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Abstract

Background: Tumor-infiltrating T cells are associated with survival in epithelial ovarian cancer (EOC), but their functional
status is poorly understood, especially relative to the different risk categories and histological subtypes of EOC.

Methodology/Principal Findings: Tissue microarrays containing high-grade serous, endometrioid, mucinous and clear cell
tumors were analyzed immunohistochemically for the presence of lymphocytes, dendritic cells, neutrophils, macrophages,
MHC class I and II, and various markers of activation and inflammation. In high-grade serous tumors from optimally
debulked patients, positive associations were seen between intraepithelial cells expressing CD3, CD4, CD8, CD45RO, CD25,
TIA-1, Granzyme B, FoxP3, CD20, and CD68, as well as expression of MHC class I and II by tumor cells. Disease-specific
survival was positively associated with the markers CD8, CD3, FoxP3, TIA-1, CD20, MHC class I and class II. In other
histological subtypes, immune infiltrates were less prevalent, and the only markers associated with survival were MHC class
II (positive association in endometrioid cases) and myeloperoxidase (negative association in clear cell cases).

Conclusions/Significance: Host immune responses to EOC vary widely according to histological subtype and the extent of
residual disease. TIA-1, FoxP3 and CD20 emerge as new positive prognostic factors in high-grade serous EOC from optimally
debulked patients.
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Introduction

Ovarian cancer is the most deadly gynecologic cancer, affecting

more than 190,000 women worldwide each year (International

Agency for Research on Cancer). Delayed diagnosis and the

presence of widely disseminated disease account for the high

mortality associated with the disease. Additionally, while a large

percentage of patients initially respond well to cytoreductive

surgery and standard chemotherapy, the disease usually recurs

within 2-5 years as residual tumor cells develop resistance to

chemotherapy [1,2]. Although prognosis is often poor, numerous

favorable prognostic indicators have been described, including

early stage, low grade and optimal surgical debulking [3,4].

Several recent studies have analyzed the influence of host

immunity on disease prognosis. Tumor-infiltrating CD3+ T cells

are strongly associated with favorable prognosis, specifically when

CD3+ cells are localized within tumor epithelium [5-9]. These

findings have been extended to the CD8+ T cell subset in

particular [10-17], suggesting that cytotoxic T lymphocytes (CTLs)

play an important role in the antitumor immune response.

Accordingly, other factors associated with CTL responses are also

positively associated with survival, including interferon-c (IFN- c)

[18,19], the IFN- c receptor [20], interferon regulatory factor

(IRF)-1 [21], IL-18 [22], TNF-a [23], MHC class I [24-26], and

MHC class I antigen processing machinery [17].

In contrast to CD8+ T cells, several studies have indicated that

tumor-infiltrating CD25+FoxP3+ T cells (referred to as regulatory

T cells or Tregs) are associated with decreased survival [10,27-29].

Tregs have the ability to suppress proliferation, cytokine

production, and cytolytic activity of CD4+ and CD8+ T cells by

mechanisms involving cell-to-cell contact and the release of

cytokines such as TGF-b [30,31]. Tregs can also induce an

immunosuppressive phenotype in other cell types such as

macrophages [32]. Although Tregs have been associated with

poor prognosis in many cancers, several exceptions have recently

been reported. Leffers et. al. found that FoxP3+ infiltrates in

advanced stage EOC were associated with increased survival [14].

Similar findings have been reported in colorectal cancer [33] and
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lymphoma [34-36]. Furthermore, in murine models, FoxP3+ cells

can play a positive role in anti-tumor and anti-viral immunity

[37,38]. The precise role of regulatory T cells in cancer outcomes

warrants further consideration given that several groups are

attempting to enhance tumor immunity by depleting FoxP3+
Tregs from cancer patients [39-44], including EOC patients [45].

In addition to Tregs, other cell types reportedly play an

immunosuppressive role in EOC. For example, plasmacytoid dendritic

cells contribute to immunosuppression by promoting the development

or recruitment of interleukin-10-producing CD4+ and CD8+
regulatory T cells [46,47]. Myeloid dendritic cells (MDCs) impair T

cell immunity by expressing B7-H1, a ligand for the inhibitory receptor

PD-1 found on T cells [48]. Monocytes and macrophages in the EOC

microenvironment can be polarized toward a so-called M2 phenotype,

which is typified by the expression of IL-10, TGF-b and scavenger

receptors and is thought to promote tumor progression [49,50,51].

Under the influence of IL-6 and IL-10, macrophages in EOC can also

express B7-H4, which inhibits T cell proliferation [52]. Macrophages

also produce CCL22, which promotes Treg recruitment to the tumor

environment [32]. Finally, expression of the inflammatory mediator

COX-2 in tumor epithelium has been associated with reduced

lymphocyte infiltration and poor prognosis in EOC [13,53].

With the advent of tumor tissue microarray (TMA) technology,

a large number of retrospective studies have investigated the

relationship between tumor-infiltrating immune cells and progno-

sis in EOC and other cancers. However, most studies focus on one

or a few markers, such that associations between different

immunological factors may be missed. Additionally most studies

fail to address the different histological subtypes of EOC, which

are now recognized to behave as distinct diseases [54]. As a result,

there are inconsistencies and unresolved issues in the literature

concerning the prognostic significance of different immune cell

infiltrates. To address this, we analyzed several large series of EOC

tumors, including high-grade serous, endometrioid, clear cell and

mucinous subtypes, for the presence of various immune cell

infiltrates and inflammatory markers. Our results reveal that high-

grade serous tumors have a distinct immunological profile that is

strongly associated with patient survival.

Results

Intraepithelial T cells and associated functional markers
in high-grade serous EOC

We initially investigated the relationship between immune

infiltrates and survival in a cohort of 199 high-grade serous EOC

patients. We chose to first focus on high-grade serous cases, as the

other histological subtypes exhibit distinct biological and clinical

properties that are potentially confounding [54,55]. This initial

cohort was restricted to patients who had undergone optimal

cytoreduction (i.e., without evidence of macroscopic residual

disease). Patient characteristics are shown in Table 1.

The tumors in this initial cohort had been previously assessed by

immunohistochemistry (IHC) for a variety of lymphocyte markers,

including CD3, CD4, CD8, CD20 and Granzyme B [12].

Intraepithelial lymphocytes (i.e., lymphocytes within the epithelial

component of the tumor) were scored as either present (i.e. one or

more intraepithelial lymphocytes present in at least one of two 0.6

mm cores) or absent. We re-analyzed this data focusing exclusively

on high-grade serous cases. We found that 83.2% (163/196) of

evaluable high-grade serous tumors were positive for intraepithe-

lial CD3+ T cells, whereas CD4+ and CD8+ intraepithelial cells

were found in 53.4% (103/193) and 84.0% (163/194) of evaluable

tumors, respectively (Fig. 1A&B and data not shown). CD4+ and

CD8+ cellular infiltrates showed a strong positive association

(p,0.0001). Table 2 shows statistical associations for these and all

other markers studied in this initial cohort.

While the above markers indicate which lymphocyte subsets are

present in tumors, they do not reveal their activation state. To

address this issue, we analyzed tumors for expression of CD45RO,

OX40 and CD25, which are expressed by activated T cells

[56,57]. Using the same scoring criteria as above, 70.6% (132/

187) of tumors were positive for intraepithelial CD45RO+ cells,

and 49.7% (96/193) were positive for intraepithelial CD25+ cells

(Fig. 1C&E). By contrast, only 7.0% (11/158) of tumors were

positive for intraepithelial OX40+ cells (Fig. 1D). In pair-wise

comparisons, CD45RO, CD25 and OX40 were all positively

associated (Table 2). Moreover, CD45RO and CD25 were both

associated with the presence of CD3+, CD4+ and CD8+ cells.

OX40 showed a similar trend, but this did not reach statistical

significance, likely due to the low number of positive cases.

To investigate the differentiation state of tumor-infiltrating T

cells, tissues were analyzed for intraepithelial cells expressing TIA-

1 and Granzyme B, which are markers of CD8+ cytotoxic T cells

and NK cells [58-60]. A majority of tumors (66.5%, 127/191)

were positive for intraepithelial TIA-1+ cells (Fig. 1F), and about

half of tumors (45.6%, 88/193) were positive for intraepithelial

Granzyme B+ cells (Fig. 1G). There was a highly significant

association between TIA-1+ and Granzyme B+ cells (p,0.0001).

Moreover, in pair-wise comparisons, TIA-1+ and Granzyme B+
cells were each associated with the activation markers CD45RO,

CD25 and OX40. Finally, TIA-1+ and Granzyme B+ cells were

each associated with the presence of CD3+, CD4+ and CD8+ cells

(Table 2). To examine whether TIA-1 and Granzyme B

Table 1. Clinical characteristics of the optimally debulked
high-grade serous EOC patient cohort.

Age at surgery (years)

Mean 61.00

Std dev 11.48

Range 37.59-85.96

Median 60.08

* Overall Survival (years)

Mean 5.59

Std dev 3.47

Range 0.4-17.4

Median 4.91

Silverberg Grade

1 0

2 56

3 143

Unknown 0

Stage

I 49

II 85

III 65

IV 0

Unknown 0

Total number of evaluable patients 199

*There were no deaths due to causes other than ovarian cancer, therefore
disease-specific and overall survival were equivalent.

doi:10.1371/journal.pone.0006412.t001

Immune Cells in Ovarian Cancer
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Figure 1. Immunohistochemical analysis of high-grade serous EOC tumors showing infiltrates expressing markers of T cell
differentiation and activation. (A) CD4, (B) CD8, (C) CD45RO, (D) OX40, (E) CD25, (F) TIA-1, (G) Granzyme B, and (H) FoxP3. 40X objective.
doi:10.1371/journal.pone.0006412.g001

Immune Cells in Ovarian Cancer
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expression could be due to the presence of NK or NKT cells, we

examined tumors for the NK cell markers CD56 and CD57. For

both markers, there were either few or no infiltrates at all within

the tumor epithelium (data not shown), indicating that the TIA-1+
and Granzyme B+ infiltrates were most likely T cells.

Finally, tumors were analyzed for the presence of intraepithelial

cells expressing FoxP3, which in humans is a marker of regulatory

T cells and activated T cells [61,62]. About half of tumors (52.9%,

100/189) were positive for intraepithelial FoxP3+ cells (Fig. 1H).

There was a strong association between FoxP3+ and CD25+ cells

(p,0.0001), and FoxP3+ and CD25+ cells were each strongly

associated with CD4+ cells (p,0.0001 for both markers). Thus,

consistent with previous reports [10,14,27,28], a significant

proportion of tumors contained intraepithelial infiltrates with

markers characteristic of Tregs (CD4+,CD25+, and FoxP3+).

MHC class I and II in high-grade serous EOC
We analyzed tumor cells for expression of MHC class I and II

using a four-point scale (negative, focal [,10%], patchy [10-50%]

or diffuse [.50%]). All evaluable tumors (185/185) expressed

MHC class I to some degree (i.e., focal, patchy or diffuse), indicating

they could theoretically present antigen to CD8+ T cells. For

Table 2. p-values for Chi-square tests of associations between immunohistochemical markers in the optimally debulked high-
grade serous EOC cohort.

CD3 CD8 CD4 CD45R0 CD25 OX40 TIA-1 GrB1

CD3 ,0.0001 ,0.0001 ,0.0001 ,0.0001 0.16 ,0.0001 ,0.0001

CD8 ,0.0001 ,0.0001 ,0.0001 ,0.0001 0.15 ,0.0001 ,0.0001

CD4 ,0.0001 ,0.0001 0.0021 ,0.0001 0.049 0.0013 0.0001

CD45RO ,0.0001 ,0.0001 0.0021 ,0.0001 0.031 ,0.0001 ,0.0001

CD25 ,0.0001 ,0.0001 ,0.0001 ,0.0001 0.0040 ,0.0001 ,0.0001

OX40 0.16 0.15 0.049 0.031 0.0040 0.012 0.044

TIA-1 ,0.0001 ,0.0001 0.0013 ,0.0001 ,0.0001 0.012 ,0.0001

GrB1 ,0.0001 ,0.0001 0.0001 ,0.0001 ,0.0001 0.044 ,0.0001

FoxP3 ,0.0001 ,0.0001 ,0.0001 ,0.0001 ,0.0001 0.47 ,0.0001 ,0.0001

MHC I2 ,0.0001 ,0.0001 ,0.0001 ,0.0001 ,0.0001 0.18 ,0.0001 0.0001

MHC II3 0.0078 0.0009 0.013 0.0004 0.0001 0.38 0.0006 0.016

CD20 ,0.0001 ,0.0001 0.0006 0.0036 0.0006 0.13 ,0.0001 ,0.0001

CD1a 0.11 0.096 0.046 0.21 0.27 0.030 0.31 0.48

CD68 ,0.0001 0.0001 0.0028 0.0019 0.0006 0.23 0.0005 0.0007

MPO4 0.89 0.53 0.034 0.90 0.78 0.33 0.67 0.49

COX-25 0.75 0.64 0.55 0.64 0.74 0.76 0.42 0.70

FoxP3 MHC I2 MHC II3 CD20 CD1a CD68 MPO4 COX25

CD3 ,0.0001 ,0.0001 0.0078 ,0.0001 0.11 ,0.0001 0.89 0.75

CD8 ,0.0001 ,0.0001 0.0009 ,0.0001 0.096 0.0001 0.53 0.64

CD4 ,0.0001 ,0.0001 0.013 0.0006 0.046 0.0028 0.034 0.55

CD45RO ,0.0001 ,0.0001 0.0004 0.0036 0.21 0.0019 0.90 0.64

CD25 ,0.0001 ,0.0001 0.0001 0.0006 0.27 0.0006 0.78 0.74

OX40 0.47 0.18 0.38 0.13 0.030 0.23 0.33 0.76

TIA-1 ,0.0001 ,0.0001 0.0006 ,0.0001 0.31 0.0005 0.67 0.42

GrB1 ,0.0001 0.0001 0.016 ,0.0001 0.48 0.0007 0.49 0.70

FoxP3 ,0.0001 ,0.0001 0.0009 0.35 0.0001 0.42 0.82

MHC I2 ,0.0001 ,0.0001 0.0015 0.13 0.035 0.61 0.17

MHC II3 ,0.0001 ,0.0001 0.023 0.11 0.22 0.39 0.30

CD20 0.0009 0.0015 0.023 0.87 0.029 0.60 0.13

CD1a 0.35 0.13 0.11 0.87 0.52 0.046 0.84

CD68 0.0001 0.035 0.22 0.029 0.52 0.43 0.30

MPO4 0.42 0.61 0.39 0.60 0.046 0.43 0.51

COX-25 0.82 0.17 0.30 0.13 0.84 0.30 0.51

1GrB = Granzyme B.
2MHC I = MHC class I.
3MHC II = MHC class II.
4MPO = myeloperoxidase.
5COX-2 = Cyclooxygenase-2.
doi:10.1371/journal.pone.0006412.t002
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statistical analyses, only the highest category (diffuse, .50%) was

considered positive (Fig. 2A&B). Using this threshold, 85.4% (158/

185) of tumors were positive for MHC class I. MHC class I was

positively associated with all three T cell subsets (CD3, CD4, and

CD8), the activation markers CD45RO and CD25, and the

differentiation markers TIA-1, Granzyme B and FoxP3 (Table 2).

A large majority of tumors (86.5%, 166/192) expressed MHC

class II to some degree (i.e., focal, patchy or diffuse), indicating they

could theoretically present antigen to CD4+ T cells. As with MHC

class I, only the highest category (diffuse, .50%) was considered

positive for statistical analyses (Fig. 2 C&D). Using this threshold,

41.1% (79/192) of tumors were positive for MHC class II. MHC

class II was strongly associated with MHC class I (p,0.0001).

Accordingly, MHC class II was positively associated with all three T

cell subsets (CD3, CD4, and CD8), the activation markers CD45RO

and CD25, and the differentiation markers TIA-1, Granzyme B and

FoxP3 (Table 2). Similar to the results for MHC class I, the

expression of MHC class II in tumor epithelium was positively

associated with various T cell markers, including CD3, CD4, CD8,

CD45RO, TIA-1, Granzyme B, CD25 and FoxP3 (Table 2).

Intraepithelial B cells in high-grade serous EOC
Tissues were stained with an antibody to CD20, which is

expressed by B cells from the naı̈ve to memory stages of

differentiation [63]. Intraepithelial CD20+ cells were found in

41.9% (83/198) of evaluable tumors (Fig. 3A). CD20+ infiltrates

were strongly associated with all three T cell subsets (CD3, CD4,

and CD8); the activation markers CD45RO and CD25; the

differentiation markers TIA-1, Granzyme B and FoxP3; and both

MHC class I and II (Table 2).

Figure 2. Immunohistochemical analysis of high-grade serous EOC tumors showing (A,B) high and low expression of MHC class I,
(C,D) high and low expression of MHC class II, and (E,F) high and low expression of COX-2. 40X objective.
doi:10.1371/journal.pone.0006412.g002
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Intraepithelial dendritic cells, granulocytes and
macrophages in high-grade serous EOC

Tumors were analyzed for the presence of immature and

mature dendritic cells by staining for CD1a and CD208,

respectively. A minority of tumors (13.4%, 23/172) contained

intraepithelial CD1a+ cells (Fig. 3B). No significant association

with any of the intraepithelial lymphocyte markers (CD3, CD8 or

CD20), activation markers (CD45RO or CD25), differentiation

markers (TIA-1, Granzyme B or FoxP3) or MHC class I or II

(Table 2) was seen, potentially due to the low number of CD1a+
cells. In contrast to CD1a, none of the tumors scored positive for

intraepithelial CD208+ cells. Parallel analysis of tonsil tissue

revealed the presence of many CD208+ cells, thereby validating

the IHC procedure.

About half of tumors (54.7%, 87/159) contained intraepithelial

cells expressing the macrophage marker CD68 (Fig. 3D). CD68

was positively associated with several lymphocyte markers (CD3,

CD8 and CD20), activation markers (CD45RO and CD25),

differentiation markers (TIA-1, Granzyme B and FoxP3) and

MHC class I (Table 2). To assess the presence of granulocytes, the

TMA was stained for myeloperoxidase. Twenty four percent (37/

154) of tumors contained myeloperoxidase-expressing cells

(Fig. 3C), however these showed no significant associations with

other markers, with the exception of CD4 (p = 0.034).

The COX-2 enzyme has been associated with inferior survival

in EOC when expressed in the epithelial component of the tumor

[53]. Therefore, tumors were scored for expression of COX-2 in

the epithelial component using a four-point scale (negative,

equivocal [0-1%], patchy [1-50%] or diffuse [.50%])

(Fig. 2E&F). Two-thirds of tumors (66.5%, 111/167) were positive

for COX-2 (i.e., patchy or diffuse staining). In contrast to reports

in ovarian, cervical, and other cancers, [13,64,65], the expression

of COX-2 was not significantly associated with any of the immune

infiltrates studied (Table 2).

Associations between immune infiltrates and patient
survival in high-grade serous EOC

Kaplan-Meier analysis was performed to assess the association

between various immune infiltrates and disease-specific survival

(DSS). Consistent with prior reports [5-7,10-17], intraepithelial

CD3+ and CD8+ cells were associated with increased DSS

(p = 0.0009 and 0.0008 respectively) (Fig. 4A&B). Intraepithelial

CD4+ cells showed a trend towards increased DSS, but this was

not statistically significant (Fig. 4C). The NK cell markers CD56

and CD57 showed no association with DSS (data not shown).

Intriguingly, intraepithelial CD20+ cells were associated with

increased DSS (p = 0.0033) (Fig. 4E). Furthermore, the combina-

tion of CD8+ and CD20+ infiltrates was associated with

significantly increased DSS over tumors that contained CD8+
infiltrates but not CD20+ infiltrates (median 4432 days vs. 2279

days, p = 0.0115) (data not shown).

In contrast to lymphocyte markers, the dendritic cell marker

CD1a showed no association with DSS, possibly due to the low

number of tumors containing CD1a+ cells. Likewise, the markers

CD68, COX-2 and myeloperoxidase showed no association with

DSS (Fig. 4F and data not shown).

Given the association between CD8+ T cells and DSS, we

evaluated other canonical features of active CTL responses. DSS

was positively associated with intraepithelial TIA-1+ cells

(p = 0.0003), as well as expression of MHC class I and II by

Figure 3. Immunohistochemical analysis of high-grade serous EOC tumors showing infiltrates expressing (A) CD20 (B cells), (B)
CD1a (immature DCs), (C) Myeloperoxidase (granulocytes), and (D) CD68 (macrophages). 40X objective.
doi:10.1371/journal.pone.0006412.g003

Immune Cells in Ovarian Cancer
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Figure 4. Immune infiltrates and survival in ovarian cancer. Kaplan-Meier curves showing disease-specific survival for patients scored as
positive or negative for (A) CD3, (B) CD8, (C) CD4, (D) FoxP3, (E) CD20, (F) CD68, (G) TIA-1, (H) Granzyme B, (I) MHC Class I and (J) MHC Class II. Data
were derived from optimally debulked patients with high-grade serous EOC.
doi:10.1371/journal.pone.0006412.g004
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tumor cells (p = 0.0014 and 0.0026 respectively) (Fig. 4G,I,&J).

Tumors that contained both CD8+ and TIA-1+ infiltrates were

associated with increased DSS compared to CD8+ TIA-1-negative

tumors (p = 0.0025). Several other T cell markers, including

Granzyme B, CD45RO and CD25, showed trends toward

increased DSS but did not reach statistical significance (Fig. 4H

and data not shown). OX-40 showed no apparent trend or

association with DSS, possibly due to low numbers of positive

cases (data not shown).

In apparent contrast to reports that regulatory T cells are

associated with poor prognosis, the presence of intraepithelial

FoxP3+ cells was associated with increased DSS (p = 0.010)

(Fig. 4D). Moreover, tumors that were triply positive for

intraepithelial CD4+, FoxP3+ and CD25+ cells showed a trend

towards increased survival, although this fell short of statistical

significance (p = 0.059). Likewise, tumors positive for both

intraepithelial CD8+ and FoxP3+ cells showed a trend toward

increased DSS compared to tumors that were positive for CD8+
cells but negative for FoxP3+ cells; however, this trend did not

reach statistical significance (p = 0.052). Thus, by multiple

analyses, tumor-infiltrating FoxP3+ cells showed a trend or

statistically significant association with increased DSS.

The association between immune infiltrates and survival
is dependent on the extent of residual disease

T cell infiltrates are reportedly more prevalent in patients with

optimal versus suboptimal cytoreduction [5,66]. To investigate

whether this was true for other lymphocyte markers, we analyzed

an additional cohort of 220 high-grade serous cases from patients

known to have macroscopic residual disease following primary

cytoreductive surgery. We focused on CD8+ infiltrates, as well as the

three novel prognostic markers from the preceding analysis (i.e.,

FoxP3, TIA-1 and CD20). Compared to the optimally debulked

patient cohort, patients with macroscopic residual disease had a

significantly lower prevalence of CD8+ (58.5%), FoxP3+ (20.2%),

TIA-1+ (39.5%) and CD20+ (16.3%) infiltrates (p,0.0001 for all

markers). In Kaplan-Meier analysis of these four markers, only CD8+
infiltrates had a significant association with survival (p = 0.0044) in

patients with macroscopic residual disease (data not shown).

The association between immune infiltrates and survival
is dependent on histological subtype

The preceding results were based exclusively on high-grade

serous EOC cases. To assess the association between immune

infiltrates and DSS in other histological subtypes of EOC, we

performed the same analyses using an additional 288 EOC tumors

of the following histological subtypes: mucinous (n = 31), endome-

trioid (n = 125) and clear cell (n = 132). These additional tumor

specimens were from a previously described cohort of optimally

debulked patients [12].

In general, immune infiltrates were less prevalent in the other

histological subtypes compared to the high-grade serous cases

discussed previously. This was true for all lymphocyte markers

studied (i.e., CD3, CD8, CD4, CD45RO, CD25, FoxP3, TIA-1,

Granzyme B, and CD20) (Fig. 5). The difference was most striking

for the markers FoxP3, CD25 and CD20. After the high-grade

serous cases, the next highest frequency of immune infiltrates was

seen in the endometrioid subtype (Fig. 5).

We examined the association between immune infiltrates and

DSS in the endometrioid and clear cell subtypes; the number of

mucinous cases was too small to perform robust statistical analysis.

For endometrioid cases, the only significant association found was

between MHC class II expression and increased DSS (p = 0.039)

(data not shown). For clear cell cases, the only significant

association found was between the presence of myeloperoxidase-

positive infiltrates and decreased DSS (p = 0.040, data not shown).

Thus, the relationship between immune infiltrates and survival

differs greatly between histological subtypes of EOC.

Figure 5. Prevalence of immune infiltrates and other markers across different histologic subtypes of EOC. Bars indicate the percentage
of tumors scoring positive for intrapithelial cells expressing CD3, CD8, CD4, CD45RO, CD25, FoxP3, TIA-1, Granzyme B, CD20 and CD68. Expression of
MHC class I and II by tumor epithelium is also shown. Data were derived from optimally debulked patients.
doi:10.1371/journal.pone.0006412.g005
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Discussion

We systematically examined the relationship between immune

infiltrates and patient survival in three large EOC series. In accord

with Clarke et al. [12], we found that high-grade serous tumors

have a distinct immunological profile compared to the endome-

trioid, clear cell and mucinous subtypes. Furthermore, we found

that immune infiltrates were generally more prevalent in tumors

from patients with optimal cytoreduction. FoxP3, TIA-1 and

CD20 emerged as novel immunological markers associated with

increased patient survival. Our results highlight the importance of

histological subtype in the immunobiology of EOC, which may

have important implications for the immunotherapy of this family

of diseases.

Intraepithelial lymphocytes (i.e., cells expressing CD3, CD4,

CD8, FoxP3 or CD20) were more prevalent in high-grade serous

cases, followed by endometrioid cases. Moreover, intraepithelial

lymphocytes were more prevalent in tumors from optimally

debulked patients compared to patients with macroscopic residual

disease. A number of biological features of tumors appear to

influence the density of lymphocytic infiltrates. (a) T cell infiltrates

are positively associated with expression of MHC class I and II by

tumor cells (Table 2), as well as MHC class I antigen processing

machinery [15-17,67], suggesting that antigen presentation may

be an important determinant of T cell infiltration. (b) In accord

with this notion, tumors with loss or mutation of the BRCA1 or

p53 genes have an increased density of tumor-infiltrating T cells

[12,66]. This suggests that defective DNA repair and the ensuing

genomic instability in tumors may lead to the generation of neo-

antigens that trigger host T cell responses. (c) Signaling molecules

also play a role, as the density of tumor-infiltrating T cells is

negatively associated with expression of VEGF, B7-H1/PD-L1

and endothelin B receptor by tumors [5,11,68] and positively

associated with expression of the chemokines CXCL9, CCL21,

CCL22, CCL2 and CCL5 [5,28,69]. (d) Finally, two groups have

reported gene expression profiles that correlate with the presence

of tumor-infiltrating T cells in EOC [12,70]. These latter studies

confirm some of the above associations (e.g., MHC class I and II,

beta 2 microglobulin, TAP1 and 2) and identify new factors

associated with T cell infiltrates (e.g., IL-15, IL-32 and numerous

interferon-induced genes). Presumably one or more of the above

factors accounts for the observed enrichment of tumor-infiltrating

lymphocytes in high-grade serous and optimally cytoreduced

cases.

Although the association between intraepithelial CD8+ T cells

and increased survival in EOC is a highly reproducible finding

[10-17], relatively little is known about the functional phenotype of

these CD8+ T cells. Several lines of evidence suggest a classic

cytolytic response underlies favorable outcomes. For example,

others have reported positive associations between survival and

intratumoral expression of IFN- c [18,19], the IFN- c receptor

[20], as well as numerous interferon-responsive genes such as

MHC class I [24-26], MHC class I antigen processing machinery

[17], MHC class II [15,16], and IRF-1 [21]. IL-18 [22] and TNF-

a [23] also appear to be important components of the T cell

response, as both cytokines are positively associated with survival.

We examined two components of cytolytic granules, Granzyme B

and TIA-1, both of which showed an association with CD8+ T cell

infiltrates. Of these two markers, only TIA-1 showed a statistically

significant association with survival in high-grade serous cases

(Fig. 4). TIA-1+ cells have also been described in medullary breast

cancer [71,72] and melanoma [73], where they are associated with

favorable prognostic features. By contrast, tumor-infiltrating TIA-

1+ cells are associated with decreased survival in lymphoma [74-

78]. Interestingly, TIA-1 is not simply a marker of cytolytic

granules; it is an RNA binding protein involved in post-

transcriptional mRNA regulation [79]. It remains to be deter-

mined whether the association between intraepithelial TIA-1+
cells and survival in EOC is due to the role of this protein in

cytolytic granule function or mRNA regulation.

Treg infiltrates have previously been associated with decreased

survival in ovarian EOC [10,27,28]. However, in the present study

and one other recent report [14], FoxP3+ infiltrates were

associated with increased survival. These seemingly contradictory

findings may be attributable to several factors. First, not all studies

take into consideration the histological subtypes of EOC, or the

extent of residual disease; in the present study, FoxP3+ cells were

only associated with survival in high-grade serous tumors from

optimally debulked patients. Second, a variety of antibodies have

been used to detect FoxP3, which can lead to discordant results

[80]. Third, different scoring criteria may be used. For example,

the precise intratumoral location of Tregs is an important

determinant of prognosis in gastric cancer [81]. Fourth, the

molecular markers used to define Tregs differ between studies.

Although FoxP3 is still regarded as the most reliable marker of

Tregs in human cancer [82,83], it can also be expressed by

epithelial tumor cells [84-86] and in vitro activated CD4+ and

CD8+ T cells [87-95]. For these reasons, some studies include

CD25 as a second marker of Tregs [10,28]. However, like FoxP3,

CD25 is potentially expressed by effector T cells, so it is not clear

that dual staining for FoxP3 and CD25 more accurately identifies

Tregs [89,96]. Other characteristics of Tregs include high

expression of GITR and CTLA-4 and low expression of CD127

and CD49d and [97,98], however these markers are technically

difficult to assess on paraffin-embedded TMAs.

These technical considerations notwithstanding, there is mount-

ing evidence that tumor-infiltrating FoxP3+ cells are associated

with a favorable prognosis in EOC, colorectal cancer, head and

neck cancer, and lymphoma [14,33,-36,99-102]. How might

FoxP3+ T cells promote favorable outcomes? In the present study,

FoxP3+ cells were strongly associated with other effector T cells,

and similar results have been reported in melanoma [103]. Thus,

FoxP3+ cells may simply be an indicator of a strong CD8+ T cell

response, which might outweigh any immunosuppressive effects of

FoxP3+ cells. Alternatively, subsets of human FoxP3+ T cells have

recently been shown to have a pro-inflammatory, IL-17-producing

phenotype [104-106]. Indeed, CD4+ T cells can be skewed toward

this so-called Th17 phenotype by exposure to TGF-b in

combination with IL-6, IL-1 or IL-23 [107-109]. These factors

are present in the EOC tumor environment [8], and accordingly,

Th17 cells have been reported in EOC [110-112]. Thus, the

association between FoxP3+ cells and increased survival could

potentially reflect an underlying Th17-like anti-tumor response.

Clearly, more work is required to determine the extent to which

FoxP3+ T cells in EOC represent Tregs versus Th17 or other

effector T cells.

The observation that intraepithelial CD20+ infiltrates are

associated with increased DSS is a novel finding in EOC. Dong

et. al. reported that B cells in ascites were associated with shorter

survival in EOC [113], however their study focused on B cells in

peritoneal and pleural effusions collected after chemotherapy,

which by definition constitutes a poor outcome cohort. Indeed, in

the present study, intraepithelial CD20+ B cells showed no

association with survival in patients with high-risk, suboptimally

debulked disease. Tumor-infiltrating CD20+ B cells are a hallmark

of medullary breast cancer and have been proposed to mediate a

favorable prognosis [114,115]. Moreover, the presence of a B cell

transcriptional signature in node-negative breast cancer is
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associated with increased survival [116]. B cell infiltrates in breast

cancer represent clonally expanded populations, express somati-

cally hypermutated IgG molecules, and recognize target antigens

such as ganglioside D3 and surface-translocated actin

[114,115,117-120]. It is unclear how tumor-infiltrating B cells

promote favorable outcomes in cancer. In theory, their actions

could be mediated by secreted antibodies, which can promote the

opsonization of tumor antigens, complement-mediated destruction

of tumor cells, or antibody-dependent cellular cytotoxicity. Apart

from producing antibodies, B cells can also present antigen to both

CD4+ and CD8+ T cells [121-131]. In this regard, it is noteworthy

that ovarian tumors show low numbers of CD1a+ dendritic cells;

perhaps CD20+ B cells serve as alternative antigen presenting cells

in the tumor environment. This latter idea fits well with the

observed co-localization of tumor-infiltrating B cells and CD8+ T

cells in EOC, as well as in medullary breast cancer, non-small cell

lung cancer and cervical cancer [72,132-134].

The presence of macrophages has been associated with poor

prognosis in various human cancers [135,136]. However, in

accord with a prior report by Shah et. al. [66], we found no

association between CD68+ infiltrates and survival in EOC.

Importantly, however, CD68 is not a perfect marker of

macrophages, as it is also expressed by dendritic cells and some

non-myeloid cells [137]. Furthermore, CD68 does not distinguish

between macrophages polarized towards the pro-inflammatory

(M1) or tumor-promoting (M2) phenotypes. M1 macrophages

have the capacity to kill tumor cells, whereas M2 macrophages

promote tissue repair and angiogenesis [136]. Similarly, an

immunosuppressive subpopulation of macrophages has been

described in EOC based on expression of the signaling molecule

B7-H4 [52]. Thus, additional functional markers may be required

to fully define the role of macrophages in the immunobiology of

EOC.

While this study focused on the relationship between immune

infiltrates and prognosis after standard treatments, the results may

also inform the design of immunotherapies for EOC. First, our

findings suggest that high-grade serous tumors may be especially

sensitive to T cell responses. Second, our data indicates that, in

patients with residual disease, the influence of T cells may be

overwhelmed by other factors. Third, the positive association

between intraepithelial FoxP3+ cells and survival reported here

and previously [14] prompts a reconsideration of strategies to

deplete regulatory T cells from EOC patients. And fourth, the

association between intraepithelial CD20+ cells and survival

suggests the humoral immune response may play an important

role in anti-tumor immunity that could be exploited therapeuti-

cally in parallel with CD8+ T cell responses.

Materials and Methods

Study subjects
All specimens and clinical data were obtained with informed

written consent under protocols approved by the Research Ethics

Board of the BC Cancer Agency and the University of British

Columbia. The main cohort used for this study consisted of 199

women with high-grade serous ovarian cancer seen at the BC

Cancer Agency from 1984 to 2000 (OvCaRe Ovarian Tumour

Bank, Vancouver, BC, Canada). Tumor tissue was obtained at the

time of primary surgery prior to any other treatment. Patients had

no macroscopic residual disease following surgical debulking. All

patients underwent standard treatment consisting of surgery

followed by standard platinum-based chemotherapy. Table 1

shows the general clinical characteristics of the 199-case cohort.

We also analyzed a second cohort of mucinous (n = 31),

endometrioid (n = 125) and clear cell (n = 132) EOC cases.

Patients in this cohort were also diagnosed from 1984 to 2000,

were optimally cytoreduced, and received platinum-based chemo-

therapy. Finally, we analyzed a third cohort of 220 high-grade

serous EOC patients categorized as extreme risk due to the

presence of residual macroscopic disease. Patients in this cohort

were treated from 1996 to 2000 and received platinum-based

chemotherapy.

Tumor specimens
Tumor tissue was obtained during primary cytoreductive

surgery, fixed in 10% neutral buffered formalin, processed using

standard procedures and embedded in paraffin. A tissue micro-

array (TMA) was constructed by taking duplicate 0.6 mm cores

from representative regions of each tumor block after review of

hematoxylin- and eosin-stained sections by a pathologist. TMAs

were assembled using a Pathology Devices tissue arrayer

(Westminster, MD).

Immunohistochemistry
Immunohistochemistry for CD20, CD3, CD4, CD8 and

Granzyme B was performed as described in Clarke et al.[12].

The remaining unstained slides were received at the Trev and

Joyce Deeley Research Centre where immunohistochemistry was

performed for CD45RO, TIA-1, FoxP3, CD25, OX-40, CD56,

CD57, CD1a, CD208, myeloperoxidase, CD68, COX-2, MHC

Class I and MHC Class II. Following deparaffinization, the slides

were placed in a Ventana Discovery XT autostainer (Ventana,

Tucson, AZ) for immunohistochemical staining. Ventana’s

standard CC1 protocol was used for antigen retrieval. Primary

antibodies are listed in Table 3.

TMAs were incubated with primary antibodies for 60 minutes

at room temperature, and the appropriate cross-adsorbed,

biotinylated secondary antibody (Jackson Immunoresearch, West

Grove, PA) was applied for 32 minutes. Bound antibodies were

detected using the DABMap kit (Ventana), counterstained with

hematoxylin (Ventana), and coverslipped manually with Cytoseal-

60 (Richard Allan, Kalamazoo, MI).

Histopathological analysis
Immunostained TMAs were examined by a pathologist and

scored using a variety of methods depending on the marker

studied. For CD20, CD8, CD4, CD45RO, TIA-1, Granzyme B,

CD25, OX40, CD1a, CD56, CD57, and myeloperoxidase, only

cells residing within the epithelial compartment of the tumor were

counted. FoxP3 was similarly scored within the epithelium but a

stromal score was also obtained. Tumors were scored as 0 (no

cells), 1 (1-5 cells), 2 (6-19 cells) or 3 (20+ cells); results were

binarized as positive (IHC score 1, 2, or 3) or negative (IHC score

0). CD3 was scored as 0 (no cells present), 1 (cells present in stroma

only), 2 (cells present in the epithelial compartment) or 3 (cells

present in both the epithelial and stromal regions of the tumor);

scores of 0 and 1 were reported as negative while a score of 2 or 3

was reported as positive. CD68 was scored as 0 (no cells present), 1

(luminal or stromal cells), 2 (scattered, ,20 intraepithelial cells), or

3 (.20 intraepithelial cells), results were binarized in the same

manner as CD3. COX-2 was scored as 0 (negative), 1 (equivocal,

0-1%), 2 (patchy, .1% to 50%) or 3 (diffuse, .50%) scores of 0

and 1 were reported as negative and scores of 2 or 3 were reported

as positive. For MHC class I and II, samples were scored as 0

(negative), 1 (focal, ,10%), 2 (patchy, 10-50%) or 3 (diffuse,

.50%). Scores of 0, 1 or 2 were reported as negative and scores of

3 were reported as positive.
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Statistical analysis
Statistical analysis was performed using JMP statistical software

(v7.0) (SAS Institute, Cary, NC). Univariate analysis was carried

out using the Chi-Squared statistic. The log-rank test was used to

compare Kaplan-Meier curves. p-values less than 0.05 were

considered significant.
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