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Abstract

Systemic Lupus Erythematosus (SLE) is a systemic autoimmune disease with a complex spectrum of cellular and molecular
characteristics including several dramatic changes in the populations of peripheral leukocytes. These changes include
general leukopenia, activation of B and T cells, and maturation of granulocytes. The manifestation of SLE in peripheral blood
is central to the disease but is incompletely understood. A technique for rigorously characterizing changes in mixed
populations of cells, microarray expression deconvolution, has been applied to several areas of biology but not to SLE or to
blood. Here we demonstrate that microarray expression deconvolution accurately quantifies the constituents of real blood
samples and mixtures of immune-derived cell lines. We characterize a broad spectrum of peripheral leukocyte cell types and
states in SLE to uncover novel patterns including: specific activation of NK and T helper lymphocytes, relationships of these
patterns to each other, and correlations to clinical variables and measures. The expansion and activation of monocytes, NK
cells, and T helper cells in SLE at least partly underlie this disease’s prominent interferon signature. These and other patterns
of leukocyte dynamics uncovered here correlate with disease severity and treatment, suggest potential new treatments, and
extend our understanding of lupus pathology as a complex autoimmune disease involving many arms of the immune
system.
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Introduction

Systemic Lupus Erythematosus (SLE) is a systemic autoimmune

disease marked by inflammation and tissue damage in multiple

organs. Numerous cellular abnormalities have been identified in

SLE, including lymphopenia [1], differentiation of dendritic cells

[2], and reduced presence of macrophages [3]. Additionally, there

are numerous known molecular changes, including increased

abundance of TRAIL (Entrez Gene ID 8743) [4], a type I

interferon signature[2,5,6] and a granulopoeisis signature [6].

Genes affecting risk of developing SLE include IRF5 (Entrez Gene

ID 3663), an interferon responsive gene[7,8] and STAT4 (Entrez

Gene ID 6775), a regulator of T-helper 1 cells [9], suggesting that

the regulation of differentiation and activation of immune cell

subsets is a fundamental component of the disease. All of these

cellular, molecular and genetic factors play roles in the disease, but

their relative contributions to disease onset and progression are not

yet understood. Characterization of the dynamics of SLE at the

cellular and molecular level is ongoing and promises to provide

insight into the etiology of the disease.

The capability of gene expression microarrays to simultaneously

measure essentially all human genes has made possible a variety of

approaches to analyzing biological samples [10]. A simple approach

is to measure the statistical significance of differentially expressed

genes between two groups of samples studied (i.e. patients and

controls). This supervised analysis presumes that any meaningful

differences are between the predetermined groups of samples. An

unsupervised analysis uses no prior knowledge about how the samples

are related. As an example, global hierarchical clustering was used to

discover the interferon signature in the blood of some but not all SLE

patients [2,5,6]. Closer integration of biological knowledge of genes

with the analysis of expression data can enable more detailed

examination of the patient samples. Gene Set Enrichment Analysis

(GSEA) is a knowledge-based method to identify genes differentially

expressed that share common biological functions or are in the same

biochemical pathways [11]. This type of analysis with sets of genes

that are specifically expressed in different immune cell subsets[12] can

be used to identify the presence of these subsets in disease blood or

tissue (data not shown). However, the results are only qualitative, and

systematic analysis of relative proportions or activation states of these

subsets is not possible by this method.

Microarray expression deconvolution, however, can quantify

proportions of cells in a complex tissue. The object of deconvolu-

tion is to find the solution of a convolution equation of the form:

AX~B

In this case, B is the microarray data from one complex biological

sample, X is the set of unknown proportions of the cellular
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constituents of B, and A is the known matrix of expression levels of

the genes in all the cellular constituents of B, which is convolved

with X. This matrix equation incorporates gene expression

signatures representing cell types (e.g. white blood cells) so it

may be solved using standard linear least-squares fitting for X,

which is the relative amounts of those cells in the mixture of

interest B (e.g. a white blood cell sample). Lu et al. [13] pioneered

the application of this technique to microarray data by quantifying

the proportions of cells in different phases of the cell cycle in yeast

cultures. The deconvolution based on synchronized populations of

yeast cells at specific points of the cell cycle predicted the phases

occupied by different cell cycle mutants. In another application,

Wang et al. [14] analyzed mouse mammary tissue and used the

residuals of their fit to separate the differential expression due to

changes in tissue composition from those due to intrinsic gene

regulation. In both these studies expression signatures of

homogeneous samples of cells (i.e. prior biological knowledge)

enabled the interpretation of the cellular composition of a complex

tissue.

A biological sample from a patient with an autoimmune disease

typically contains various different immune cell subsets, and the

process of microarray deconvolution can quantify their relative

proportions. Essentially, the expression of each gene in the sample

is modeled as a linear combination of the expression of that gene

in each of the cells comprising that sample. If the expression

signature of each immune cell subset is known, then the fractions

of each subset in the sample can be determined by solving a linear

equation to best fit the fractions of cell subsets to the whole

sample’s expression signature.

This first step of experimentally determining the signatures of

the constituent parts is critical because it defines the framework of

the results of deconvolution. The different cell types present in

blood can be purified in order to construct expression signatures to

use as bases for analysis. We have previously reported the

purification and microarray analysis of a large collection of white

blood cells (Immune Response In Silico, or ‘‘IRIS’’) [12]. These

data include expression of genes in different activation and

differentiation states that represent a spectrum of cell species

present in blood, providing a basis set for microarray deconvolu-

tion of blood samples. Here we test fifteen cell subsets including

several resting and activated dyads. Some are not readily

distinguishable based on surface markers alone. Moreover, it

should be possible to distinguish even greater numbers of cell types

by deconvolution.

The expression signatures in blood samples from SLE patients

show significant, specific differences from those of healthy controls

[6,15]. Some of these differences are changes in the abundance of

specific leukocyte populations [16,17], suggesting that systematic

large-scale characterization of the cellular composition of SLE

patient blood would measure quantitative differences relevant to

the disease pathophysiology. Here we use microarray deconvolu-

tion to explore immune cell subsets and activation states in SLE

patient blood. First, we measure the accuracy of the method with a

‘‘truth’’ experiment where known proportions of immune cells are

mixed, assayed on expression microarrays, and computationally

separated. Next, we performed a proof of concept experiment by

deconvolving white blood cell profiles into a modest number of

immune cell subsets. We then use this validated method to derive

immune cell signatures for a panel of eighteen major populations

and states of white blood cells. Finally, we deconvolve expression

profiles of blood samples from healthy donors and SLE patients

into the proportions of these different white blood cell subsets and

identify patterns in their dynamics related to disease and

treatment.

Results

Establishment and characterization of the deconvolution
process

The process of deconvolving mixtures of cells was developed

using a system of four transformed cell lines of immune origin:

Raji, IM-9 (both from B cells), Jurkat (from T cells), and THP-1

(from monocyte) cells. These cell lines provided the abundant

sources of pure cells necessary to support experimental mixing of

different types of cells in several different ratios. These cell lines are

useful because they show similar but distinguishable expression

profiles; their immune derivation is not important to the purpose

of the experiment. We chose two B cell lines to gauge the ability of

the assay to discriminate between cells that are very similar to each

other. The algorithm was trained and the performance limits of

deconvolution were measured by creating various mixtures of cells,

assaying the pure cells and the cell mixtures on expression

microarrays, and using the expression data from the pure cells to

deconvolve the expression data from the cell mixtures.

Data for many probesets in a given expression microarray

dataset are comprised of noise but little or no biological signal.

Here we show that reducing the contribution of these noise-

dominant probesets to deconvolution improves performance, and

we establish an approach for weighting probesets to define a high-

performance basis matrix for performing deconvolution. Probesets

were ranked by their degree of differential expression as described

in the Methods section, and a thorough set of matrices comprised

of different quantities of the most differentially-expressed probesets

was tested in deconvolution by comparing the results of each

matrix to the known mixture ratios. Both small and very large

matrices performed poorly. The distribution of matrix size to the

least squares fit to the data was continuous and exhibited a gently

rounded optimum at 275 probesets. We observed that goodness of

fit correlated very closely with how well conditioned (i.e. condition

number) each matrix was. Condition number is a scale-free

empirical property of a matrix and a high-fidelity marker for the

ability of a basis matrix to accurately deconvolve a mixture.

Therefore, subsequent basis matrices were defined by weighting

probesets to maximize conditioning.

Hierarchical clustering of the basis data revealed similar

expression signatures within each cell line and very different

expression signatures between the cell lines (Figure 1A). These

characteristics are not surprising since the approach to defining the

basis matrix was designed to maximize them, but it does confirm

that there are hundreds of expression profiles that are individually

somewhat noisy but together differentiate cell types, and it suggests

that mixtures of the cell lines could be deconvolved.

Mixtures of the cell lines were created in defined proportions in

triplicate, and each mixture sample was assayed on expression

microarrays and computationally deconvolved into its ingredient

cell lines. Comparing the resulting predicted proportions to the

actual proportions (Figure 1B) showed that the precision of the

deconvolution predictions (s.d. = 0.7860.52%) is sufficient to

discriminate immune cell subsets present in proportions below

1% in white blood cell samples. The accuracy of deconvolution

(bias = 2.461.4%) is comfortably within an acceptable limit of

10%. Neither precision nor accuracy correlated significantly with

the concentration of the particular component measured,

indicating that the major source of error is additive and not

multiplicative.

The variance between the replicates from each cell line was

relatively small (s.d. = 0.78%). The two B cell lines, IM-9 and Raji

cells, were found by deconvolution to exhibit gene expression

profiles that were relatively similar (0.96 mean correlation
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coefficient). Results from deconvolution of these two cell lines were

precise (s.d. = 0.9960.66%) and accurate (bias = 0.2761.6%). The

difference between the expected and the predicted proportions of

B and T cell lines was less precise (average s.d. = 2.4%). It was

expected that T cell lines would be more difficult to predict

accurately in these test mixtures than B cell lines because the

quantities of T cell lines in the mixtures are lower. Surprisingly,

the magnitudes and directions of each cell type’s errors were not

consistent. So although there appears to be systematic error, it is

relatively small and not necessarily explained by the cell type.

This characterization of performance on a test data set designed

to simulate the challenges of deconvolving leukocytes provides

important knowledge of the capabilities of the method that guide

its application to whole blood.

Proof of concept: deconvolution accurately predicts
fractions of immune cells in blood

Next we analyzed blood samples of known composition with

several goals in mind: first, to test the method on data independent

from that used for training; second, to verify biological

applicability of deconvolution by testing performance on leuko-

cytes instead of transformed cell lines; and third, to assess whether

deconvolution of white blood cell microarray expression data from

healthy donors would correlate well with protein expression of

markers that identify immune cell subsets. As a preliminary study,

we deconvolved whole blood samples from healthy donors and

compared those results to Complete Blood Counts (CBC) with

differential of lymphocytes, granulocytes (Figure S1). Although the

results were excellent, the CBC data lacked any detailed immune

cell subsets to more thoroughly test the performance of

deconvolution. Therefore we performed an experiment to test

the deconvolution of cell types that are more similar to each other

than those in the preliminary CBC study (and more biologically

relevant than the pilot experiment that used mixtures of cell lines).

We purified naı̈ve, effector memory and central memory T cells

from peripheral blood mononuclear cells (PBMC) and compared

the quantification of the T cell subsets by expression microarray

deconvolution to their levels determined by cell sorting (FACS).

Hierarchical clustering of the basis expression data (Figure 2A)

illustrates the significant expression differences between the three-

subset groups, a necessary condition for the data to permit

deconvolution. Many of the genes represented are general markers

for T cells, like CD5 (Entrez Gene ID 921) and CD6 (Entrez Gene

ID 923). Others like PTK2 (Entrez Gene ID 5747) and SCML1

(Entrez Gene ID 6322) have significantly higher expression in

naı̈ve T cells, while CFHR1 (Entrez Gene ID 3078) and MEOX1

(Entrez Gene ID 4222) are examples of genes with higher

expression in central memory T cells. Expression deconvolution

yielded accurate estimates of the fractions of T cell subsets

determined by FACS counting (Figure 2B). These results varied

from the FACS data by a mean of 1.3%, illustrating that

deconvolution of expression microarray data accurately deter-

mines the levels of memory and naı̈ve subsets of T lymphocytes in

blood samples.

Figure 1. Expression deconvolution was characterized using mixtures of cell lines. (a) Two-dimensional hierarchical clustering of pure cell
line samples and the probesets used as bases in deconvolution show strong segregation of cell lines and clear patterns to support deconvolution. (b)
Plotting of proportions of cell lines determined from deconvolution vs. proportions of the cell lines actually mixed shows strong congruence (RMS
error = 0.028).
doi:10.1371/journal.pone.0006098.g001
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Identification of basis probesets to define immune cell
subset expression

The proof of concept experiment tested a relatively small

number of immune cell subsets. Many others are of interest in an

immune disease such as SLE. Microarray data from the immune

cell subsets of interest have been reported previously[12] and are

summarized in Table 1.

We selected probesets to use as the basis of discriminating

between cell types by screening for those that offered the most

significant differences between the several cells in which they were

most highly expressed. In order to optimize the number of markers

selected, we computed the condition number of matrices of all

sizes, from a handful of genes in one extreme, to the whole genome

in the other. We observed that the optimal set size was 360

probesets, and we used this set to distinguish between different

immune cell subsets and activation states in all subsequent analysis

of blood samples. Figure 3 shows some examples of these probesets

that discriminate between cell types and are used in deconvolu-

tion. Most of these exemplify markers that are relatively specific

for one or two cell types. The full collection of basis probesets and

their expression levels in all cell types and states are in Table S1.

We surveyed the distribution of these data by performing two-

dimensional hierarchical clustering and visualized the results as a

heatmap with distance-measure dendrograms (Figure S2), and

found that the cells all appeared to have distinct expression

signatures, to be separated reasonably well on the dendrogram,

and to cluster near other samples that we expected to have

relatively similar signatures. We examined quantitatively whether

the eighteen cell types that we profiled are sufficiently distinct to be

resolved by their expression signatures by performing singular

value decomposition (SVD) on the basis matrix and observing the

values of the diagonal matrix. This method would yield values at

the lower-right corner of the matrix near zero if some of the cells

Figure 2. Deconvolution performance was confirmed using T cell subsets. (a) Two-dimensional hierarchical clustering of PBMC and purified
T cell samples and the probesets used as bases in deconvolution. (b) Proportions of T cell subsets determined by deconvolution are similar (RMS
error = 0.0138) to proportions determined by fluorescence-activated cell sorting.
doi:10.1371/journal.pone.0006098.g002

Table 1. Leukocyte types used as the basis for whole blood
deconvolution. Full description of methods used is published
[12].

Name Methods Summary

Resting helper T cells RosetteSep CD4+ T-cell enrichment cocktail

Activated helper T cells Plate-bound anti-CD3 and anti-CD28

Resting cytotoxic T cells RosetteSep CD8+ T-cell enrichment cocktail

Activated cytotoxic T cells Plate-bound anti-CD3 and anti-CD28

Resting B cells MACS CD138 microbeads and CD19 microbeads

Activated B cells Anti-CD40 and IL4, 23 hours

BCR-ligated B cells Anti-IgM, 24 hours

IgM memory B cells sorted CD19+/CD27+/IgG/A2

IgA/IgG memory B cells sorted CD19+/CD27+/IgM2

Plasma cells MACS CD138 microbeads and FACS

Resting NK cells RosetteSep NK-cell enrichment cocktail plus CD2
microbeads

Activated NK cells IL2, 16 hours

Monocytes MACS CD14 microbeads

Activated Monocytes LPS, 24 hours

Macrophages Differentiated in DMEM culture from monocytes,
7 days

Resting dendritic cells Differentiated from monocytes with IL4 and
GMCSF

Activated dendritic cells LPS, 24 hours

Neutrophils Ficoll gradient centrifugation of heparanized
blood

doi:10.1371/journal.pone.0006098.t001
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were inadequately different from each other; reassuringly, here the

lowest value was 3702.301. Although this value is not considered

to be near zero and thus not worrisome, it does represent the

aspect of white blood cell biology that we had least successfully

resolved, so we explored which cells caused it. We noted that the

two memory B cell samples were the two samples that were most

similar to each other and we hypothesized that they alone might

be responsible for the low end of the SVD diagonal. When we

tested this by removing the IgM memory population from the basis

matrix and refactoring it we found that the diagonal very closely

Figure 3. Expression profiles of exemplar probesets in surveyed cell types show strong differences. Microarray expression data for
selected basis probesets illustrate expression differences between immune cell types that enable expression deconvolution. Selection of probesets
was performed manually to highlight the varying specificity of different genes for different cell types. Data plotted is the mean expression signal of at
least three biological replicates. Complete data are available in Table S1.
doi:10.1371/journal.pone.0006098.g003
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resembled the previous diagonal but with the lowest value missing

(Figure S3), confirming that all the cells have been sufficiently

differentiated and that the two memory B cell populations are the

least differentiated.

The probesets in the basis set represent many genes that are

already known to be good markers for particular cell types and

states. For instance, well-known B cell markers like CD19 (Entrez

Gene ID 930) and MS4A1 (Entrez Gene ID 931) were observed to

provide the best discrimination for B cell levels, and CD3 genes

like CD3D (Entrez Gene ID 915) were among the best markers for

T cells. In some cases the most distinguishing markers were not the

classic markers used for cell sorting. For example, it was not

surprising that the immunoglobulin heavy chain mu constant

region is the most distinguishing marker in microarray data for

plasma cells circulating in the blood, but CKLFSF2 (Entrez Gene

ID 146225) expression emerged as a superior marker for

neutrophils and CLIC3 (Entrez Gene ID 9022) for NK cells.

Deconvolution of immune cells purified from whole
blood

Validity of deconvolution of whole blood using this large basis

set was assessed by experimenting with purified leukocyte samples

completely distinct from the samples and data used to build the

basis expression matrix. This separate microarray dataset from

CD4+ T cells, CD19+ B cells, CD56+ NK cells, CD14+
monocytes, and neutrophils purified from different donors were

deconvolved and the results are shown in Figure 4. Results from

resting and activated cell populations were added to yield total cell

abundance for each cell type where appropriate. Each purified cell

type was determined to be mostly pure and contaminated by less

than 10% of each other cell type, confirming the validity of the

basis set and its application to blood deconvolution.

Deconvolution of SLE patient and healthy donor blood
With the method of deconvolution validated and characterized

and a rich set of probesets and cell types defined for use in blood,

we investigated samples of biological interest for which the relative

abundance of cell types was unknown. Deconvolution was

performed on microarray expression data from white blood cell

samples from 72 SLE patients and 45 healthy donors (Table S2).

Proportions of cells of each type and state were calculated

(Figure 5A). Residuals from fitting the model were relatively low,

with a median of 0.11. Stability of the fits was analyzed by

repeating the fitting process with each of various cell types omitted

(i.e. ‘‘leave one out’’ testing); we observed that there was only a

very small disturbance in the results of the fit by the remaining

cells. Furthermore, the disturbance that did occur was confined to

cells that were very similar to the one that was omitted (Figure S4).

Figure 4. Performance of expression deconvolution on purified leukocytes supports using it on whole blood. Purification and
expression deconvolution of an independent test set of leukocytes from whole blood demonstrates that various cell types are properly deconvolved.
Plotted data is the calculated fraction of that cell type in the whole sample produced by deconvolution of each of the five purified cell types. Data
points are each from different donors.
doi:10.1371/journal.pone.0006098.g004
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Overall SLE patients displayed mild lymphopenia: for T, B, and

NK cells the sums of all cell counts of each cell type was found to

be significantly lower in SLE than in healthy controls. In order to

compare the degree of activation of different leukocyte types we

define activation as the ratio of the abundance of activated cells of

a given type to the abundance of resting cells of that type. T helper

cells, NK cells, and monocytes were each found to be significantly

activated in SLE compared to healthy controls. NK cells were on

average 149-fold more activated in SLE, while T helper cells were

59-fold more activated. In contrast, B cells and cytotoxic T cells

displayed no significant activation. Dendritic cells were undetect-

able (at or below the lower limit of detection) except for activated

Figure 5. Complete leukocyte deconvolution of healthy or SLE whole blood shows significant differences. (a) Deconvolved relative
abundance of different leukocyte cell types and activation states exhibit statistically significant differences between healthy donors and SLE patients
in many (noted by ‘‘*’’; p-values are 8.6e-07, 3.1e-10, 3.5e-04, 1.5e-09, 1,1e-03, 1.6e-15, 2.2e-16, 6.9e-06, 1.1e-08, respectively). Quantile boxes and tails
are 10%ile, 25%ile, 50%ile, 75%ile, and 90%ile. (b) Determination in healthy or SLE blood of relative abundance of total lymphocytes, monocytes, or
neutrophils by CBC differential compared to determination of relative abundance by deconvolution. Diagonal lines are y = x, shown for reference,
highlight the agreement between the two methods.
doi:10.1371/journal.pone.0006098.g005
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dendritic cells in SLE. Although their activation cannot be

accurately calculated using the definition of activation used here,

the abundance of activated dendritic cells at almost 2% in SLE

samples is significant and notable. Neutrophil and plasma cell

levels were not significantly different between SLE patients and

healthy controls.

We tested these results’ validity by comparing them to counts of

total lymphocytes, total monocytes, and neutrophils determined by

CBC differentials performed on the same blood samples

(Figure 5B). The correlations between the two methods were

reasonably good (average Pearson coefficient = 0.5196) and very

consistent between different cell types (standard deviation of the

mean = 0.136). To specifically validate findings of particular

interest from deconvolution, we purified and quantified activated

NK and T helper cells from SLE patients and healthy controls and

tested their level of activation using the conventional method of

FACS. Purified NK cells were stained with the classical activation

marker CD62L. Consistent with results from deconvolution, two

out of three patients showed substantial activation of NK cells

compared to healthy donors, while one patient showed mildly

elevated levels of NK cell activation (Figure 6A). CD4+ T helper

cells purified and stained for the marker of naı̈ve T cells CD62L

show significant down-regulation (Figure 6B), indicating activation

and suggesting a transition to a memory phenotype. To validate

our unexpected finding that B cells were not activated in lupus

patients we purified B cells from the same three patients and

quantified levels of CD80, a molecule found on the surface of

activated B cells that provides a costimulatory signal for T cell

activation. Two of the three patients’ B cells possessed increased

levels of CD80 (Figure 6C). To reconcile this observation with the

lack of B cell activation in the main SLE cohort we examined

CD80 levels in the expression profiles of the reference resting and

activated B cell samples used for deconvolution and found no

significant difference between the two groups.

Next we investigated whether there were specific relationships

between the quantities of pairs of different immune cell

compartments by examining the distribution of each pair of

immune cells in healthy and SLE individuals visually. Levels of T

helper cells and NK cells vary widely in both healthy and lupus

blood samples. However, there are no cases where moderate or

higher levels of both resting and activated cells exist in the same

sample (Figure 7A and B). Either most of these lymphocytes are

activated or very few are activated. Most of the SLE patients

appear to have either a greater proportion of activated T helper

cells or a greater proportion of activated NK cells than do healthy

individuals (Figure 7C). Additionally, most patients seem to have a

similar number of activated cells. In some patients there are more

activated T cells, and in others there are more activated NK cells.

This observation suggests that the total number of activated T

helper and NK cells is regulated. K-means clustering assigned

patients in this study into three discrete groups: those with a high

proportion of activated T cells, those with a high proportion of

activated NK cells, and those with low activation in both immune

cell subsets. Linear least-squares fitting on the two groups with a

high proportion of activated cells measures the hypothesized

maximum activation state to have a slope of negative one (slope of

21.00078, RMS error of 0.044). This supports the model of a

regulated activation state in lupus patients that can be achieved

either through activation of T cells or NK cells. Comparison of

levels of resting and activated monocytes (Figure 7D) showed that

total levels of monocytes are roughly constant and that as

increasing levels of activated monocytes are observed, decreasing

levels of resting monocytes are seen. This relationship is seen in

both SLE patients and healthy donors. As noted previously, SLE

patients showed a higher average abundance of activated

monocytes, although the total monocyte counts in the two groups

are comparable.

To further explore the potential significance of these findings,

we next explored whether immune cell levels in the main cohort

were related to clinical parameters such as patients’ disease

activity, medication, or traditional hematological measures.

Comparison of the abundance of immune cells with clinical

disease severity showed significant positive correlation between

patients’ SLEDAI (Systemic Lupus Erythematosus Disease

Activity Index) scores and the abundances of activated dendritic

cells and activated NK cells (Figure 8), but other immune cell types

were not significantly correlated with SLEDAI. Complement C3

and C4 levels were compared to immune cell levels and found to

be not significantly correlated (data not shown). In order to explore

possible relationships between medication and immune cell levels

we categorized the SLE patients according to whether they were

or were not currently undergoing treatment with corticosteroids,

azathioprine, or mycophenolate and then tested for differences in

the level of immune cell type based on the presence or absence of

each treatment. Populations of resting B cells and resting cytotoxic

T cells were both reduced significantly (Figure 9) by each

treatment, while the populations of these two cell types in their

activated state were not significantly different (data not shown). No

other cell types’ levels were affected as much by medication, nor

were any of them significantly affected by more than one

medication class, in contrast to B and CD8 T cells’ relationship

to all three classes of medication. We also examined whether

changes in cell abundance were related to current use of selective

serotonin reuptake inhibitors (SSRI), Angiotensin Converting

Enzyme (ACE) inhibitors, statins, anti-malarial medications, or

beta-blockers and found no significant effects (data not shown).

Discussion

Microarray deconvolution is an emerging method for measur-

ing proportions of cell types or states in complex systems. The

studies reported here are the first application of this technique to

human biology, the first application to blood, and the first

application to study immune disease. The autoimmune disease

SLE is a prime example of a disease where determining the

proportions of immune cells is an important contribution to

understanding the etiology of the disease. In addition to the

biological advances, this study extends previous work on

deconvolution in several technical ways that are necessary to

support its application to SLE. First, we validate the method using

complex biological samples of known composition in order to

show that it can be performed on blood samples. Second, we

measure the performance of the method on a controlled system

with a precisely known answer. Third, we expand the number of

component cell types quantified in mixed samples, and we validate

the method on an independent test set of those cell types.

Here we find that patients suffering from SLE have some types

of blood cells activated predominantly: NK cells have the highest

activation, followed by T helper cells, monocytes, and dendritic

cells. This activation is validated by FACS analysis of blood

samples from an independent cohort of SLE patients and healthy

donors. Also, it is consistent with previous observations that genes

upregulated in response to interferon signaling are expressed at

high levels in lupus patients [6]. Many of these interferon

responsive genes are present at increased levels in the activated

versus resting lymphocytes observed here, suggesting that NK

cells, T helper cells, and monocytes are the circulating cells

principally responsive to type I interferon. Type I interferons are
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Figure 6. FACS counting validates key findings from expression deconvolution. Quantifying levels of resting or activated lymphocytes from a
separate validation cohort by purifying and staining with markers of activation validates the two most significant findings from microarray
deconvolution of healthy and SLE patients’ blood. (a) NK cells purified and stained for the classical NK activation marker CD62 show significant activation
in two patients and mild trend towards activation in a third. (b) CD4+ T helper cells purified and stained for the marker of naı̈ve T cells CD62L show
significant downregulation, indicating activation and suggesting a transition to a memory phenotype. (c) CD19+ B cells purified and stained for the
marker of activated B cells CD80 show mixed results: no change in one patient, mild upregulation in another, and strong upregulation in the third.
doi:10.1371/journal.pone.0006098.g006
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also known to promote maturation of monocytes into conventional

dendritic cells (cDCs) [18], and this activity is consistent with our

observation that activated dendritic cells appear in the blood of

SLE patients. CDCs respond to bacterial infections and mediate

the associated exacerbations in SLE patients, and they have been

found to release IFN-alpha upon TLR4 ligation following priming

with IFN-beta [19], consistent with their apparent involvement

here.

Conventional methods that use gene expression to quantify

biological processes must use a single gene or a set of well-

correlated genes, but solving a system of gene expression equations

surmounts this limitation. For instance, RSAD2 (shown at the

bottom of figure 2) would be a relatively poor cell type marker but

is very valuable when quantifying cell types by the methods used

here, since it is significantly differentially expressed between many

different cell types. This gene is also important here because it is

well-established to be induced by type 1 interferons [20]. Among

the activated cell types considered here, RSAD2 expression is high

in those (and only those) that are found to be more abundant in

SLE patients. Therefore, this gene (and others with similar

expression profiles, not shown) and the results here based on it

support current views that the interferon signature observed in

Figure 7. Significant relationships exist between activation patterns of different cell populations. Visual analysis of T or NK cell types’
abundance from individual donors of the main cohort reveals further patterns. (a) Plotting of resting vs. activated NK cells shows that activation of NK
cells occurs to all NK cells simultaneously. (b) Plotting of resting vs. activated T helper cells shows that likewise activation of T cells occurs to all T cells
simultaneously. (c) Plotting of activated NK cells vs. activated T helper cells shows that most patients’ populations of these two cells appear to lie
along a negatively sloped line. Linear least squares fitting to those samples yields a line of slope 21.00078. (d) Levels of resting and activated
monocytes show a negative relationship with each other in both SLE and healthy donors.
doi:10.1371/journal.pone.0006098.g007
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most SLE patients is due to the simultaneous activation of several

classes of leukocytes by type 1 interferons and that this class of

cytokines is central to the disease (reviewed in [21]).

The dynamics of activation appear to differ among cell types.

For instance, monocytes constitute approximately the same

fraction of blood in all samples examined, and the distribution

of the proportion of resting to activated monocytes was fairly

uniform across its observed range. In contrast, both NK and T

helper lymphocytes were essentially fully activated or fully resting.

Unlike FACS, the algorithm used here cannot differentiate

between a population of a given cell type that are all

homogeneously mildly activated and a population of that cell

type that consists of a mixture of some resting cells and some

strongly activated cells, since the parameters used to assess

activation are merely the total quantity of each gene’s mRNA

present in the sample. The monocytes observed here might possess

the ability to adopt a mildly activated state, or perhaps they

function in discrete activation states like lymphocytes appear to but

differ in that the entire population of monocytes need not all be

resting or activated in unison.

In some cases the level of activation of a patient’s white blood

cells was correlated among different cell types. For instance,

dendritic cells’ and NK cells’ levels of activation are positively

correlated. However, some types of lymphocytes exhibit more

complex negative relationships. The maximum level of activated

NK cells and T helper cells in SLE patients appears to be constant

at approximately 30%. This is clearly seen in most SLE patients,

but healthy individuals typically have substantially fewer activated

lymphocytes. Although the results presented here offer no direct

evidence about the mechanisms by which this pattern occurs, the

data are consistent with the existence of a regulatory system that

constrains the maximum total level of these two cell types to 30%

and permits shifts in the balance between them. Both activated T

helper cells and activated NK cells exhibit signs of being important

to SLE pathology [16,22–25], even at the transcriptional level

[26]. Perhaps their relative levels define clinically important

subtypes of SLE, and if so they might be useful diagnostic markers

for this disease characteristic.

Several of the cell types that are hypothesized to be particularly

important in SLE are correlated with patients’ clinical measure-

ment of disease activity. Activated dendritic cells are efficient

antigen presentation machinery, and this cell type is found here to

be more abundant in patients with relatively active disease,

consistent with correlations between autoantibody blood titer and

SLE disease activity [27].

Other immune diseases may be amenable to the methods

presented here. One challenge will be the interpretation of

predictions in a disease that affects specific organs such as

rheumatoid arthritis where there is less evidence of a systemic

effect. Deconvolution of biopsies from these patients would have to

be interpreted with caution as individual cell types are difficult to

isolate from solid tissues for any validation. Moreover, biopsies

would contain significant quantities of cells of unknown type.

Therefore their signature genes would not be included in the basis

matrix for deconvolution. Of course, expanding the arsenal of data

on basis cell types would enable thorough analysis of such diverse

kinds of samples.

Expression deconvolution has several advantages over cell

sorting[28] or other traditional methods for quantification of cell

species. First, conventional methods deal with at most a handful of

different cell types at one time, while expression analysis can

simultaneously quantify a much greater number of cell types.

Second, deconvolution integrates the partially redundant infor-

mation of a large number of genes to yield its results; this

redundancy is important because it mitigates the contribution of

noise inherent in biological measurements and thus boosts

robustness. Third, post-hoc analysis of expression datasets is

relatively rapid, and there are a large and growing number of

datasets publicly available. Novel methods of expression analysis

like deconvolution have the potential to further tap this important

resource for the scientific community.

One concern with the application of a system of linear equations

such as used here is the mathematical structure of the problem: is it

well posed, what is the dimensionality and conditioning of the

matrix. The dimensions of the matrix are important because a

system of linear equations must be overdetermined- it must have

more equations than unknowns in order to not have multiple

perfect solutions, and in this case there are 360 equations and only

18 unknowns. The equations must be linearly independent- that is,

each sample’s expression signature must not be the equal to the

sum of other signatures when they are each multiplied by any

constant- this requirement is also satisfied. Finally, the matrix must

Figure 8. Disease activity is related to changes in cell populations. SLE disease activity index (SLEDAI) scores from the main SLE patient
cohort are significantly correlated with activated NK cell or activated dendritic cell relative abundance. Diagonal lines and statistical metrics are from
the linear least squares fit to the plotted data.
doi:10.1371/journal.pone.0006098.g008
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be well conditioned. That is, the solutions yielded must be

relatively stable and not overly sensitive to small fluctuations in

input data. This characteristic represents a satisfactory bound on

the error of the solution for a given mixture, and can be thought of

as the result of a basis matrix that contains genes that together

form a complete but parsimonious set of robust markers for the cell

types of interest. The property of conditioning is quantified as the

condition number, a positive scalar value that is low when the

matrix is stable. As expected, the condition number was found to

be high for small or large numbers of genes and to have a

minimum for moderate numbers of genes. The basis matrices used

here were constructed in part by minimizing their condition

number, and they do in fact have condition numbers near zero.

The stability of the whole blood basis matrix was verified by

comparing results of deconvolution of whole blood using all cell

types to results obtained from deconvolution of the same samples

with one or two of the cell types omitted. Omission of a few cell

types did not grossly alter the results for the other cell types.

Reassuringly, those that were altered were the ones that would be

expected. For instance, omitting activated dendritic cells from the

basis matrix caused resting dendritic cells to be estimated slightly

higher in abundance since those two signatures are substantially

similar.

There are several limitations of microarray deconvolution that

bear discussion. One is that it produces answers about the

composition of a sample only for a given set of constituents, in this

case the immune cell subset profiles that form the basis matrix.

This set can be constructed beforehand or determined via

bootstrap methods from the mixture data itself, but either way it

may be incomplete or inaccurate. We have assembled a fairly

comprehensive set of immune cell subsets with which to analyze

SLE, but there are likely to be important subsets not profiled here.

Two cell types in particular are known to play important roles in

SLE but are not included here because they were deemed to be

too rare in blood to be reliably detected by this expression analysis

approach: regulatory T cells and plasmacytoid dendritic cells.

Regulatory T cell levels have been found to be higher in SLE

patients and to correlate with disease activity [29], and their

Figure 9. Medical treatment is related to changes in cell populations. Relative abundance of selected cell types for SLE patients from the
main cohort segregated by whether the patient was currently on corticosteroid, azathioprine, or mycophenolate treatment. Fold changes shown are
fold change of the mean of the data. P-values shown are from two-tailed Wilcoxon Rank Sum test. Quantile boxes and tails are 10%ile, 25%ile, 50%ile,
75%ile, and 90%ile.
doi:10.1371/journal.pone.0006098.g009
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interactions with NK cells [30] make them a very interesting and

relevant cell type. Plasmacytoid dendritic cells are the major

source of type 1 interferons and are thought to be central to this

axis of SLE (reviewed in [31]). Although technically intractable

here, inclusion of these cells in studies of this kind would likely

offer further insights into SLE biology. Memory T cells were also

omitted from the SLE analysis even though they were profiled in

the proof of concept experiment because we chose to subset T cells

for the basis matrix by CD4/CD8 status and activation status.

Adding yet another orthogonal factor, memory status, would have

multiplied the number of T cell profiles from four to twelve, an

extension that would be interesting but is beyond the scope of this

work.

The conspicuous lack of increase of activated B cells or plasma

cells in our survey of SLE samples may be due to dissimilarity

between the in vitro stimulated B cells and CD138+ purified plasma

cells we used and the populations of plasma cells that produce the

autoreactive antibodies that are a hallmark of SLE. We performed

both canonical cytokine activation of B cells and B Cell Receptor

ligation via anti-IgM antibodies, but neither protocol for B cell

activation yielded a signature that was detected at a higher level in

SLE than healthy controls. We confirm in the validation samples

that the level of the activation marker CD80 is elevated on B cells

from some SLE patients and show that this marker is not

differentially upregulated in our in vitro activated B cell cultures.

This resolves the apparent conflict between the results presented

here and the general view that B cells are activated in SLE disease,

and it underscores the importance of capturing the complexity of

relevant cell biology as fully as possible in any set of basis samples

to be used for expression deconvolution.

Lahdesmaki et al. [32] used a Bayesian approach to deconvolu-

tion that avoids a priori definition of basis groups and instead

estimates them. Successful application of this approach requires a

dataset with a relatively large number of cell types with linearly

independent expression profiles. In our hands, use of the biological

knowledge of important immune cell subsets and our definitions of

their expression profiles increased the accuracy of deconvolution

predictions.

Another limitation of microarray deconvolution is the discrete

nature of the component cell types in the basis set. The model

assumes that cells do not exist in significant quantities in states

intermediate between those that are purified and profiled for

inclusion in the basis set. This issue has been addressed in one

study: continuous variation in the expression levels of genes have

been mapped to continuous cellular states in cell cycle experiments

in yeast [33]. Immune cells also exist at different points in a

continuum of states of differentiation and activation. However, we

did not consider these states here because of the complexity of

modeling the large number of intermediates stemming from a

group of eighteen basis cell types. We did observe that the

residuals from fitting of immune cell basis matrices to the SLE

blood in this study were small, indicating that the discrete model’s

assumptions are valid. We assume that the residuals are due to a

combination of technical noise and incomplete sampling of

expression profiles of leukocyte populations. The relative contri-

butions of these two factors are not known, but we predict that fit

could be further improved if the different states of immune cells

were more fully represented. For example, it might be advanta-

geous to capture varying degrees of activation by contrasting

signatures of cells that are resting and activated in vitro. Also, the

canonical activation of cells used in this study are widely believed

to simulate in vivo activation reasonably well, but there are other

forms of activation (e.g. Th1/Th2/Th17/Treg cell polarization)

that could be performed and profiled on microarrays to better

capture the spectrum of leukocyte populations in blood.

Expression deconvolution may actually even have the potential

to help identify these cells or states. In this study we selected genes

that discriminated between the cell types we had chosen to assay;

this step improves the performance of the method but likely

implicitly excludes the best markers for cell types that were not

chosen. If the approach was modified to include more genes, then

the subset of those extra genes that fit poorly might be good

markers for cell types or states that should have been profiled but

were not. Alternatively, the solution based on an optimal set of

basis genes could then be used as a standard against which to

measure the fit of each other gene measured on the microarray,

and the genes with substantial expression that is under-predicted

or not reflected in any of the basis components could be

considered a candidate marker for an important cell type or cell

state that remains to be profiled. We imagine that the responses of

leukocytes to the wide variety of cytokines that they might

encounter would be the most prominent discoveries yielded by this

approach.

There are other possible causes of residuals. For example, a

recent study exploring the heterotypic interactions between

human cancer-derived cell lines and stromal fibroblasts[34] finds

that a minority of genes show interaction effects. Determining all

of these interaction effects is intractable if the number of cell types

involved is more than three or four, but nevertheless this issue

exists and may be a source of error in a linear model that does not

incorporate it. Interestingly, this study used microarray data to

explicitly quantify heterotypic interactions between the cancer and

stromal cells in vitro, and this approach could be applicable to

leukocytes.

The deconvolution results reported here are interesting

observations of activated states of lymphocytes in SLE patients.

This could be confirmed as meaningful to disease progression by

extending this analysis to longitudinal data from SLE patients with

blood collected at multiple time points. Patients may also respond

differently to therapies based on their deconvolution results. We

have proposed that there is a regulation of the maximum

activation of lymphocytes. Drugs targeting positive or negative

regulators of the activation of different lymphocytes may show an

effect on the slope or percent of the maximum activation state we

observe. In summary, deconvolution can provide a powerful

insight into the immune response in patients with autoimmune

disease.

Methods

Ethics Statement
The collection and analysis of the testing cohort samples was

approved by the Institutional Review Board of Gene Logic

Corporation and written informed consent was obtained from all

patients. The collection and analysis of the validation cohort samples

was approved by the University of Michigan internal review board

and written informed consent was obtained from all patients.

Cell lines
Cell line samples were prepared as follows: human cell lines

Jurkat (T cell leukemia), THP-1 (acute monocytic leukemia), IM-9

(B lymphoblastoid multiple myeloma) and Raji (Burkitt B-cell

lymphoma) were obtained from the American Type Culture

Collection (ATCC). Cells were grown in RPMI 1640 medium with

2 nM L-glutamine adjusted to contain 1.5 g/L sodium bicarbon-

ate, 4.5 g/L glucose, 10 mM HEPES, 1 mM sodium pyruvate,

and 10% fetal bovine serum. Medium was renewed every 2–3 days

and cell density did not exceed 36106 cells/ml.
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Purification of Leukocyte Populations
Eighteen compartments and activation states of leukocytes were

purified and treated as described previously[12] and are

summarized in Table 1.

Clinical samples
T cell subsets for the proof of concept experiment were prepared as

follows: peripheral blood mononuclear cells (PBMCs) were isolated

from healthy donors via leukopacks as previously described [12]. A

portion of each PBMC sample was assayed on gene expression

microarrays, while the remainder was used for further purification.

PBMCs were enriched for CD4+ T cells using MACS beads for

negative selection as per manufacturer’s recommendations. CD4+ T

cells were then labeled with CCR7-FITC, CD45RO-PE, CD62L-

PECy5, CD45RA-APC and CD4-PECy7 and sorted by FACS into

the following subsets: naive (CD4+CD45RA+CCR7+CD62L+),

central memory (CD4+CD45RO+CCR7+CD62L+) and effector

memory (CD4+CD45RO+CCR72CD62L+/2). FACS profiles of

cell sorting are shown in Figure S5.

Pure CD4+ T cells, CD19+ B cells, CD56+ NK cells, and

CD14+ monocytes used for confirmation of the deconvolution

method were isolated from whole blood obtained from healthy

donors by Ficoll gradient centrifugation followed by negative

selection. Purity was confirmed by FACS with positive markers.

Patient selection
Whole white blood cell samples for exploratory analysis were

collected from 72 SLE patients and 45 healthy donors (the test

cohort) by Gene Logic Corporation (Gaithersburg, MD). Demo-

graphic information on this cohort is shown in Table 2. Three

additional patients with active SLE were recruited from the

outpatient rheumatology clinic and in-patient services at the

University of Michigan. These patients, referred to as the

validation cohort, were used for FACS confirmation of results

obtained from the test cohort. Written informed consent was

obtained from all patients. Patients were selected as being over 21

years of age and meeting the diagnostic criteria of the American

College of Rheumatology (ACR) for SLE at the time of the visit.

Clinical data were collected for each visit and include disease

activity as assessed by the SLEDAI activity index, clinical

laboratory test results, and current medications.

Microarray sample processing
Total white blood cell RNA was obtained using the RNeasy

Midi kit and the ‘‘RNeasy Midi Protocol for Isolation of Total

Cellular RNA from Whole Blood’’ protocol (Qiagen). Purified

leukocyte RNA was obtained using the RNeasy Mini Kit (Qiagen).

Manufacturers protocol was followed for all steps and the optional

on-column DNase treatment was performed. RNA was quantified

using ultraviolet spectrophotometry. RNA was labeled for and

hybridized to AffymetrixTM HGU133 expression microarrays

assay using standard AffymetrixTM GeneChipTM protocols. Scan

data from microarrays was processed by AffymetrixTM Microarray

Analysis SuiteTM software version 5 to yield Signal data.

Computational and statistical methods
All statistical and matrix algebra calculations were performed

using the R Project software package [35].

Hierarchical clustering was performed on log2-transformed

data by hierarchically clustering using Pearson correlation

coefficient as the similarity metric and average-linkage for node

summarization.

Correlation tests between cell types and SLEDAI scores were

Spearman correlations, with p-values obtained using the ‘‘cor.test’’

function. Differential cellular abundance by treatment status was

tested by Wilcoxon Rank Sum test on linear data.

Expression deconvolution was performed on linear, untrans-

formed data as follows: in each mixture sample, the total

expression signal of each microarray probe was modeled as the

sum of the expression signals of its constituent parts, each of which

is described as a product of the expression signal of that probe in

that purified cell type times the fractional abundance of that cell

type in the mixture:

A11X1zA12X2 . . . A1jXj~B1

A21X1zA22X2 . . . A2jXj~B2

. . . . . . . . . . . .

Ai1X1zAi2X2 . . . AijXj~Bi

where Aij is an expression signal measurement in a purified cell, Bi

is an expression signal measurement in a mixture of cells, and Xj is

a fractional abundance, for each of i probesets and j cell types.

These equations may be rewritten as a matrix equation:

AX~B

where A is the basis matrix of the expression levels of all probesets

in all cell types, B is the vector of expression levels of all probesets

in one mixture, and X is the vector of the relative levels of cell

types comprising B. The equation was solved for X with the R

function ‘lsfit’ (a linear least squares algorithm) followed by

removal of the lowest negative coefficient from the equation and

iteration of the solution if necessary until all coefficients were non-

negative. Fractions of the cell types were determined by dividing

the coefficients by the yield of mRNA per cell input.

The probesets comprising the basis for deconvolution were the

subset of all probesets that maximized conditioning of the basis

matrix. They were determined as follows: top differentially-

expressed (based on 95% fold change confidence intervals from

Student’s T-test) probesets were determined by comparing each

probe’s highest-expressed group with the next highest-expressed

group in order to find probesets that are good markers for each cell

population. This step was repeated with comparison between the

top group and the third-highest group in order to also include

probesets that were strong markers for two cell populations. Basis

matrices of increasing numbers of top probesets picked separately

from both comparisons and from each group were created and

their condition number calculated. The function of condition

Table 2. Summary of SLE patients and healthy controls
studied by microarray deconvolution of whole blood.

SLE Healthy Control

Number of patients 72 45

Female/Male 72/0 26/19

Median age at time of sample
collection

33 29

Median C3 complement (mg/dl) 135 n.d.

Median C4 complement (mg/dl) 21 n.d.

SLEDAI 25%ile/median/75%ile/max 0/4/8/25 0

Immunosuppressant therapy 15 (21%) 0

doi:10.1371/journal.pone.0006098.t002
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number based on the number of probesets used to calculate it was

observed to be continuous and relatively high for very small or

very large numbers of probesets with a minimum for intermediate

numbers of probesets (Figure S6). The matrix with the lowest

condition number (i.e. the best-conditioned) was selected as the

basis matrix to be used for deconvolution. The identities, accession

numbers and expression data of probesets in the basis matrix for

leukocyte deconvolution are provided in Table S1.

Accession Codes
GEO: microarray data, GSE11057 and GSE11058.

Supporting Information

Table S1 Mean expression data for the pure cell types and the

probesets used as the basis matrix for performing expression

deconvolution on whole blood samples from the main clinical test

cohort or on the validation set of purified leukocytes.

Found at: doi:10.1371/journal.pone.0006098.s001 (0.11 MB

PDF)

Table S2 Expression data for the basis probesets for the main

clinical test cohort of SLE patients and healthy controls.

Found at: doi:10.1371/journal.pone.0006098.s002 (0.31 MB

XLS)

Figure S1 Expression deconvolution is consistent with a CBC

differential. Determination in one healthy donor of relative

abundance of total monocytes, neutrophils, or lymphocytes by

CBC differential compared to determination of relative abun-

dance by deconvolution.

Found at: doi:10.1371/journal.pone.0006098.s003 (0.44 MB EPS)

Figure S2 Two-dimensional hierarchical clustering of the mean

expression data from purified leukocyte samples for the probesets

used as bases in deconvolution shows clustering of similar cell types

and sparse distribution of high expression of marker genes.

Found at: doi:10.1371/journal.pone.0006098.s004 (1.18 MB EPS)

Figure S3 Singular value decomposition of the basis matrix

yields a set of values in the diagonal matrix that are all significantly

above zero, indicating that all cell types are linearly independent.

Refactoring of the basis matrix following removal of IgM memory

B cells yields a set of singular values that are very similar except for

the absence of the lowest value. This indicates that this relatively

small lowest singular value is caused by the close similarity of the

two memory B cell types.

Found at: doi:10.1371/journal.pone.0006098.s005 (0.26 MB EPS)

Figure S4 The basis matrix is robust to omission of one or two

cell types. Healthy whole blood samples were deconvolved by

either a complete basis matrix or by a basis matrix missing (A)

activated dendritic cells, (B) activated NK cells, or (C) both IgM

and IgG/IgA memory B cells. Each scatterplot compares the

complete matrix result with the result from omission of that

specific cell type or types and shows how solutions are relatively

stable to variations in the input data but variations in the profiling

of related cell types do affect each other.

Found at: doi:10.1371/journal.pone.0006098.s006 (0.49 MB EPS)

Figure S5 T cell subsets were purified from blood by

conventional FACS markers. Sorting of naı̈ve, effector memory

(TEM), and central memory (TCM) CD4+ T cells from peripheral

blood mononuclear cells. Numbers within plots indicate the

fraction of cells selected. (a) Lymphocytes selected by forward/side

scatter. (b) CD4+ cell selection. (c) CD4+ cells partitioned into

CD45RO+ memory cells and CD45RA+ naı̈ve cells. (d)

CD45RO+ memory T cells partitioned into

CD62L+CCR7+TCM cells and CD62- CCR7- TEM cells. (e)

CD45RA+ naı̈ve cells purified slightly further by selecting

CD62L+CCR7+cells.

Found at: doi:10.1371/journal.pone.0006098.s007 (0.68 MB EPS)

Figure S6 Matrix condition number guides the selection of the

number of basis genes. Calculation of kappa, the matrix condition

number, for various sizes of basis matrices. The basis size on the x-

axis is the number of probesets selected from each statistical test

for each constituent used in the basis matrix.

Found at: doi:10.1371/journal.pone.0006098.s008 (0.49 MB EPS)
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