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Abstract

Background: The familial and sporadic forms of Alzheimer’s disease (AD) have an identical pathology with a severe disparity
in the time of onset [1]. The pathological similarity suggests that epigenetic processes may phenocopy the Familial
Alzheimer’s disease (FAD) mutations within sporadic AD. Numerous groups have demonstrated that FAD mutations in
presenilin result in ‘loss of function’ of c-secretase mediated APP cleavage [2,3,4,5]. Accordingly, ER stress is prominent
within the pathologically impacted brain regions in AD patients [6] and is reported to inhibit APP trafficking through the
secretory pathway [7,8]. As the maturation of APP and the cleaving secretases requires trafficking through the secretory
pathway [9,10,11], we hypothesized that ER stress may block trafficking requisite for normal levels of APP cleavage and that the
small molecular chaperone 4-phenylbutyrate (PBA) may rescue the proteolytic deficit.

Methodology/Principal Findings: The APP-Gal4VP16/Gal4-reporter screen was stably incorporated into neuroblastoma
cells in order to assay c-secretase mediated APP proteolysis under normal and pharmacologically induced ER stress
conditions. Three unrelated pharmacological agents (tunicamycin, thapsigargin and brefeldin A) all repressed APP
proteolysis in parallel with activation of unfolded protein response (UPR) signaling—a biochemical marker of ER stress. Co-
treatment of the c-secretase reporter cells with PBA blocked the repressive effects of tunicamycin and thapsigargin upon
APP proteolysis, UPR activation, and apoptosis. In unstressed cells, PBA stimulated c-secretase mediated cleavage of APP by
8–10 fold, in the absence of any significant effects upon amyloid production, by promoting APP trafficking through the
secretory pathway and the stimulation of the non-pathogenic a/c-cleavage.

Conclusions/Significance: ER stress represses c-secretase mediated APP proteolysis, which replicates some of the
proteolytic deficits associated with the FAD mutations. The small molecular chaperone PBA can reverse ER stress induced
effects upon APP proteolysis, trafficking and cellular viability. Pharmaceutical agents, such as PBA, that stimulate a/c-
cleavage of APP by modifying intracellular trafficking should be explored as AD therapeutics.
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Introduction

The aggregation of misfolded proteins in early compartments

of the secretory pathway occurs in many neurodegenerative

diseases, including Alzheimer’s disease (AD) [recently reviewed

[12]]. One of the primary intracellular sites in which misfolded

proteins accumulate is the endoplasmic reticulum (ER). Improp-

erly folded proteins generally fail to traffic out of the ER, as they

are retained by the resident chaperone-mediated ER quality

control mechanisms [13,14], when the rate of protein synthesis

exceeds the capacity of the ER to direct proper folding of the de

novo proteins. Under these circumstances, elevated levels of

unfolded proteins result in a phenomenon known as ER stress,

which initiates a set of events known as the unfolded protein

response (UPR). UPR signaling is a multifaceted cascade

designed to either restore ER homeostasis or terminate the cell

[13,14]. Consequently, there is transcriptional up-regulation of

specific chaperones, transcription factors, and a regulated

interruption of some classes of translation. The identification of

active UPR signaling in AD patients, specifically within the

pathologically affected brain regions, suggests that ER stress

contributes to the pathological progression in AD [15]. Recent

reports show that beta-amyloid precursor protein (APP) traffick-

ing through the secretory pathway is impaired under ER stress

conditions, suggesting that APP is retained within the ER, or

early components of the secretory pathway [7,8]. The link

between AD and ER stress likely involves trafficking defects, as

altered trafficking of APP and the cleaving secretases would be

predicted to directly impact APP cleavage—a central component

of AD pathogenesis.
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APP and the cleaving secretases traffic and mature through the

secretory pathway. The activity of the secretases is dependent

upon their glycosylation and proteolytic maturation, which occurs

in later components of the secretory pathway, most notably within

the Golgi[16,17]. The cleavage of APP by a-secretase is mediated

by members of the metalloproteinase family [18], with TACE and

ADAM10 being the predominant members [19]. TACE and

ADAM10 are activated by the furin-mediated proteolytic release

of their regulatory domains, which occurs in the Golgi complex

[16]. The pro-amyloidogenic processing of APP is initiated by b-

secretase cleavage in the extracellular domain by the atypical

aspartyl protease BACE [20]. The proteolytic maturation of

BACE also requires processing within the Golgi complex [21,22].

Furthermore, the complex formation and activation of the

heterotetrameric c-secretase complex requires maturation in the

Golgi [23,24], in which presenilin-1 (PS1) and Nicastrin are both

glycosylated and the holo-form of presenilin is cleaved into the

amino- and carboxy-terminal fragments (NTF and CTF respec-

tively) required for c-secretase activity [9]. Consequently, inducing

a state of ER stress, which can subsequently halt the passage of

proteins through the ER, could directly impact the secretase

mediated proteolytic processing of APP at multiple levels.

The possibility of ER stress playing a role in AD pathogenesis is

particularly interesting in light of the discovery of bioactive and

bioavailable small molecules which act like chaperones in

promoting protein folding and subsequent trafficking through

the secretory pathway. These small molecules are referred to as

small molecular chaperones as they are believed to decrease the

energy barrier between the intermittent transition-states that occur

as proteins fold into their native conformation [25]. Small

molecular chaperones were originally developed to promote cystic

fibrosis transmembrane conductance regulator (CFTR) trafficking,

and one member of the family, phenylbutyric acid (PBA) is already

FDA approved for treatment of urea cycle disorder. PBA, and

other members of the small molecule chaperone family, consis-

tently decrease the levels of UPR signaling, supporting the

protective effects of these compounds against ER stress [26].

Significantly, PBA is also blood-brain barrier permeable [27],

making it an exciting candidate therapeutic for neuropathological

conditions.

We hypothesized that induction of ER stress would decrease the

secretase-mediated generation of the APP intracellular domain

(AICD) associated with APP nuclear signaling. However, the

AICD is difficult to quantitate by standard biochemical means

owing to its small size and its remarkable instability [28].

Consequently, in order to test this hypothesis, we generated a

strain of stably transformed N2a neuroblastoma cells containing

the Gal4-luciferaseEGFP c-secretase reporter system we recently

engineered. In this genetic reporter system, c-secretase mediated

cleavage of APP fused in frame to the yeast-viral hybrid

transcription factor Gal4-VP16 (referred to as APPGV16) activates

the Gal4-luciferaseEGFP reporter gene. Using this system we

demonstrate that pharmacological agents that induce ER stress

consistently decrease c-secretase mediated cleavage of APP.

Furthermore, we show that co-treatment with the small molecule

chaperone PBA rectifies the proteolytic deficit, stimulates AICD

production, promotes trafficking and protects against ER stress

induced apoptosis.

Materials and Methods

Chemicals and Antibodies
The selection reagents zeomycin (Invitrogen) and G418

(Cellgro) were used at 200 mg/ml and 500 mg/ml respectively.

Tunicamycin (Calbiochem) was dissolved in DMSO at a stock

concentration 10 mg/ml. Thapsigargin (Sigma) was dissolved in

DMSO at 0.5 mM concentration. Brefeldin A (MP Biomedicals)

was suspended in DMSO at 10 mg/ml. The phenylbutyric acid

(4-PBA, Calbiochem) was dissolved in filtered sterile water at a 1M

stock concentration. The VP16 antibody (Sigma) used for

subcellular localization of APPGV16 was diluted at 1:500 for

immunohistochemistry. The donkey anti-rabbit Alexa 546 (Mo-

lecular Probes) antibody secondary was employed with the VP16

antibody in subcellular localization studies at a 1:5000 dilution.

The eIF2a (Cell Signaling), phoshpo-eIF2a (Cell Signaling), and

phospho-PERK antibody (Cell Signaling) were diluted for western

blot at 1:1000. The Gal4 antibody (Calbiochem) used for

identification of APPGV16 protein and its proteolytic fragments

by western blotting was diluted at 1:500. The phospho-JNK and

phospho-p38 antibodies (Cell Signaling) were both used at 1:1000.

Luciferin (Biosynth) was reconstituted at 1 mM for the luciferase

assays. Galacton (Tropix) and Emerald Amp (Tropix) were used

for the b-galactosidase normalization assays.

Vector Construction
The tricistronic reporter construct was developed by fusing

pieces from numerous different expression vectors. The Gal4-

luciferase vector (pFRluc, Stratagene) was used as an initial

template for construction of the reporter vector. Primers were

designed against the Gal4-luciferase operon in which the SalI-

BglII restriction site sequences were added to the 59 end of the 59

primer. The StyI site was added to the 59 end of the 39 primer

against Gal4-luciferase and the stop codon was deleted. High

fidelity PCR amplification of the Gal4-luciferase sequence

containing the new restriction sites was completed, and the SalI-

StyI Gal4-luciferase fragment was cloned into the SalI-XbaI sites

in CMV-EGFP. CMV-EGFP was generated by amplifying the

EGFP sequence from pEGFP (Clontech) and inserting XbaI at the

59 end and XmaI at the 39 end of the coding sequence. This was

cloned into the XbaI-XmaI sites in GFPxlt (provided by Dr

Randall Moon), following site-directed mutagenesis to insert XmaI

in between the 39 end of the GFP coding sequence and the polyA

sequence. Subsequently, a BglII site was inserted 39 to the polyA

sequence for later subcloning events. The CMV promoter in

CMV-EGFP was deleted by inserting Gal4-luciferase into the

vector, as the SalI site in CMV-EGFP was 59 to the CMV

promoter. The cloning of Gal4-luciferase in frame with EGFP

resulted in the luciferase-EGFP fusion reporter driven exclusively

by the Gal4 promoter. In order to normalize the Gal4-

transactivation data, a constitutively expressing nuclear targeted

b-galactosidase cassette was inserted into the reporter vector. The

pNeoZTK2 murine gene targeting vector (provided by Dr

Richard Palmiter) was used as a template. PCR primers were

designed against the NLS-bGal portion of the targeting vector,

with a NheI site incorporated into the 59 portion of the 59 primer

and a HindIII site added to the 59 end of the 39 primer. The NLS-

bGal coding region was amplified by high fidelity PCR, and the

NheI-HindIII fragment was subcloned into pcDNA3.1Zeo

(Invitrogen). The CMV promoter was removed and replaced by

inserting the elongation factor 1a promoter amplified off of the

pCEFL expression vector with NruI and NheI sites contained in

the 59 and 39 primers respectively. This resulted in the generation

of EF1-NLS-bGal. Two BglII sites were identified and mapped in

EF1-NLS-bGal. The one adjacent to the EF1-NLS-bGal coding

region was eliminated by linearizing the plasmid through a partial

digest and blunt ending the vector and religating the blunt ends.

The second BglII site was used to subclone the BglII-Gal4-

luciferaseEGFP-BglII fragment containing the associated polyA
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site. This final step resulted in the tricistronic Gal4-lucifera-

seEGFP/EF1-NLS-bGal vector that was used to generate the

stable N2a reporter cells (Figure 1).

Generation of APPGV16/Gal4-LuciferaseEGFP/EF1-NLS-
bGal Stable c-Secretase Reporter Cells

The EF1-APPGV16 expression vector described previously [5]

contains a neomycin resistance element. The Gal4-lucifera-

seEGFP/EF1-NLS-bGal construct contains a zeomycin resistance

element. 10 mg of EF1-APPGV16 and Gal4-luciferaseEGFP/EF1-

NLS-bGal were transiently co-transfected into a confluent 10 cm

plate of naı̈ve neuroblastoma N2a cells. Two days post-

transfection the N2a cells were passaged and placed under dual

selection with 500 mg/ml G418 and 200 mg/ml Zeocin (Invitro-

gen). These cells were maintained under selection for approxi-

mately three weeks, at which point individual clones were isolated

and cultured in single wells of a 24 well plate. Once the clones

were confluent, they where split, passaged, and screened for

DAPT-sensitive luciferase activity and constitutive bGal activity by

standard luminometric assays. The clone used in this study was

selected due to high levels of c-secretase dependent (DAPT

sensitive) luciferase activity and consistent bGal activity. The cells

were expanded and continuously grown under selection. The N2a

APPGV16/Gal4-luciferaseEGFP/EF1-NLS-bGal (NAG) cells

were employed throughout the work presented here.

Cell Culture Conditions
The NAG cells were grown in DMEM supplemented with 10%

fetal bovine serum (FBS) (Hyclone) at 37C in 10% CO2. The stock

plates were maintained with 500 mg/ml G418 and 200 mg/ml

Zeocin to maintain stability of the genetic elements. The

experiments were performed when the NAG cells were between

50 and 75% confluent. Comparisons between the Gal4-transacti-

vation levels and protein levels were done within the same

experiment, unless otherwise indicated, wherein experimental

conditions were staged in quadruplicate. Three wells were used

per conditions for Gal4-transactivation assays, and 1 well was

utilized for western blotting. In the experiments employing

immunohistochemical approaches, the NAG cells were plated on

18mm coverslips coated with poly-D-lysine in 12 well plates. The

transactivation assays and western blots were performed 24 hours

following treatment unless otherwise indicated.

Western Blots and Transactivation Assays
The NAG cells were passaged from 60–80% confluent stock

plates, and arrayed on 24 well plates for transactivation assays and

western blotting. The transactivation assays were performed by

lysing the NAG cells in 0.1% TX-100 lysis solution and were

frozen at 280C to ensure complete lysis. The Gal4-luciferase and

bGal luminometric assays were performed as previously described

[5,29] employing a Berthold EG&G MicroLumat LB 96V

luminometer. The output from the luminometric assays were

point to point normalized, dividing the raw luminometric output

from the luciferase assay by the bGal value for each sample. This

data is plotted as Gal4-luciferase/bGal in the figures to denote that

the raw luciferase data is normalized to constitutive reporter

expression. The transactivation assays were performed in

triplicate, and the standard deviation was calculated based upon

the normalized value for each sample in each condition. The

lysates for western blotting were generated using standard

1XRIPA buffer supplemented with 1X Protease Inhibitor Cocktail

(Sigma). The lysates were rotated for 10 minutes at 4C, and spun

for 30 minutes at 10,000g at 4C. The supernatant was mixed with

5X loading buffer and the blots were run using the NuPage Novex

4–12% gradient Bis-Tris gels (Invitrogen) with MOPS running

buffer (Invitrogen). The blots were transferred to 0.2 mM

nitrocellulose and all primary antibody incubations were per-

formed at 4C overnight.

Immunohistochemistry
NAG cells were arrayed on poly-D-lysine coated coverslips in 12

well plates. The cells were treated as indicated and probed with the

designed antibodies. The images were collected on either a Zeiss

Axioskop 2 fluorescent microscope (Figure S1), or on a Leica SP1

laser scanning confocal microscope. The images were taken

adjusting all settings to the untreated condition. All the settings

were held constant for the remainder of the images to maintain

accurate relative fluorescence between conditions. The primary

Figure 1. c-secretase dependence of the APPGV16/Gal4-
luciferaseEGFP/EF1- NLS-bGal reporter cells. The N2a EF1-
APPGV16/Gal4-luciferaseEGFP/EF1-NLS-bGal stable cells (NAG cells)
have c-secretase dependent EGFP expression, as DAPT eliminates the
majority of EGFP fluorescence (A). The Gal4-luciferase moiety of the
reporter is also c-secretase dependent as titrated DAPT diminishes
luciferase activity (B). The decrease in luciferase activity correlates with
elevated CTFGV16 protein levels across the DAPT titration (C).
doi:10.1371/journal.pone.0009135.g001
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antibodies were previously discussed. APPGV16 was visualized

using the rabbit VP16 antibody and the Donkey anti-rabbit Alexa

546 (Molecular Probes) secondary. DAPI (Vectashield) or Hoescht

nuclear stains were used to resolve the nuclei of the cells. The

pycnotic nuclei were identified in the apoptosis assays by counting

the number of cells with either condensed or fragmented nuclei

relative to the total number of cells in each condition by an

observer blinded to the identity of the experimental conditions. No

less than 1000 cells were counted per condition.

Results

Stably Transfected Neuroblastoma Cells Can Be Used to
Measure c-Secretase Activity

The neuroblastoma N2a APPGV16/Gal4-luciferaseEGFP/

EF1-NLS-bGal (NAG) cells were generated as described in the

Materials and Methods section. The NAG cells employ a Gal4-

driven luciferase-EGFP fusion reporter which quantitatively

measures c-secretase cleavage of APPGV16. The APPGV16/

Gal4-reporter system was employed successfully as independent

vector components in transiently transfected cells[5,29]; yet this is

the first report of the reconstruction of this assay system into stably

transfected neuroblastoma N2a cells. As a novel model, we

validated that the Gal4-reporter output corresponds to c-secretase

activity. We tested both the luciferase and the EGFP components

of the Gal4-reporter system with the addition of the c-secretase

inhibitor DAPT. The NAG cells treated with DAPT for 24 hours

demonstrated almost no EGFP signal, which was robust in the

untreated cells (Figure 1A). This validated the c-secretase

dependence of the Gal4-EGFP output. Quantitative measures of

the luciferase output in NAG cells treated with titrated

concentrations of DAPT for 24 hours were employed to determine

the c-secretase dependence of the raw luminometric output. These

values were normalized to bGal activity. Consistent with the

EGFP results, the luciferase activity decreased monotonically with

increasing DAPT concentrations, with a maximal inhibition of

80% of Gal4-reporter activity (Figure 1B). The IC50 was

approximately 1 mM DAPT, consistent with previous reports of

DAPT inhibition of c-secretase [30,31]. DAPT did not impact the

normalization values in the bGal assays, ruling out toxic or non-

specific transcriptional effects. As occurs with endogenous APP,

DAPT treatment resulted in elevated levels of the a- and b-

secretase derived APP carboxy-terminal fragments (CTFa and

CTFb), with CTFa being the predominant proteolytic species

observed (Figure 1C). The holoAPPGV16 levels did not change

across the DAPT titration, ruling out APPGV16 down-regulation,

or variations in protein loading, contributing to the DAPT

mediated decrease in reporter activity. Consequently, the Gal4-

reporter system, stably incorporated into the NAG cells, is a valid

measure of c-secretase mediated proteolytic processing of

APPGV16.

Endoplasmic Reticulum (ER) Stress Induction Results in
Impaired APP c-Proteolysis and Induction of Apoptotic
Signaling (Figures 2–4)

As already mentioned, ER stress is implicated in AD

pathogenesis; however, how it impacts c-secretase processing of

APP is relatively unexplored. ER stress effects upon APP

proteolysis were measured in NAG cells treated with titrated

concentrations of three different compounds: tunicamycin,

thapsigargin and brefeldin A (BFA). Tunicamycin is a well known

inhibitor of N-glycosylation, preventing N-glycan maturation upon

transmembrane proteins within the secretory pathway [13].

Thapsigargin is a sarcoplasmic/endoplasmic reticulum calcium

ATPase (SERCA) pump inhibitor, blocking Ca2+-reuptake into

the ER, and impairing calcium dependent chaperone function

[32]. BFA blocks trafficking through the Golgi by targeting the

Figure 2. Thapsigargin inhibits APP proteolysis and induces ER
stress UPR signaling. Increasing doses of thapsigargin inhibits c-
secretase cleavage of APPGV16 (top graph). Titrated doses of
thapsigargin induced graded increases in UPR stress signaling through
phospho-PERK (pPERK blot) and phospho-eIF2a (p-eIF2 a), beginning at
0.1 mM and reaching a plateau at 0.5 mM thapsigargin. The increases in
UPR signaling correlate with the levels of phospho-p38 (pp38 blot) and
phospho-JNK (pp54/JNK, pp46JNK blot), as maximal stimulation is
observed in the same concentration range. Total protein expression
levels remain unchanged, as eIF2a and APPGV16 protein levels were
consistent across treatment conditions.
doi:10.1371/journal.pone.0009135.g002
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ADP ribosylation factor guanosine triphosphate hydrolase (Arf-

GTPase), which results in the dissolution of the Golgi apparatus

[33]. The NAG cells were treated for 18–20 hours and employed

in transactivation assays, to measure gamma-secretase mediated

APPGV16 cleavage, and in western blots examining ER stress

markers. As markers for ER stress induction, we examined PKR-

like ER kinase (PERK) and eukaryotic translation initiation factor

2a (eIF2a) phosphorylation—two critical components of UPR

signaling. As ER stress culminates in the activation of the pro-

apoptotic kinases JNK and p38 [34], we included phospho-JNK

and phospho-p38 in our examination.

Figure 3. Tunicamycin inhibits APP proteolysis and induces ER
stress UPR signaling. The NAG cells were treated with titrated doses
of the N-glycosylation inhibitor tunicamycin, which inhibits c-secretase
cleavage of APPGV16 (top graph). Increasing doses of tunicamycin
induced elevated levels UPR activation, demonstrated by elevated
levels of phospho-PERK (pPERK blot) and phospho-eIF2a (p-eIF2 a)
levels. Tunicamycin elevated phospho-p38 (pp38 blot) and phospho-
JNK (pp54/JNK, pp46JNK blot) levels in parallel with increased UPR
signaling and decreased APPGV16 proteolysis.
doi:10.1371/journal.pone.0009135.g003

Figure 4. Brefeldin A inhibits APP proteolysis and induces ER
stress UPR signaling. Brefeldin A inhibited c-secretase cleavage of
APPGV16 (top graph). Western blots show that 0.5 mg/ml Brefeldin A
induces activation of PERK (pPERK blot) and eIF2a (p-eIF2 a). Increases
in phospho-p38 (pp38 blot) and phospho-JNK (pp54/JNK, pp46JNK
blot) levels are also observed at the same concentration of BFA which
fosters increased UPR signaling and diminished c-secretase dependent
APPGV16 cleavage.
doi:10.1371/journal.pone.0009135.g004
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In the NAG cells treated with thapsigargin, there is an inverse

relationship between APP proteolysis and the activation of UPR

pathways. Gal4-reporter activity decreased with increasing

concentrations of thapsigargin (Figure 2, top). Conversely,

thapsigargin induced phospho-PERK, phospho-eIF2a and activa-

tion of p38 and JNK (Figure 2) between 0.1 mM and 0.5 mM.

Maximal stimulation of each UPR pathway occurs by 0.5 mM

thapsigargin. Concordantly, thapsigargin maximally inhibits APP

proteolysis by 0.5 mM, suggesting that repression of APP

proteolysis occurs coordinately with the induction of ER stress.

Maximal repression of Gal4-reporter activity by thapsigargin

results in a decrease of 63 percent, less than observed with DAPT,

suggesting that ER stress conditions permit low levels of c-

secretase mediated APPGV16 proteolysis. Low level stress also

attenuates c-secretase mediated APP proteolysis, as the addition of

0.1 mM thapsigargin, which correlates with slight increases in the

UPR markers, decreases Gal4-reporter activity.

Similarly, tunicamycin treatment induced ER stress and

decreased c-secretase mediated APP proteolysis (Figure 3).

Tunicamycin inhibited 59 percent of Gal4-reporter activity at

the highest titrated dose. Thapsigargin and tunicamycin inhibit

APP proteolysis to a similar degree, suggesting that a common

mechanism may be involved. Additionally, Gal4-reporter output

decreases in a linear inverse relationship with the appearance of

UPR markers. The concentration of tunicamycin which induces

detectable levels of phospho-PERK and phospho-eIF2a (1 mg/ml)

inhibits c-secretase mediated APP proteolysis by approximately 50

percent. Repression of APP proteolysis and stimulation of UPR

signaling are both maximal at 5 mg/ml tunicamycin. The tight

coupling of APPGV16 proteolytic repression and ER stress

induction, following tunicamycin treatment, supports a direct

relationship between ER stress and APP proteolysis.

Unlike thapsigargin and tunicamycin, the dose-response curve

for both UPR activation and APP proteolytic repression is abrupt

and non-linear with BFA treatment (Figure 4). Maximal repression

of APPGV16 cleavage occurs concordantly with activation of the

UPR markers. APPGV16 protein levels remain even, or increase

slightly, with BFA treatment—demonstrating that change in

APPGV16 protein expression is not responsible for the repressive

effects observed. The inverse relationship between APP proteolysis

and UPR activation subsequent to BFA treatment is consistent

with the effects of tunicamycin and thapsigargin. However, BFA

more potently inhibits APPGV16 proteolysis than either thapsi-

gargin or tunicamycin—decreasing Gal4-reporter activity by 88

percent. The degree of proteolytic repression with BFA is similar

to that observed with DAPT, demonstrating the essential role of

ER to Golgi trafficking upon secretase mediated APP processing.

All three secretases (a,b, and c) undergo glycosylation mediated

maturation through the secretory pathway. As APP proteolytic

processing is a sequential process, the repression of any individual

secretase would inhibit release of the AICD. Consequently, we

examined the effects of ER stress induction upon two other

proteolytic fragments directly: C99 and the AICD. DNA vectors

encoding each protein fragment fused to Gal4VP16 were

transfected into naı̈ve N2a cells. The transfected cells were treated

with tunicamycin, thapsigargin or BFA. Consistent with previous

reports showing that c-secretase activity requires trafficking into

later compartment of the secretory pathway [9], all three ER stress

inducing compounds block c-secretase mediated cleavage of

C99GV16 to varying degrees. Thapsigargin and BFA induced

statistically significant levels of APP proteolytic repression (Figure

S2). Confirming that ER stress induction does not influence the

genetic reporter system, there is no significant or systematic shifts

in C50GV16 (the c-secretase cleaved AICD-GV16 portion of

APPGV16) driven Gal4-reporter activity in the presence of the

stress inducing compounds.

Small Molecular Chaperone PBA Results in Restored AICD
Production under Stress Conditions

Small molecular chaperones are a class of compounds which

facilitate protein folding and subsequent trafficking through the

secretory pathway [25]. Numerous reports confirm that PBA, one

member of the small molecular chaperone class, relieves ER stress

and UPR signaling [35,36,37]. Consequently, we employed PBA

to test whether small molecular chaperones could rectify APP

proteolysis under ER stress conditions. NAG cells were grown in

the presence or absence of all three ER stress inducing compounds

and treated with titrated levels of PBA from 0 to 10 mM for 24

hours. As previously observed, the addition of thapsigargin,

tunicamycin or BFA induced a statistically significant decrease in

the levels of c-secretase mediated APP cleavage (Figure 5A). Co-

treatment with PBA eliminated the repression of APP proteolysis

associated with thapsigargin and tunicamycin treatment

(Figure 5A), increasing Gal4-reporter activity above basal levels

by 10 mM. However, PBA had no effect upon BFA induced

decreases in c-secretase mediated APPGV16 processing. Since

BFA treatment results in Golgi dissolution, and eliminates the

possibility of trafficking through the secretory pathway, the lack of

any PBA effect in BFA treated cells strongly suggests a role for

PBA in stimulating trafficking under stress conditions. Neither the

decrease in APPGV16 proteolysis brought about by the ER stress

inducing compounds, nor the PBA mediated increase in

APPGV16 cleavage, is due to changes in APPGV16 protein

levels, as there is no correlation observed between expression level

and Gal4-reporter activity (Figure 5B).

The a-, b-, and c-secretases undergo maturation by proteolysis

and glycosylation as they travel through the secretory pathway

[9,16,17,22]. Consequently, the activity of all three secretases

could be inhibited under ER stress inducing conditions due to

diminished trafficking through the secretory pathway. In order to

assess whether the activity of all three classes of secretases are

inhibited under stress conditions, we examined the levels of the

CTF-GV16 species in the various treatment conditions. Consistent

with the interpretation that ER stress induces inhibition of the c-

secretase complex, elevated levels of CTF-GV16 were observed

following treatment with both thapsigargin and tunicamycin

(Figure 5B). This suggests that thapsigargin and tunicamycin

more significantly impact c-secretase processing than either a- or

b-secretase processing, but does not eliminate the possibility that

stress induction may attenuate a- or b-secretases to a lesser degree.

Interestingly, BFA elicits dramatic increases in the quantity of

holoAPPGV16 and completely attenuates production of the CTF-

GV16 species—suggesting that BFA inhibits APPGV16 processing

at multiple levels (Figure 5B). BFA may block the maturation of all

three secretases, by trapping them in the ER, and preventing their

activation in subsequent components of the secretory pathway.

Consistently, as PBA enhances APPGV16 cleavage, the level of

CTF-GV16 decreases. However, some caution is necessary in

interpreting these results as PBA may increase all three classes of

secretase activity concomitantly.

In order to assess whether PBA induced APP proteolysis

correlates with decreases in ER stress, PBA was titrated onto

tunicamycin treated cells. As previously shown, both phospho-

JNK and phospho-PERK levels increase with tunicamycin

treatment (Figure 5C). However, co-treatment with PBA decreases

both phospho-JNK and phospho-PERK levels (Figure 5C). This

suggests that PBA mediated rectification of APPGV16 proteolysis

occurs concurrently with decreases in UPR signaling. The
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Figure 5. Small molecular chaperone 4-phenylbutyric acid (PBA) rescues APP proteolysis from thapsigargin and tunicamycin
treatment. NAG cells either remained untreated, or were treated with thapsigargin (0.25 mg/ml), tunicamycin (5 mg/ml), or brefeldin A (5 mg/ml)
alone, or in conjunction with titrated values of PBA, for 24 hours. Gal4-luciferase measures were normalized to constitutive NLS-bGal expression.
Treatment with each stress inducing compound resulted in significant decreases in APPGV16 proteolysis (p,0.0002, unpaired t-test) (A). Co-
treatment with PBA rescued the decrease in APPGV16 proteolysis, promoting cleavage beyond that observed in untreated cells in the presence of
thapsigargin or tunicamycin (p,0.0001, t-test). PBA had no significant effect upon APPGV16 proteolysis in the NAG cells treated with brefeldin A. The
effects of the stress inducing compounds and PBA upon APPGV16 and CTFGV16 protein levels were examined in parallel experiments (B).
Thapsigargin and tunicamycin treatment resulted in elevated CTFGV16 levels. Co-treatment with PBA resulted in minor decreases in CTFGV16 levels
by the titration endpoint. No CTFGV16 proteolytic fragments were observed in the brefeldin A treated NAG cells. PBA inhibited UPR signaling
(phospho-JNK and phospho-PERK) induced by 5 mg/ml tunicamycin (C).
doi:10.1371/journal.pone.0009135.g005
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concomitant increase in APP proteolysis and decrease in UPR

markers, argues that stimulation of APP proteolysis occurs due to

changes in ER stress related processes following PBA treatment.

PBA Promotes APPGV16 Trafficking
Previous reports suggest that ER stress induction may alter APP

trafficking [7,8]. APPGV16 localization was examined in the NAG

cells under non-stress inducing conditions, or in the presence of

thapsigargin, tunicamycin or BFA. In the untreated cells,

APPGV16 localized throughout the cell, with limited peri-nuclear

aggregation, consistent with trafficking through the early secretory

pathway. Treatment with all three stress-inducing agents promot-

ed accumulation in intracellular sites that probably represent ER

localization. In cells treated with BFA, the peri-nuclear aggrega-

tion was more robust, with no APPGV16 observed beyond the

peri-nuclear region (Figure S1). In order to assess whether the

small molecular chaperone PBA rectifies trafficking under ER

stress-inducing conditions, NAG cells were treated with each of the

ER stress-inducing pharmacological agents in the presence or

absence of PBA. The cells were examined by thin-section laser

scanning confocal microscopy. In the untreated cells, APPGV16

distributed ubiquitously throughout the cell, as previously

observed. With increasing concentrations of PBA, the localization

pattern shifted toward the outer region of the cell, consistent with a

predominantly plasma membrane localization by 5 mM PBA

(Figure 6, top row). The NAG cells treated with either tunicamycin

or thapsigargin had restricted APPGV16 localization, accumulat-

ing in the peri-nuclear region, consistent with the data in Figure

S1. However, in the presence of PBA, the localization of

APPGV16 is more evenly distributed throughout the cell,

appearing similar to basal conditions by 5 mM PBA (Figure 6,

second and third rows). Discordantly, in the NAG cells treated

with BFA, APPGV16 localized to the peri-nuclear region, and was

unaffected by PBA (Figure 6, bottom row). These data suggest that

there is a strong correlation between APPGV16 localization and

proteolytic processing in the different treatment conditions.

PBA Stimulates APP Proteolysis
The PBA mediated stimulation of APP proteolytic processing

under ER stress conditions, and the changes in subcellular

localization, suggests that PBA may promote c-secretase mediated

cleavage of APP under basal conditions. In order to assess what

effects PBA has upon APP cleavage in non-stress related

conditions, PBA was titrated onto NAG cells in the absence of

ER stress inducing compounds. PBA treatment stimulated a dose-

dependent increase in APP proteolysis, reaching a near 8-fold

increase by 10 mM (Figure 7A). Higher concentrations of PBA

elicited no additional increase in Gal4-reporter activity (data not

shown). The PBA induced stimulation of c-secretase mediated

APPGV16 proteolysis was observed in three separate experiments,

each demonstrating a similar magnitude of effect. There was no

effect of PBA upon constitutive bGal expression, ruling out non-

specific transcriptional effects contributing to the observed

stimulation.

In parallel experiments, gradual titrations of PBA were

performed to assess the effects of PBA upon APPGV16 and

mature c-secretase levels. Across the PBA titration, APPGV16

protein levels increased, but not proportionally to the observed

increases in Gal4-reporter output (Figure 7B). Additionally, the

levels of CTF-GV16 rose appreciably with PBA treatment,

suggesting that PBA may foster APP processing at multiple stages.

Specifically, based upon molecular weight PBA appears to increase

the a-secretase derived CTF-GV16 species. In order to determine

the effects of PBA on c-secretase, we examined PS1 and nicastrin

levels. We observed no effect of PBA upon PS1 or nicastrin levels

across the titrated concentrations (Figure 7B). Consequently, the

stimulatory effects of PBA are not due to changes in the raw

protein levels of the core c-secretase components. Furthermore,

PBA stimulated the accumulation of the CTF-GV16 proteolytic

product in an additive manner with DAPT—wherein both PBA

and DAPT elicit elevated levels of CTF-GV16, yet co-treatment of

the NAG cells with both DAPT and PBA promoted increases in

CTF-GV16 additively (Figure 7C). The additive effect suggests

that PBA promotes APPGV16 cleavage by either a- or b-secretase.

a- and c-Secretase Mediated APP Cleavage Is Required
for PBA Stimulation

In order to directly address which secretases are involved in

PBA mediated stimulation of APP processing, the NAG cells were

co-treated with PBA and pharmacological secretase inhibitors. In

Figure 8A, NAG cells were treated with titrated levels of PBA in

the presence or absence of either a-secretase inhibitors (GM6001

and TAPI-II) or high levels of the c-secretase inhibitor DAPT.

Consistent with previous observations, PBA alone stimulated

dramatic changes in Gal4-luciferase output. However, treatment

with either of the a-secretase inhibitors blocked approximately 50

percent of observed reporter output. Further, the PBA titration

had no appreciable effect upon NAG cells pretreated with 20 mM

DAPT (twice the concentration used in Figure 1). This strongly

supports the requisite involvement of both the a- and c-secretases

in the PBA mediated stimulation of APP proteolysis. To examine

the potential effects of PBA on b-secretase processing of APP,

NAG cells were treated with PBA in the presence or absence of a

b-secretase inhibitor (BSI IV). The data is normalized to fold-

induction to quantify the observed effect. The application of either

of two concentrations of BSI IV resulted in only a fractional

repression of APPGV16 processing—approximately a 25 percent

decrease from that observed in the absence of the b-secretase

inhibitor (Figure 8B). These data indicate that PBA may impact

both a- and b-secretase processing of APPGV16—with the

stimulation of a-secretase contributing dominantly to the stimu-

latory effects observed with PBA.

PBA Stimulates AICD Production in the Absence of
Increased Amyloid Biogenesis

The previous studies suggest that PBA has a minimal effect

upon b-secretase mediated APP cleavage. However, to test the

effects of PBA upon b-secretase processing directly, we performed

parallel experiments examining AICD-GV16 induced Gal4-

reporter activity and Ab40 and Ab42 production. The media

was drawn off of the cells and employed in a classic sandwich

ELISA procedure to measure the levels of Ab40 and Ab42

secreted during the PBA treatment period. After the media is

drawn off and employed in the ELISA, the cells were washed,

lysed and used to measure the levels of c-secretase mediated AICD

production by the reporter assays already discussed. By combining

these two assays, we directly compared the effects of PBA on

amyloid biogenesis and AICD generation. Separate sets of NAG

cells were employed for the Ab40 and Ab42 assays, and

accordingly, there are two separate assays for PBA effects upon

AICD production. Consistent with previous experiments, PBA

stimulated AICD production approximately 8–10 fold (Figure 9A

and B). However, PBA had only minimal effects upon amyloid

production. There is an approximately 32% increase in Ab40

levels (142 pg/ml to 188 pg/ml) (Figure 9C) and a 35% decrease

in Ab42 levels (35.6 pg/ml to 22.8 pg/ml) (Figure 9D). The R2

value for each amyloid standard curve was at least 0.96 in all
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assays considered. All conditions were set-up and assayed in

triplicate. The changes in Ab40 and Ab42 concentration across

the PBA titration were not statistically significant at the p,0.05

level by either two-way ANOVA analysis nor by t-test compar-

isons of the high and low points of the curve. Repeated

experiments consistently confirmed no significant effect of PBA

on amyloid secretion levels. These data support a model in which

PBA stimulates APP proteolysis through the promotion of a-/c-

cleavage.

PBA Promotes AICD/FE65 Nuclear Signaling
Numerous genes may be regulated by APP nuclear signaling, in

which the AICD, liberated from the membrane by c-secretase

cleavage, associates with Fe65 and travels to the nucleus to activate

transcription [38,39]. In order to address whether PBA or ER

stress impact APP regulated gene expression, we employed two

different Gal4 systems designed to assay AICD/Fe65 mediated

reporter activation. The primary study employed Fe65-Gal4 [40]

and HA-tagged APP, which were co-transfected at a 1:1 ratio into

naı̈ve N2a cells with the Gal4-reporter and the EF1-bGal

normalization vector. Subsequently, the transfected cells were

treated with titrated concentrations of PBA for 24 hours and

reporter activity was measured. PBA stimulated an approximate

250% increase in Fe65-Gal4 nuclear signaling (Figure 10A). In

order to optimize the Fe65: APP ratio, naı̈ve N2a cells were

transfected with 100 ng/well Fe65-Gal4 and the quantity of APP

expression vector was incrementally increased across transfection

conditions. The cells transfected with titrated quantities of the APP

expression vector were subject to either thapsigargin treatment, to

induce ER stress, or PBA, to stimulate AICD production, or left

untreated as the control. In all three treatment conditions,

maximal activation of the Fe65-Gal4 reporter is observed when

the two expression vectors are transfected at a 1:1 ratio, which

occurs at 100 ng/well of the APP expression vector (Figure 10B).

Additionally, PBA stimulates Fe65-Gal4 signaling at statistically

significant levels (p,0.0001; two-way ANOVA) above both the

untreated and thapsigargin treated conditions across the APP

vector titration (Figure 10B). The elevated level of Fe65-Gal4

Figure 6. PBA stimulates trafficking out of the intracellular organelles. NAG cells were untreated, or treated with thapsigargin (0.25 mM),
tunicamycin (5 mg/ml), or brefeldin A (5 mg/ml) in the presence or absence of PBA for 24 hours. The cells were stained with the VP16 antibody (red)
and counterstained with Hoescht (blue) to localize the nuclei. Confocal imaging was performed to examine protein localization. In untreated cells,
APPGV16 localized throughout the cytosol with slight peri-nuclear aggregations observed, consistent with the ER localization of de novo membrane
proteins. PBA treatment promoted migration of APPGV16 toward the plasma membrane (top row). In tunicamycin, thapsigargin and brefeldin A
treated cells, APPGV16 localized to the ER-like perinuclear region (left column, lower three images). Upon the addition of 1 mM or 5 mM PBA,
APPGV16 localization shifted away from the nucleus in tunicamycin and thapsigargin treated NAG cells. In contrast, PBA had no effect upon the
localization of APPGV16 in the brefeldin A treated cells.
doi:10.1371/journal.pone.0009135.g006

PBA Enhances APP Proteolysis

PLoS ONE | www.plosone.org 9 February 2010 | Volume 5 | Issue 2 | e9135



induced reporter activity with PBA treatment, in the absence of

any exogenously transfected APP, may be due to promotion of

AICD production from endogenously expressed APP. Consistent

with previous data showing thapsigargin induced decreases in

APPGV16 cleavage, thapsigargin treatment of the APP/Fe65-

Gal4 transfected cells resulted in a small, but statistically significant

(p,0.001, two-way ANOVA), decrease in Fe65-Gal4 nuclear

signaling relative to both untreated and PBA treated cells

(Figure 10B).

In order to validate the stimulatory effect of PBA upon APP

nuclear signaling, the APP-Gal4 [39] transcriptional activator was

transfected into naı̈ve N2a cells, along with Fe65, the Gal4-

luciferase reporter, and the bGal normalization vector. Untagged

Fe65 was co-transfected with APP-Gal4 at a 1:1 vector ratio. To

ensure that the reporter system was in a sensitive range, a low

(50 ng) and high (500 ng) concentration of APP-Gal4 and Fe65

were used. At 24 hours post-transfection the cells were either left

untreated, or stimulated with 5 mM PBA, for an additional 24

hours. In both low and high vector concentrations, PBA

stimulated an approximate 2-fold increase in normalized reporter

activity (Figure 10C). Interestingly, both reporter systems detected

commensurate levels of increased APP nuclear signaling with PBA

treatment, an approximate two-fold increase, which is consider-

ably lower than the PBA mediated increase in AICD production.

Figure 7. PBA stimulates secretase-mediated APP cleavage. The
NAG cells were treated with titrated concentrations of PBA for 24 hours.
PBA elicited elevated levels of Gal4-reporter reporter transactivation in a
concentration dependent fashion (p,0.0001; student t-test 0 versus
10 mM PBA) (A). PBA effects upon APPGV16, PS1 and Nicastrin
expression levels were examined in the NAG cells 24 hours post-
treatment. APP-Gal4VP16 levels increased slightly across the PBA
titration. The CTFGV16 proteolytic fragment, whose molecular weight
corresponds to the a-cleavage product of APPGV16, increased
substantially across the PBA titration (B, top blot). In contrast, no
increases in Nicastrin or PS1 levels were observed (B, middle and
bottom blots). CTFGV16 increased in NAG cells treated with PBA and
DAPT. Co-treatment with DAPT and PBA increased CTFGV16 protein
levels in an additive manner, consistent with PBA stimulating CTF-GV16
production (C).
doi:10.1371/journal.pone.0009135.g007

Figure 8. PBA stimulation of APPGV16 requires secretase
processing. In order to determine whether PBA stimulation of
APPGV16 is dependent upon proteolytic processing, NAG cells were
treated with titrated levels of PBA in the presence or absence of specific
secretase inhibitor:. 20 mM GM6001 (broad-spectrum metalloprotease
inhibitor), 50 mM TAPI-II (a-secretase inhibitor), or 20 mM DAPT (c-
secretase inhibitor). PBA stimulated a statistically significant 9-fold
increase in APP proteolysis (p,0.0001; student t-test). However, co-
treatment with GM6001 or TAPI-II decreased the fold-stimulation by
approximately half (p,0.0001; two-way ANOVA). DAPT significantly
reduced the levels of activity and eliminated the stimulatory effect of
PBA (p,0.0001; two-way ANOVA). The b-secretase contribution to PBA
enhanced APP proteolysis was examined using two different concen-
trations of beta-secretase inhibitor (BSI) IV (B). PBA stimulated an 8–9
fold increase in normalized Gal4-luciferase activity. BSI IV decreased
Gal4-luciferase activity by less than 25% (p,0.01; student t-test) (B).
These data suggest that a-secretase plays a more significant role than
b-secretase in PBA enhanced APP proteolysis.
doi:10.1371/journal.pone.0009135.g008
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These observations support PBA induced stimulation of AICD

production leading to elevated APP/Fe65 mediated nuclear

signaling. Due to the disparity in level of PBA induced signaling

between the APPGV16 assays and the AICD/Fe65 reporter

assays, these data support a model in which c-cleavage is not the

only regulatory mechanism in APP nuclear signaling.

PBA Blocks ER Stress-Induced Apoptosis
Prolonged ER stress conditions are known to result in cellular

apoptosis [13,14]. Additionally, there are reports suggesting that

Fe65/AICD nuclear signaling induces apoptosis [41,42]. Conse-

quently, the effects of ER stress induction and PBA stimulated

AICD production upon cellular apoptosis were examined in NAG

cells. The cells were either untreated or treated with a midrange

dose of thapsigargin (0.5 mM), tunicamycin (1 mg/ml) or BFA

(1 mg/ml) and co-treated with various concentrations of PBA from

0 to 5 mM. The cells were maintained for 48 hours under these

conditions and then two separate assays of apoptosis were

performed: a count of detached cells and a count of adherent

cells with pycnotic nuclei. The detached cells were taken from

three separate plates of treated cells. The numbers represent the

totals summed from all sets of cells. In order to assure that there

was no experimenter bias in the pycnotic nuclei count, the slides

were coded and examined under blind conditions. Intriguingly, by

neither assay did PBA alone stimulate any observable levels of

apoptosis (Figure 11A and B). Additionally, PBA decreased the

levels of apoptosis observed in thapsigargin, tunicamycin and BFA

treated cells to levels near those of untreated cells within both

assays. These data confirm the low toxicity and counter apoptotic

effects of PBA reported by other groups, and suggest that elevation

of the APP AICD alone is insufficient to induce measurable level

of apoptosis, at least in the presence of PBA.

Stimulation of AICD Production Is Not a Consistent
Feature of Other Molecular Chaperones

In order to assess the generality of molecular chaperone effects

upon APP proteolytic processing, comparative titrations were

performed with the NAG cells using three different small

molecular chaperones: PBA, TUDCA, and DMSO. Consistent

with previous experiments, PBA stimulated high levels of AICD-

GV16 induced Gal4-reporter activity (Figure 12A). However, the

PBA mediated effects upon APP proteolysis were not observed

with either TUDCA or DMSO (Figure 12B and 12C). Both

TUDCA and DMSO treatment elicited a 20–25% increase in

Figure 9. Amyloid biogenesis (Ab40 and Ab42) is unaffected by the PBA mediated stimulation in AICD production. The NAG cells were
treated with titrated values of PBA (0, 0.5, 1.5, and 5 mM). A two-part assay measured c-secretase dependent AICD production (A and B) and secreted
amyloid biogenesis (C and D) from the same samples. The Gal4-reporter assays were performed with the cell lysate, while the media was assayed for
species specific amyloid concentrations. PBA stimulated c-secretase mediated proteolysis approximately ten-fold (A and B) in parallel assays to the
ELISA measures for Ab40 (C) and Ab42 (D). Each concentration step in the PBA titration induced a statistically significant increase in Gal4-reporter
activity ([PBA] shift: 0 to 0.5 mM, p,0.0003; 0.5 mM to 1.5 mM, p,0.0002; 1.5 mM to 5 mM, p,0.0001; analysis performed with the values in (A)). In
contrast, there was no statistically significant change in either Ab40 or Ab42 levels. Ab40 levels increased slightly from 142 picograms/ml to 188
picograms/ml, with a p-value of 0.09. In contrast, Ab42 levels decreased from 35.6 picograms/ml to 22.7 picograms/ml, with a p-value of 0.06. In total,
Ab40 levels increased by 32.3 percent and Ab42 levels decreased 36.05 percent—neither change reaching statistical significance. Each assay was
performed in triplicate. The standard curves for Ab40 and Ab42 were linear in the tested concentration range with R2.0.96. Consequently, PBA
stimulation of APP proteolysis occurs in a non-amyloidogenic manner.
doi:10.1371/journal.pone.0009135.g009
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Figure 10. PBA stimulates APP/Fe65 nuclear signaling. Naı̈ve N2a cells were transiently transfected with combinations of APP-HA and
Fe65Gal4 (A and B) or with APP-Gal4 and Fe65 (C). Treatment with titrated PBA levels demonstrated that Fe65-Gal4 signaling significantly increases
2.5 fold with 5 mM PBA (p,0.005; student t-test of 0 and 5 mM PBA) (A). As maximal Fe65-Gal4 transcriptional signaling occurs at a specific APP:Fe65
ratio, N2a cells were transfected with titrated levels of APP. A 1:1 vector ratio of APP:Fe65 stimulated maximal signaling in all treatment conditions.
PBA significantly increased the Gal4-reporter activity over that observed with the untreated cells (p,0.0001; two-way ANOVA). Thapsigargin, in
contrast, attenuated Gal4-reporter activity in comparison to the untreated cells (p,0.001; two-way ANOVA) (B). The APP-Gal4 assay was employed to
test the consistency of the PBA mediated stimulation of AICD/Fe65 nuclear signaling. 24 hours post-transfection with APP-Gal4 and Fe65 at a 1:1
vector ratio, the N2a cells were treated with 5 mM PBA for an additional 24 hours. Two vector concentrations were employed for these assays—low
(50 ng) and high (500ng). At both vector concentrations, PBA elicited a significant 2-fold increase Gal4-luciferase activity (C) (p,0.005; student t-test).
doi:10.1371/journal.pone.0009135.g010
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observed proteolysis. Increasing the concentrations beyond the

levels demonstrated in Figure 12 did not enhance the stimulatory

capacity of any of the compounds, and resulted in high levels of

toxicity with both TUDCA and DMSO. This indicates that not all

members of the small molecular chaperone class are equivalently

effective in stimulating APP proteolysis, and that PBA may have

some of its physiological effects through other biochemical

mechanisms.

Discussion

The central question of this work is whether ER stress alters

secretase mediated APP proteolysis. In order to address this

question, we employed pharmacological treatment of the NAG

cells, using agents known to alter protein processing within, or

trafficking from, the ER. All pharmacological means of inducing

ER stress result in the accumulation of misfolded proteins in the

ER by distinct mechanisms. Our objective was to assess whether

the general effects of ER stress alter APP processing; consequently,

three different pharmacological stress inducing compounds are

employed throughout this work—tunicamycin, thapsigargin, and

BFA. Tunicamycin directly inhibits N-linked glycosylation of ER

proteins, while thapsigargin targets SERCA-mediated calcium

reuptake in the ER. Both of these approaches directly impact

protein folding, as glycosylation-state promotes the transition from

one conformational state to another—guiding the protein towards

its native conformation [13,14]. Similarly, blocking calcium

reuptake into the ER impairs chaperone function—as many of

the ER chaperones use calcium as a co-factor, and consequently

depend on intralumenal calcium to direct proper protein folding

[13,14]. BFA directly targets the Arf-GTPase, and hence impairs

ER to Golgi trafficking and promotes dissociation of the Golgi

[33].

Our initial hypothesis purported that ER stress induced changes

in trafficking would attenuate the levels of secretase mediated APP

processing. In almost direct correspondence to UPR activation

(Figure 2–4, blots) there was a partial arrest in APP proteolysis

(Figures 2–4, bar graphs). As ER stress induction regulates both

cellular transcriptional and translational responses, it could modify

the reporter output associated with this assay system. However,

there was no effect of ER stress induction upon bGal

normalization or APPGV16 protein levels. Additionally, tran-

siently transfected AICD-GV16, corresponding to the c-secretase

mediated APPGV16 cleavage product, produced stable activation

of the Gal4-reporter when treated with thapsigargin, tunicamycin

or BFA (Figure S2). Consequently, the decrement in APPGV16

driven reporter activity with ER stress induction, represents a

decrease in proteolytic liberation of the AICD-GV16 moiety.

Consistent with other work [7,8], we find that induction of ER

stress restricts APPGV16 localization to early components of the

secretory pathway. As BFA blocks the trafficking of transmem-

brane proteins out of the ER, the similarity in APPGV16

localization pattern in tunicamycin and thapsigargin treated cells

Figure 11. PBA decreases ER stress induced apoptosis. The cells
were treated with vehicle control (1:2000 DMSO) or the ER stress
inducing agents: tunicamycin (5 mg/ml), thapsigargin (0.25 mM), or
brefeldin A (5 mg/ml) in the presence or absence of PBA. A low and a
high dose of PBA were used, 1 mM and 5 mM respectively, to assess
concentration effects upon survival. The treatment was performed for
48 hours. After which, the detached cells were collected, spun down,
and counted from triplicate plates on a standard hemocytometer. The
number of detached cells increased by 3.8 fold (tunicamycin), 4.5 fold
(thapsigargin), and 5.7 fold (BFA)—all of which were statistically
different than basal levels (p,0.05) (A). With the addition of 1 mM
PBA, the number of detached cells decreased to non-statistically
significant levels in the tunicamycin and thapsigargin treated cells,
while the numbers remained statistically different in the BFA treated
cells. With 5 mM PBA co-treatment, the numbers of detached cells in all
conditions were numerically and statistically indistinguishable from

basal levels (A). The pycnotic nuclei were scored by an independent
scientist blinded to the conditions. A minimum of 1000 cells were
counted in each condition. The fraction of pycnotic nuclei are
represented relative to the total number of cells counted (% of total).
All three ER stress inducing agents elicited a two-three fold increase in
pycnotic nuclei. The fraction of cells with pycnotic nuclei decreased
with PBA treatment—in the thapsigargin treated cells, the number of
pycnotic nuclei was identical to the untreated cells by 1 mM PBA, and
by 5 mM PBA the fraction of cells with pycnotic nuclei reached basal
levels in all three treatment groups (B).
doi:10.1371/journal.pone.0009135.g011
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with BFA treated cells argues for a substantial ER localization in

all three cases. The shift in subcellular localization could directly

impact the association of APPGV16 with the mature secretases—

arguing that ER stress responses may repress one or more stages of

APP proteolytic processing.

The small molecular chaperone PBA alleviates ER stress and

UPR signaling [35,37]. Consistent with ER stress induction

playing a primary role in the attenuation of APPGV16 proteolysis

observed with all three stress inducing pharmacological agents—

PBA rectifies the repression induced by tunicamycin and

thapsigargin (Figure 5A). The putative mechanism of small

molecular chaperones is the promotion of protein folding by

decreasing the energy barrier between conformation states as the

protein folds into its cognate conformation [25]. Consequently,

PBA may rectify some portion of protein folding impaired by

treatment with either tunicamycin or thapsigargin by facilitating a

transition between conformation states in the absence of proper

glycosylation or chaperone function. Increased protein folding

would release APPGV16, and the cleaving secretase, from the ER

retention and degradation processes employed to eliminate

misfolded proteins[13]. However, there would be no rescue from

stress related processes in cells treated with BFA, as ER

localization is accomplished by targeting trafficking mechanisms

which promotes Golgi dissociation[33]. The critical role of

trafficking in APP proteolysis is highlighted by the complete lack

of a- and b-cleavage products in the BFA treated cells

(Figure 5B)—supporting other work demonstrating that secretase

mediated cleavage occurs later in the biogenic pathway [9]. PBA

mediated rectification of subcellular trafficking following tunica-

mycin and thapsigargin treatment (Figure 6), supports the direct

relationship between APP trafficking and proteolytic regulation

under ER stress conditions.

Intriguingly, PBA promotes APPGV16 trafficking (Figure 6) and

dramatically stimulates secretase mediated APPGV16 cleavage

(Figure 7) in the absence of any induced stress. The robust

stimulatory effect of PBA upon APP proteolysis suggests that PBA

may promote changes in the levels of APPGV16, the cleaving

secretases, or their functional interaction. Yet, the change in

APPGV16 proteolysis does not appear to be due to global changes

in protein levels, as there was only a slight increase in APPGV16

and no changes in either Nicastrin or PS1 protein levels across the

PBA titration (Figure 7B). The changes in APPGV16 protein levels

observed are insufficient to account for the shift in reporter

output—however, the CTFGV16 proteolytic species correspond-

ing to the a-secretase cleavage product increased considerably

across the PBA titration (Figure 7B). These data argue that overall

protein synthetic rates are not the mechanism, but rather changes

in the functional interactions between APP and the cleaving

secretases are responsible for the proteolytic stimulation. This

interpretation is consistent with the observation that PBA

stimulates CTFGV16 production in the presence of DAPT (a

well known c-secretase inhibitor)—suggesting that PBA promotes

an active association between APPGV16 and either the a- or b-

secretases. This does not preclude PBA mediated stimulation of c-

secretase cleavage, as shifts in the subcellular localization of

Figure 12. PBA specific effects upon APP proteolytic stimula-
tion. In order to determine whether all small molecule chaperones
(SMC) stimulate APP proteolysis, three different SMC were titrated onto
NAG cells: PBA, TUDCA and DMSO. The concentration range for each
titration was based on preceding experiments assaying the toxic levels
of each compound. PBA stimulated a 9.3-fold increase in normalized
reporter activity, which was statistically significant (p,0.0001, student t-
test) (A). TUDCA elicited a statistically significant 1.35-fold increase in
APPGV16 proteolysis (p,0.0001, student t-test) (B). DMSO treatment

resulted in a smaller 1.29-fold increase, which was also statistically
significant (p,0.003, student t-test) (C). All measures of statistical
significance employed end-point analysis in which the untreated cells
were compared to the final concentration in each titration. Each
compound elicited a measureable increase in APPGV16 proteolysis, yet
PBA stimulation was 6.89 times greater than TUDCA and 7.25 times
greater than DMSO.
doi:10.1371/journal.pone.0009135.g012
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APPGV16 could alter proteolysis in the absence of change in c-

secretase protein levels.

PBA stimulation of a-secretase mediated APP cleavage is

supported by experiments targeting either a- or b-secretase with

selective inhibitors. Coordinate treatment with a-secretase inhib-

itors substantially repressed PBA mediated stimulation of

APPGV16 cleavage (Figure 8A). The contribution of b-secretase

to the PBA mediated stimulation of APPGV16 cleavage appears to

be relatively minor—as the coordinate treatment of NAG cells

with PBA and the b-secretase inhibitor BSI IV resulted in a

relatively small decrease in the overall stimulation observed

(Figure 8B). However, as the pathogenic Ab42 form of amyloid

is produced at considerably lower levels than Ab40, relatively

small changes in b/c cleavage could result in relatively large shifts

in amyloid ratios. Consequently, we examined the levels of each

secreted amyloid species in direct comparison to reporter output.

Consistent with the inhibitor studies, PBA had little effect upon the

biogenesis of either amyloid species (Figure 9). These data suggest

that PBA mediated stimulation of APP processing occurs

predominantly through a/c-cleavage, and does not significantly

impact amyloidogenic processing. This is consistent with other

work which suggests that under normal circumstances a- and b-

secretase processing is not competitive [43]. Additionally, the

NAG cells express sufficient levels of APPGV16 that competition

for substrate between the a- and b-secretases may not occur.

Furthermore, blocking c-secretase activity with DAPT eliminates

the PBA mediated enhancement of APPGV16 cleavage, demon-

strating that the PBA mediated increases in reporter activity, are

due to changes in the proteolytic processing of APPGV16.

Unlike amyloid secretion assays, the APPGV16/Gal4-reporter

system interrogates the levels of AICD released into the

intracellular compartment subsequent to c-secretase mediated

cleavage. The APP intracellular domain (AICD) forms a complex

with Fe65, which is reported to traffic to the nucleus and activate

gene expression following c-secretase mediated APP cleavage

[38,39]. Numerous genes are implicated as APP/Fe65 regulatory

targets including APP [44], neprilysin [45], KAI1 [38], GSK-3b
[41] and others. While there is some contention about the validity

and significance of these putative gene targets [46], we sought to

assess whether PBA treatment or ER stress induction alters

AICD/Fe65 nuclear signaling using recombinant reporter assays.

Two separate assays were used: one in which Fe65 is fused to the

Gal4 binding domain and co-transfected with wild-type human

APP695 [47]; the other assay employs the Gal4 binding domain

fused to the carboxy-terminus of APP695 [39]. Both assay systems

demonstrated a significant increase in AICD nuclear signaling

following PBA treatment, while stress induction by thapsigargin

induced a repression in nuclear signaling (Figure 10A-C).

Interestingly, PBA stimulation of Gal4-reporter activity via the

transactivation potential of the AICD/Fe65 complex is far smaller

than observed within the NAG cell proteolytic assay. This may be

due to the far weaker transactivation capacity of the AICD/Fe65

complex relative to the potent GV16 transactivation domain.

However, ER stress induction and PBA treatment act qualitatively

similar upon AICD production (assayed with the APPGV16/

Gal4-reporter assay) and AICD/Fe65 mediated Gal4-reporter

activity—suggesting that repression of AICD production in ER

stress and facilitation of AICD production with PBA treatment are

both likely to alter AICD mediated gene expression.

One of the issues associated with pursuing a/c-cleavage

promoting agents as therapeutics in AD is the notion that either

the AICD or the AICD/Fe65 complex may promote apoptosis.

Numerous groups have reported neurotoxic effects associated with

over-expression of the AICD [41,42,48,49,50]. Consequently, we

examined the effects of prolonged PBA treatment in stressed and

unstressed NAG cells. PBA treatment had no effects upon

unstressed cells—suggesting that the elevated levels of AICD

induced by PBA is insufficient to promote apoptosis (Figure 11A

and B). In stressed cells, PBA prevented apoptosis in response to all

three pharmacological treatments (Figure 11A and B). While these

results are consistent with the anti-apoptotic effects of PBA in

other systems [35,51], it was surprising that PBA could overcome

the apoptotic effects of BFA—as PBA has no effect upon the BFA

induced repression of APP proteolysis. The butyrate short-chain

fatty acid moiety of PBA inhibits histone deacetylation (HDAC)

activity [52], which promotes neuronal survival [53]. The HDAC

inhibitory capacity of PBA may contribute to its anti-apoptotic

activity, potentially accounting for the apoptotic rescue observed

in the BFA treated cells. The capacity of PBA to function as both a

small molecule chaperone and an HDAC inhibitor may represent

a convergence of biological activities that vests it with a unique

therapeutic potential. Irrespective of the mode action underlying

the anti-apoptotic effects of PBA, these data demonstrate that

stimulation of AICD production alone is not guaranteed to induce

apoptosis.

The potential multiplicity of biological roles of PBA led us to

examine the effects of other members of the small molecular

chaperone family upon APP proteolytic processing in the NAG

cells. Two other commonly studied small molecules with reported

chaperone-like function are taurine-conjugated ursodeoxycholic

acid (TUDCA) and dimethylsulfoxide (DMSO) [13,25,37].

Neither DMSO nor TUDCA stimulated APPGV16 proteolysis

analogously to PBA (Figure 12). The significance of these data is

unclear—yet, one argument is that generic chaperone function is

not sufficient to stimulate APP proteolysis, at least in the absence

of ER stress inducing conditions. Alternatively, there may be some

target specificity within the small molecular chaperone family

through which different members are more effective in promoting

the folding and trafficking of certain classes or types of proteins.

The plausibility of PBA providing therapeutic potential to AD

patients is supported by a recent study in which the cognitive

capacity of AD transgenic mice is rescued by transient PBA

treatment [54]. Despite the cognitive rescue, the amyloid plaque

pathology was not ameliorated. However, initiating PBA treat-

ment in late stage pathological progression would not be expected

to alleviate amyloid deposition as the plaques form prior to PBA

treatment. Earlier administration of PBA may alter the relative

abundance of a/c and b/c cleavage of APP. While we observe

little effect of PBA upon amyloid biogenesis in vitro, PBA may

have different effects in vivo than we observed within the NAG

cells—most notably, the increase in a/c-cleavage may drive down

the levels of APP available to b-secretase. The lack of competition

we observe within the NAG cells may be due to the profound over-

expression of the APPGV16 substrate. In AD transgenic models in

which ADAM10 is over-expressed, b-secretase mediated process-

ing of APP decreases, amyloid plaque formation is lessened, and

the cognitive capacities of the dual transgenic animals is improved

[55]. Conversely, over-expression of the dominant negative

ADAM10 leads to an exacerbation of the AD phenotype [56].

Taken together, these data suggest that the balance of a- and b-

secretase mediated APP proteolysis may be a critical factor in

determining the pathogenic progression in AD. Our group is

currently examining the potential therapeutic effects of PBA in

other AD transgenic mouse models, in which PBA administration

begins prior to the pathological onset, and is administered across

its anticipated progression.

The rationale for pursuing APP proteolytic stimulation via a/c-

cleavage is consistent with the growing body of evidence pointing
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to a loss of function associated with the genetically heritable

Familial Alzheimer’s disease (FAD) mutations [2]. Herein, the

FAD mutations in PS1 are associated with a decrement in total

amyloid levels [3] and a decrease in AICD production [4,5]. As

noted, the loss in c-secretase proteolytic function may be

mechanistically coupled with the increased production of the

pathogenic Ab42 amyloid species [57]. Pathogenic amyloid

production may induce ER stress [58,59], providing a mechanistic

link between one of the cardinal features of AD and the

manifestation of ER stress in AD patients. Deficits in proteolytic

degradation and protein quality control observed in AD patients

may promote protein aggregation [12], and subsequent ER stress

induction, which could decrease c-secretase mediated processing

of APP in sporadic AD patients. In this context, the disruption of

de novo protein maturation and trafficking in the ER may

promote stress and UPR activation, and replicate the loss of

function component of AD pathogenesis. The capacity of PBA to

counteract ER stress and promote protein trafficking through the

secretory pathway, along with PBA mediated stimulation of a/c-

cleavage, strongly supports the investigation into the therapeutic

potential of PBA for the treatment of AD.

Supporting Information

Figure S1 APPGV16 localization shifts to intracellular organ-

elles with thapsigargin, tunicamycin or brefeldin A treatment.

NAG cells were grown on 4 well slides to approximately 80%

confluence and remained untreated (top row), or were treated with

0.25 mg/mL thapsigargin (Thaps, second row), 5 mg/mL tunica-

mycin (Tunic, third row), or 5 mg/mL brefeldin A (BFA, bottom

row) for 18 hours. The cells were stained with the VP16 antibody

(red) to determine localization of the APPGV16 protein. The cells

were co-stained with Hoescht to label the nuclei (blue). In

untreated cells, APPGV16 was detectable throughout the cell. In

cells treated with thapsigargin or tunicamycin, the majority of

APPGV16 was immediately adjacent to the nucleus, similar to the

ER localization observed in the brefeldin A treated cells (BFA,

bottom).

Found at: doi:10.1371/journal.pone.0009135.s001 (11.11 MB

TIF)

Figure S2 ER stress induction represses c-secretase mediated

cleavage of C99. The light bars represent N2a cells transfected

with C99GV16 and the darker bars represent cells transfected

with the c-secretase cleavage product C50GV16 (AICD fused to

GV16). The single star (*) denotes a p-value,0.05; while the

double star (**) denotes a p-value,0.001. All three stress inducing

compounds inhibit C99GV16 cleavage; yet only thapsigargin and

brefeldin A repress proteolysis to a statistically significant degree.

None of the stress inducing compounds had any repressive effect

upon C50GV16, demonstrating that stress induction does not

impair the function of the genetic reporter system.

Found at: doi:10.1371/journal.pone.0009135.s002 (1.71 MB EPS)
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