bmal1-ELuc transgenic mice

shown in Figure 2B and Figure S5. CCD images were acquired

using 10 min of exposure time at 15 min intervals for 120 h with a

46 objective lens.

Found at: doi:10.1371/journal.pone.0010011.s010 (4.20 MB AVI)

Movie S3 Time-lapse intracellular BLI of the nucleocytoplasmic

shuttling of ELuc::importina in the NIH3T3 cells shown in

Figure 4. CCD images were acquired using 3 min of exposure

time at 4 min intervals for 112 min with a 406 objective lens.

Found at: doi:10.1371/journal.pone.0010011.s011 (0.28 MB AVI)
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