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Abstract

Background: Amyotrophic Lateral Sclerosis (ALS) is neurodegenerative disease characterized by muscle weakness and
atrophy due to progressive motoneuron loss. The death of motoneuron is preceded by the failure of neuromuscular
junctions (NMJs) and axonal retraction. Thus, to develop an effective ALS therapy you must simultaneously preserve
motoneuron somas, motor axons and NMJs. A conditioning lesion has the potential to accomplish this since it has been
shown to enhance neuronal survival and recovery from trauma in a variety of contexts.

Methodology/Principal Findings: To test the effects of a conditioning lesion in a model of familial ALS we administered a
tibial nerve crush injury to presymptomatic fALSG93A rats. We examined its effects on motor function, motoneuron somas,
motor axons, and NMJs. Our experiments revealed a novel paradigm for the conditioning lesion effect. Specifically we found
that the motor functional decline in fALSG93A rats that received a conditioning lesion was delayed and less severe. These
improvements in motor function corresponded to greater motoneuron survival, reduced motor axonopathy, and enhanced
NMJ maintenance at disease end-stage. Furthermore, the increased NMJ maintenance was selective for muscle
compartments innervated by the most resilient (slow) motoneuron subtypes, but was absent in muscle compartments
innervated by the most vulnerable (fast fatigable) motoneuron subtypes.

Conclusions/Significance: These findings support the development of strategies aimed at mimicking the conditioning
lesion effect to treat ALS as well as underlined the importance of considering the heterogeneity of motoneuron sub-types
when evaluating prospective ALS therapeutics.

Citation: Franz CK, Quach ET, Krudy CA, Federici T, Kliem MA, et al. (2009) A Conditioning Lesion Provides Selective Protection in a Rat Model of Amyotrophic
Lateral Sclerosis. PLoS ONE 4(10): e7357. doi:10.1371/journal.pone.0007357

Editor: Ulrich Mueller, University of Giessen, Germany

Received May 7, 2009; Accepted September 18, 2009; Published October 6, 2009

Copyright: � 2009 Franz et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: Our experiments were funded by a laboratory start-up grant from Emory University (N.M.B.). The funders had no role in study design, data collection
and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: nboulis@emory.edu

¤ Current address: Faculty of Medicine, University of Calgary, Calgary, Alberta, Canada

Introduction

Amyotrophic lateral sclerosis (ALS) is a progressive neurode-

generative disease characterized by the loss of motoneurons. The

majority of ALS cases are sporadic in origin (,90%), and the

remaining 10% of cases are the inherited form, commonly referred

to as familial (f)ALS [1]. For more than a decade Riluzole has

remained the only medication proven to slow, albeit very

modestly, the progression of ALS. This lack of success in ALS

therapeutic development has not been due to lack of effort. Rather

it seems to be reflective of our incomplete understanding of disease

mechanisms. For example, only recently has it become widely

accepted that maintaining motor axons and neuromuscular

junctions (NMJs) are distinct from, but no less important than

preventing motoneuron cell death in ALS [2]. Thus, developing

therapies aimed at preserving both motoneurons and their

connections with muscle should be prioritized.

Conditioning lesions have been shown to augment neuronal

survival and recovery following a subsequent injury. In the PNS,

conditioning lesions have been shown to enhance regeneration

rate [3,4] and the extent of axon collateral sprouting [5,6]. If

dorsal root crush injury is preceded by a peripheral nerve axotomy

the ability for regenerating axons of the central process to

overcome inhibitory growth cues is increased [7,8,9]. Additionally,

sub-lethal insults to basal forebrain neurons have been shown to

confer neuroprotection [10]. Therefore the present study set out to

study the effects of a conditioning lesion applied to presymptom-

atic fALSG93A rats on the preservation of motor function,

motoneurons, motor axons and NMJs.

Results

Conditioning lesion focally reduced motor functional
decline

To determine the effects of a conditioning lesion on disease

progression in fALSG93A rats we crushed the tibial nerve at age 10

weeks (wk). We considered this a conditioning lesion because it was

administered prior to the onset of both motoneuron loss occurs

PLoS ONE | www.plosone.org 1 October 2009 | Volume 4 | Issue 10 | e7357



(13–16 wk) and muscle weakness (16–20 wk) [11]. Following tibial

nerve crush the function of the ankle extensor muscles was severely

compromised and behavioral recovery took 3–4 wk (Figure 1A–C).

The relatively large decreases in hindlimb grip strength (GS;

276.865.9%) and BBB locomotor rating (243.368.1%) 1 wk after

nerve injury indicated these tests were highly sensitive to tibial nerve

function. In contrast, nerve injury had lesser or no effects on ALS

motor score (220.060.0%) and body weight (+1.361.1%)

respectively, which was consistent with the more holistic nature of

these tests. From ages 15–18 wk, all behavioral tests produced stable

results in both groups. At 19 wk, hindlimb GS was significantly

reduced in Sham (75.7613.3%) versus Crush (101.566.2%;

p = 0.028). At 20 wk, both hindlimb GS (55.066.2% vs.

85.468.0%; p = 0.011) and BBB score (12.163.0 vs. 17.861.7;

p = 0.013) were decreased in Sham versus Crush. In contrast, the

ALS motor score, which provides a more holistic view of motor

function [11], did not vary significantly between groups at any time

beyond age 12 wk. From age 20 wk onward all behavioral tests

revealed a progressive decline in both groups. Body weight was

similar between groups except at age 22 wk (p = 0.026), but this

difference was likely an anomaly caused by the coincidental death of

3 Sham group animals between ages 22–23 wk (Figure 1D). In

support of this interpretation, end-stage body weight for Crush and

Sham were not statistically different (74.462.8% vs. 78.562.3%;

p = 0.196). However, when motor function was compared at end-

stage the Crush group outperformed Sham in hindlimb GS

(38.468.8% vs. 16.661.9%; p = 0.012) and BBB (2.061.1 vs.

0.3660.38; p = 0.051). Finally, at end-stage the ability to move the

ankle joint extensively remained more frequently in Crush (5/9 or

56%) than in Sham (1/9 or 11%) rats.

Disease onset, duration and survival were not altered
The behavioral benefits of a conditioning lesion in fALSG93A

rats were focal (Figure 1A–B) rather than holistic (Figure 1C–D).

Whether the focal preservation of ankle extensor function could

alter disease progression seemed doubtful. To confirm this we

compared disease onset, duration and survival between Crush

(n = 9) and Sham (n = 9). Disease onset was defined objectively as

the point where maximum body weight was reached and did not

vary with Sham (17.960.5 wk) or Crush (18.360.5 wk). Further-

more, neither disease duration (4.760.7 wk vs. 4.760.5 wk) nor

survival (22.660.7 wk vs. 22.960.8 wk) differed between Sham

and Crush respectively (Figure 2).

Conditioning lesion decreased motoneuron loss
In fALSG93A rodents, there are conflicting reports as to whether

a previous nerve injury increases [12,13,14] or decreases [15] the

vulnerability of motoneurons. We explored this issue by

comparing the density of L4–6 motoneurons at end-stage of

Crush and Sham fALSG93A rats. Relative to 10 wk (pre-operative

age), motoneurons at end-stage in Crush seem better preserved

than in Sham (Figure 3A–C). The motoneuron density for 10 wk

controls (22.661.6) had a tendency to be greater than end-stage

Crush (15.362.7; p = 0.058). However, both 10 wk (p,0.01) and

Crush (p,0.05) had significantly greater density than either Sham

(7.561.3) or the unoperated side (i.e. Contra) of Crush (8.361.6).

Consistent with the significant protection of motoneurons, we saw

clear differences in the number of myelinated axons in 10 wk

(n = 4), Crush (n = 4) and Sham (n = 4) L4 ventral roots (VRs;

Figure 4A–C).

It is recognized that larger motoneurons are more susceptible to

atrophy and/or death in ALS [16,17,18]. So we considered the

affects of axotomy on the size of the remaining motoneurons

(Figure 3E). We found 10 wk (676.3663.6 mm2) motoneurons

Figure 1. Conditioning lesion reduces the decline of motor
function. (A) The mean (6 SE) hindlimb grip strength for Crush (grey
circles) and Sham (black circles). (B) The mean (6 SE) BBB locomotor
score relative for Crush and Sham. (C) The mean (6 SE) ALS motor score
for Crush and Sham. (D) The mean (6 SE) body weight for Crush and
Sham. The number of animal assessed in each group over time is
indicated at the bottom of graph D. #, P,0.01; *, P,0.05.
doi:10.1371/journal.pone.0007357.g001
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were significantly larger (p,0.01) as compare to Crush

(503.6640.5 mm2), Sham (470.5624.1 mm2) and Contra Crush

(483.1615.2 mm2). Interestingly, histogram analysis of motoneu-

ron areas revealed that while sizes for Crush (n = 276 cells/6 rats)

were shifted towards smaller values relative to 10 wk (n = 195

cells/4 rats), when compared to either Sham (n = 107 cells/6 rats)

or Contra Crush (n = 164 cells/6 rats) noticeably more large cells

(.1000 mm) remained in Crush (Figure 3F–I). Similarly, quanti-

fication of L4 VRs showed that the number of large diameter

(.8 mm) axons was significantly reduced for Sham (229.3670.3)

as compared to Crush (537.76133.5; p,0.05) and 10 wk

(871.5647.6; p,0.01), but there was no difference in the number

of small diameter (,8 mm) axons between groups (Figure 4D).

Taken together this indicates that Crush treatment prevents the

loss and/or atrophy of at least some larger motoneurons.

Conditioning lesion selectively preserved resilient NMJs
The death of motoneurons in ALS is preceded by the loss of

NMJs and axonopathy. Recently it has been shown that NMJs are

more severely compromised in fast versus slow muscle fibers of

fALSG93A mice [19,20]. The extent to which a conditioning lesion

affects innervation at end-stage in distinct compartments of the

fALSG93A rat MG containing either mixed (,50% fast/50% slow)

or only fast fibers was examined with immunohistochemistry

(Figure 5A–C). In the mixed region, the percentage of innervated

NMJs was greater for Crush (44.166.9%, n = 532 NMJs/6 rats)

than Sham (17.961.9%, n = 618 NMJs/6 rats, p,0.01), but

compared to 10 wk (95.861.6%, n = 366 NMJs/4 rats, p,0.01)

both were less (Figure 5D). In the fast region, the percentage of

innervated NMJs was not different between Crush (10.962.7%,

n = 182 NMJs/6 rats) and Sham (6.061.9%, n = 217 NMJs/6 rats;

p = 0.168), but compared to 10 wk (70.4613.6%, n = 98 NMJs/4

rats, p,0.01) both were less (Figure 5E). The percentage of

innervated NMJs was not different between the fast and slow

regions at 10 wk (p = 0.160), but did differ at end-stage for both

Crush (p,0.01) and Sham (p,0.01).

Discussion

We have shown that a conditioning lesion in fALSG93A rats

reduced motor functional decline, motoneuron loss, axonopathy,

and muscle denervation in a focal manner. In addition, the

conditioning lesion-induced enhancement of protection appeared

to be exclusive for already ALS-resistant motoneuron subtypes.

This represents a significant advance from previous studies of

nerve injuries in fALSG93A rodents, which either didn’t allow

muscle reinnervation to occur [13,14,15] and/or only studied their

effects at intermediate stages of disease progression [12,13,14,21].

Overall, our findings describe a novel paradigm for the

conditioning lesion effect as well as imply that strategies aimed

at mimicking this effect could be effective ALS therapies.

Nerve Injuries and fALS
It seems counter-intuitive that a nerve injury could improve the

maintenance of motor function and neuroprotection in a model of

fALS. Axotomy itself can threaten the survival of motoneurons

depending on age, motoneuron type, and nature of the lesion [22].

Complete recovery of function after peripheral nerve injury is

rarely achieved [23]. In addition, the processes of axon

regeneration and synaptogenesis place metabolic burden on

already vulnerable cells. However, past research exploring the

effects of nerve injury in fALSG93A rodents have reported both

protective [15] and detrimental [12,13,14] effects on motoneuron

survival. For example, following sciatic nerve injury Kong and Xu

found 33% more VR axons at end-stage [15], but later studies that

examined sciatic [12] or facial[13,14] nerve injury found 5–47%

fewer motoneurons at disease onset.

The reason for these discrepancies is likely multifactorial. First, the

age of injury must be considered because ALS involves progressive

neurodegeneration. The aforementioned studies, plus our own

administered nerve injury to fALSG93A rodents ranging from ages

6–10 wk, which corresponds to a disease phase just after the onset of

axonopathy but prior to the loss of motoneurons or physical symptom

Figure 2. Conditioning lesion does not alter disease onset,
survival or duration. (A) The onset of disease was similar for Crush
(grey broken line) and Sham (black line) groups. (B) The age of death
was not changed by the conditioning lesion. (C) The duration of the
disease did not differ between groups.
doi:10.1371/journal.pone.0007357.g002

Conditioning Lesion for ALS
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onset [11,18]. Thus, these relatively minor variations in age of injury

seem insufficient to account for these widely discrepant results.

Second, due to their greater dependence on target-derived trophic

support, adult cranial motoneurons are much more susceptible to

axotomy-induced cell death than adult spinal motoneurons [22].

Hence, survival of adult facial and sciatic motoneurons following

Figure 3. Conditioning lesion protects motor neurons at end-stage. (A–C) Representative examples of Nissl stained ventral horns from the
L4–6 spinal cord of 10 wk un-operated, Crush, and Sham. (D) The mean (6 SE) density of motor neurons per section compared between 10 wk,
Crush, Sham and the contralateral side of Crush (Contra). (E) The mean (6 SE) area of motor neuron somas shown for each group. (F–I) Histograms
show the distribution of motor neuron areas for each group. Scale bar represents 250 mm. #, P,0.01; *, P,0.05.
doi:10.1371/journal.pone.0007357.g003

Conditioning Lesion for ALS
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axotomy should not be directly equated [13]. Third, the nature of the

nerve injury (e.g. ligation vs. crush) either prevented or allowed

muscle reinnervation. As expected, motor function was permanently

impaired when muscle reinnervation was prevented by nerve ligation

[15]. In contrast, muscle was more fatigue-resistant [12] and motor

function was better maintained (Figure 1) when muscle reinnervation

was allowed after nerve crush. Finally, the effects of axotomy were

assessed at different phases of the disease. At disease onset, the

survival of axotomized motoneurons was diminished [12], but at end-

stage, survival of axotomized motoneurons was enhanced [15]

(Figure 3). Therefore it appears that axotomy has opposing effects on

motoneuron survival depending on what disease phase is used as the

experimental end point.

To better account for these opposing effects we explored the

heterogeneity of motoneuron loss in ALS [24]. Although ALS is

Figure 4. Conditioning lesion preserves ventral root axons at
end-stage. (A–C) Photomicrographs of L4 VRs stained with toluidine
blue and taken at either 20 or 100X. (D) The mean (6 SE) number of
large (black bars; .8 mm) and small (white bars; #8 mm) myelinated
axons. Scale bar represents 150 mm (20X) or 25 mm (100X). #, P,0.01;
*, P,0.05.
doi:10.1371/journal.pone.0007357.g004

Figure 5. Conditioning lesion selectively preserves NMJs at
end-stage. (A–B) Motor endplates were stained with a-bungarotoxin
(red); axons were stained with antibodies for synaptophysin and class III
b-tubulin (green). (C) A diagram depicting MG muscle compartments
containing mixed (fast & slow) or only fast muscle fibers. (D–E) The
mean (6SE) percentage of innervated NMJs was quantified for the
mixed and fast muscle compartments of the MG muscle from 10 wk,
Crush, and Sham. Scale bar represents 50 mm (A, B) or 1 mm (C). #,
P,0.01; *, P,0.05.
doi:10.1371/journal.pone.0007357.g005

Conditioning Lesion for ALS
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characterized by the widespread loss of motoneurons, not all are

afflicted equally. For example, evidence from both ALS patients

and animal models suggest that motoneurons innervating the

greatest numbers of muscle fibers are compromised earliest

[25,26,27]. It has also been reported that motoneurons with the

largest somas and axons are more likely to be lost and/or become

atrophic [16,17,18]. These observations are congruent, since

bigger motoneurons generally innervate more muscle fibers [28],

and support the popular hypothesis that motoneurons are

specifically lost in ALS due to the burden of maintaining large

somas, long axons, and multiple synaptic connections with muscle

fibers. Elegant studies by Kong and Xu provided strong

experimental evidence for this hypothesis and suggested that a

size threshold might determine motoneuron survival. Specifically,

they found that chronic axotomy caused axonal atrophy in wild-

type mice, protected VR axons in fALSG93A mice, and increased

the proportion of small diameter axons in fALSG93A mice [15,17].

However, evidence against a direct relationship between smaller

size and ALS-resistance includes the absence of protection when

axon caliber was genetically reduced in fALSG37R mice [29], and

our findings that the axotomy-induced protection in fALS mice

was not exclusive to motoneurons with small somas (Figure 3) and

axons (Figure 4).

Since motoneuron size does not fully explain the effects of

axotomy we considered motoneurons in terms of function.

Corresponding to the muscle fiber type it exclusively innervates

(Type I or II) a motoneuron can functionally defined as slow (S) or

fast (F) respectively. F motoneurons can be further described as

fatigable (Fff; Type IIb), intermediate (Ffi; Type IIx), and fatigue-

resistant (Ffr; Type IIa). Along with well described differences in

contraction speed, strength and fatigability of their muscle

fibers[23], these motoneuron subtypes differ in their vulnerability

to degeneration in fALSG93A mice [19,20,21,26] and rats

(Figure 5). The most susceptible are F motoneurons (Fff.Ffi,fr),

which withdraw much of their innervation pre-symptomatically,

and the most resilient are S motoneurons, which do not begin to

display signs of axon degeneration until approximately disease

onset [21]. Not only is this consistent with the hypothesis that

bigger motoneurons are more susceptible in ALS, since F

motoneurons are generally larger and innervate more muscle

fibers then S motoneurons [28], but it may also accounts for the

absence of a simple relationship between size and vulnerability

[29] (Figures 3 and 4), since the range of sizes for S and F

motoneurons are known to overlap considerably [30]. Further-

more, strong evidence exists that the axotomy-induced protection

in fALSG93A rodents was selective for S motoneurons because

reinnervated muscle became more fatigue-resistant [12], had

greater oxidative capacity [12], and maintained more NMJs

exclusively in sub-compartments with S innervation (Figure 5).

Although far from conclusive, there is also evidence to suggest that

axotomy may have the opposite effect on the most vulnerable (i.e.

Fff) motoneurons. For example, when the sciatic nerve of

fALSG93A mice was crushed at age 5.5wk (i.e. .1.5 wk prior to

the earliest disease-related denervation), reinnervation deficits

were found 1 wk later selectively in muscle compartments that had

Fff innervation [21]. However, it is not known whether this

observation represented an axotomy-induced acceleration of Fff

motoneuron degeneration and/or impairment of Fff axon

regeneration.

Making medicine from mechanism
While understanding the mechanisms underlying the selective

loss of motoneurons remains one of the greatest challenges in ALS

research, exploiting the known mechanisms that confer resiliency

to specific motoneuron subtypes provides a great opportunity to

develop new therapies. For reasons that are poorly understood,

functional subtypes of motoneurons have distinct vulnerabilities

in ALS [24]. Greater resiliency is found in motoneurons that

have smaller axons, lesser innervation ratios, and synapse with

muscle fibers that are slow contracting and more oxidative

[19,20,21,26,27]. Pre-symptomatic nerve injury in fALSG93A

rodents (i.e. conditioning lesion) selectively increases the resiliency

of motoneurons possessing some or all of these characteristics

[12,15] (Figures 3–5). Taken together this highlights the relevance

to ALS of exploring: (i) the factors underlying the growth and

survival of specific motoneuron types; and (ii) strategies to

transform motoneurons from vulnerable (e.g. Fff) to resilient

(e.g. S) phenotype.

Regarding the first point, peripheral nerve axotomy is known to

cause the upregulation of various neurotrophic factor (NFs) and

their receptors [31]. NF-based therapies have been among the

most effective therapeutic approaches tested in preclinical models

of ALS [32], and could conceivably underlie the effects seen in the

present study. It is well established that different classes of neurons

are responsive to different NFs or combinations of NFs. Even

within classes of neurons, such as motoneurons, there exists

considerably heterogeneity in responsiveness to specific NFs [33].

For example, the application of Neurotrophin-3 (NT-3) to

regenerating axons appears to selectively augment the regenera-

tion of Fff motoneurons [34,35] because of their relatively high

expression of its corresponding tyrosine kinase receptor, trkC [36],

whereas NT-4 appears to selectively augment the regeneration of

S motoneurons [37] probably because they express relatively more

of the trkB receptor [38]. However, the extensive intermingling of

F and S motoneurons in the spinal cord, combined with absence of

distinguishing molecular markers, have hampered efforts to

explore the molecular heterogeneity of F and S motoneurons

more definitively. Future studies directed towards increasing our

knowledge of the variability between motoneuron subtypes might

be leveraged to optimize the impact of growth factors, which,

while promising [39], have so far failed to translate into ALS

therapies.

Regarding the second point, progress should be more rapid

given that the transformation of F motoneurons towards the S

phenotype can be accomplished with chronic electrical stimulation

and to a lesser extent exercise [40,41]. Although chronic electrical

stimulation has not yet been studied in an ALS model, different

exercise regimes have been shown to modestly extend life in

fALSG93A mice [42,43,44]. It remains to be determined to what

extent, if any, the conversion of motoneurons to more resilient

subtypes (e.g. S.FFfi,fr.Fff) may have contributed to this exercise-

induced protection. Clinical investigations of varying exercise

regimes in ALS patients have been shown to both lessen disease

symptoms and improved function [45,46,47], nevertheless there

remains some concern among clinicians about advocating exercise

to ALS patients because of the conflicting epidemiological reports

on whether physical activity may [48,49,50,51] or may not

[52,53,54] be a disease risk factor.

Materials and Methods

Rats
Experiments were performed on fALSG93A rats, which were

transgenically engineered to express the human Cu+2/Zn+2

superoxide dismutase 1 gene with a glycine to alanine base pair

mutation at its 93rd codon [55]. The founders for the fALSG93A

colony were obtained from Taconic Farms (Germantown, NY)

and bred locally. Genotyping was performed by PCR as previously

Conditioning Lesion for ALS
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described [56]. All procedures were approved by the Institutional

Animal Care and Use Committee of Emory University.

Surgery
All surgeries were performed on 10 wk old fALSG93A rats.

While anesthetized with 2% isoflurane, an incision was made

parallel to and below the femur, and the tibial nerve was exposed.

In the Crush group (n = 9), the tibial nerve was crushed with

jeweler’s forceps for 10 sec at the level of the knee. The crush site

was visually inspected to confirm that all axons were severed as

indicated by a translucent appearance. In the Sham group (n = 9),

following a 10 sec exposure of the tibial nerve, the wound was

closed with the nerve intact. To control for gender or generational

differences the Crush and Sham groups were balanced with

littermates of both sexes.

Behavioral Analysis
Baseline motor behavioral tests were performed by a blinded

tester 1–3 days prior to surgery, and then post-operatively 1 x/wk

until end-stage, which was defined as the day at which they were

unable to right themselves within 30 sec of being placed on either

side [55]. Motor behavioral measurements included hindlimb grip

strength (GS), Basso-Beatti-Bresnahan (BBB) locomotor rating

[57], and ALS motor score [11]. The GS measurements were

made with an automated GS meter (Columbus Instruments,

Columbus, OH) with the average of 3–6 trials recorded. Disease

onset was defined retrospectively as the day when rats reached

their maximum body weight.

Neuropathology
Post-operatively fALSG93A rats were perfused with 4% parafor-

maldehyde (PFA) at end-stage. To serve as pre-operative controls

several fALSG93A rats were perfused at age 10 wk (n = 4). Tissues

were processed for assessment of motoneurons, ventral root (VR)

axons, and NMJs.

Motoneurons
A segment of the spinal cord was isolated from L3-S1. It was

cryoprotected in 30% sucrose until sinking, immersed in OCT, flash

frozen in dry ice cooled isopentane, and cryostat sectioned on to slides

at 20 mm. The tissue was air dried overnight, stained with cresyl

violet, and mounted with Permount (SP15-100, Fisher Scientific, Fair

Lawn, NJ). Every 18th section (i.e. 360 mm interval; 6–8 sections/rat)

was imaged from the L4–6 spinal cord. Images were acquired at 20X

magnification using a Nikon DS-Fi1 color digital camera on a Nikon

E400 microscope and analyzed using the NIS-Elements software

(Nikon Instruments Inc, Melville, NY). All Nissl-stained neurons in

the ventral horn that had a distinct nucleus were manually traced to

determine area. Conservatively, ventral horn neurons with areas

$300 mm were counted as motoneurons [56].

Ventral Roots
A 3–4 mm segment of the right L4 VR was dissected from the

spinal cord, post-fixed in 4% PFA, treated with 1% tetroxide for

90 min, dehydrated through graded alcohols, and embedded in

Epon plastic (EM Sciences, Cincinnati, OH). Cross-sections

(720 nm) were stained with toluidine blue, rinsed, and mounted

with Permount (Fisher Scientific). Images were acquired as

described above for motoneurons except the magnification used

was 100X. Myelinated axons were measured using NIS-element

software.

Neuromuscular Junctions
The medial gastrocnemius (MG) muscle was isolated from the

right leg, immersed in 20% sucrose mixed with OCT (1:2), flash

frozen in dry ice-cooled isopentane, and the mid-belly of its

proximal compartment was cryostat sectioned on to slides at

20 mm. The tissue was air dried overnight, blocked for 1 hr at

room temperature in PBS containing 0.3% triton x-100 and 2.5%

bovine serum albumin (BSA), incubated overnight at 4uC in rabbit

anti-neuronal class III b-tubulin (1:1000; PRB-435P, Covance,

Emeryville, CA) and rabbit anti-synaptophysin (1:100; Invitrogen,

Carlsbad, CA) diluted in blocking solution, washed several times

with PBS, incubated overnight at 4uC in goat anti rabbit IgG

secondary antibody conjugated to Alexa Fluoro 488 (1:500;

Invitrogen) and rhodamine conjugated a-bungarotoxin (1:100;

Invitrogen) diluted in blocking solution, washed several times in

PBS, and then mounted in glycerol-PBS (1:1) mixture. Images

were acquired as described above for motoneurons. The

percentage of innervated NMJs was determined based on the

co-localization of the pre-synaptic (class III b-tubulin and

synaptophysin) and post-synaptic (a-bungarotoxin) markers.

Statistics
Mean values (6 standard error of the mean; SE) are shown

throughout. The student’s t-test was used to make comparisons

between time-matched Crush and Sham data. The Kaplan-Meier

curves were generated with Sigmaplot software (Systat Software,

Chicago, IL). One-way ANOVAs were used to make comparisons

for the motoneuron and NMJ quantifications. If the F-critical

value was exceeded, Tukey’s Honestly Significant Difference post

hoc test was then applied.
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