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Abstract

Background: Mice, whose ribosomal protein S6 cannot be phosphorylated due to replacement of all five phosphorylatable
serine residues by alanines (rpS6P2/2), are viable and fertile. However, phenotypic characterization of these mice and
embryo fibroblasts derived from them, has established the role of these modifications in the regulation of the size of several
cell types, as well as pancreatic b-cell function and glucose homeostasis. A relatively passive behavior of these mice has
raised the possibility that they suffer from muscle weakness, which has, indeed, been confirmed by a variety of physical
performance tests.

Methodology/Principal Findings: A large variety of experimental methodologies, including morphometric measurements
of histological preparations, high throughput proteomic analysis, positron emission tomography (PET) and numerous
biochemical assays, were used in an attempt to establish the mechanism underlying the relative weakness of rpS6P2/2

muscles. Collectively, these experiments have demonstrated that the physical inferiority appears to result from two defects:
a) a decrease in total muscle mass that reflects impaired growth, rather than aberrant differentiation of myofibers, as well as
a diminished abundance of contractile proteins; and b) a reduced content of ATP and phosphocreatine, two readily
available energy sources. The abundance of three mitochondrial proteins has been shown to diminish in the knockin
mouse. However, the apparent energy deficiency in this genotype does not result from a lower mitochondrial mass or
compromised activity of enzymes of the oxidative phosphorylation, nor does it reflect a decline in insulin-dependent
glucose uptake, or diminution in storage of glycogen or triacylglycerol (TG) in the muscle.

Conclusions/Significance: This study establishes rpS6 phosphorylation as a determinant of muscle strength through its role
in regulation of myofiber growth and energy content. Interestingly, a similar role has been assigned for ribosomal protein S6
kinase 1, even though it regulates myoblast growth in an rpS6 phosphorylation-independent fashion.
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Introduction

The phosphorylation of ribosomal protein S6 (rpS6) was first

demonstrated in regenerating rat liver [1] and subsequently in

response to numerous physiological, pathological and pharmaco-

logical stimuli ([2] and references therein). The five clustered

phosphorylatable serine residues in rpS6 are located at the

carboxy terminus (S235, S236, S240, S244 and S247) and are

evolutionarily conserved in higher eukaryotes [3]. Mammalian

cells contain two forms of rpS6 kinase, S6K1 and S6K2 [4].

S6K12/2 mice are significantly smaller at birth, due to a

proportional decrease in the size of all organs [5]. A smaller

cell size in these mice was reported for pancreatic b-cells [6] and

myoblasts [7]. In contrast, the birth weight of S6K22/2 mice, as

well as the size of their myoblasts, are similar to those of wild

type mice [6,7]. The embryonic and postnatal growth, like the

size of myoblasts of the double knockout mice, S6K12/2/

S6K22/2, are comparable with those of S6K12/2 mice [7,8],

further underscoring the dominant role of S6K1 in cell size

regulation. However, unlike the individual deficiency of each of

these genes, the combined deletion of both S6Ks is associated

with a profound decrease in viability [8].
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AMPK is the downstream component of a pathway that acts as

a sensor of cellular energy charge by monitoring AMP:ATP ratio.

Once activated, it switches on ATP-yielding processes, like glucose

uptake, glycolysis and mitochondrial biogenesis, while switching

off ATP-consuming processes, such as lipogenesis and glycogen

synthesis [reviewed in [9]]. The small size of S6K-deficient muscle

and myoblasts seems to be mediated by upregulation of AMP-

activated kinase (AMPK) in response to an increased AMP:ATP

ratio in the mutant muscle [10]. Moreover, the increased content

of mitochondria and the reduced level of triacylglycerol in this

muscle are consistent with the apparent elevated AMPK activity

[11,12]. Accordingly, downregulation of AMPK protects S6K-

deficient myotubes or myofibers from size decrease, suggesting

that AMPK activity negatively contributes to the growth control of

muscle cells [10]. However, given the multiplicity of S6K targets

[3], the role of rpS6 phosphorylation in mediating cell size control

is not self-evident. Furthermore, phosphorylation of rpS6 at S235

and S236 can still be detected, albeit at a much lower level, in

S6K12/2/S6K22/2 cells [8], which correlates with a recent

report implicating another ribosomal protein S6 kinase (RSK) in

phosphorylation of rpS6 exclusively at S235 and S236 in response

to various mitogenic signals [13].

The physiological role of rpS6 phosphorylation has just recently

started being disclosed through a knockin mouse (rpS6P2/2), in

which all five phosphorylatable serine residues in rpS6 were

substituted by alanines [14]. These mice are viable, fertile and do

not show a shorter life span, yet mouse embryo fibroblasts (MEFs)

derived from this genotype are significantly smaller than rpS6P+/+

MEFs, and divide faster. This small size phenotype reflects a

growth defect, rather than being a byproduct of their faster cell

division and it is not confined to embryonal cells, since it also

selectively characterizes pancreatic b-cells in adult rpS6P2/2 mice.

The knockin mouse suffers from diminished level of pancreatic

insulin, hypoinsulinemia and impaired glucose tolerance, as do

S6K12/2 mice [6,14].

In this report we describe our attempts to elucidate the

mechanism underlying the apparent reduced muscle strength in

rpS6P2/2 mice. Our results indicate that myotubes of skeletal

muscles in the knockin mouse have a smaller cross sectional area

(CSA) due to a defect in myotubes growth. The resulting reduction

in total muscle mass, together with a decrease in the abundance of

contractile proteins, as well as the diminution in levels of ATP and

creatine phosphate (PCr) provide an explanation for the impaired

muscle function.

Results

rpS6 phosphorylation is required for maintaining muscle
strength

During routine handling of adult mice (older than 6 weeks) our

attention was drawn to the diminished force displayed by rpS6P2/2

mice, relative to that of rpS6P+/+ mice, when attempted to escape.

To more objectively quantify this difference, we implemented

SHIRPA protocol designed for comprehensive phenotype assess-

ment [15]. Semi-quantitative grip-strength assessment implied a

diminished muscular tone of rpS6P2/2 mice (Fig. 1A). This

inferiority was corroborated by a wire-maneuver test that showed

that rpS6P2/2 mice lagged behind rpS6P+/+ mice when attempted

to elevate their hind limbs to a horizontal wire (Fig. 1B). Next we

observed that the ability of rpS6P2/2 mice to withstand a

prolonged effort was severely impaired, as exemplified by

significantly shorter time spent on the Rota-Rod (Fig. 1C).

However, since poor performance in this test might reflect a defect

in sensorimotor coordination, rather than muscle weakness, we

examined the mice on a rodent treadmill. Fig. 1D demonstrates

that the endurance of the knockin mice is profoundly diminished,

relative to their wild-type counterparts. Taken together, these

results attest to the role of rpS6 phosphorylation in normal muscle

function.

Figure 1. Muscle strength is impaired in rpS6P2/2 mice. (A to C)
Age-matched (4 and 7 month) male mice (n = 13 for WT and 12 for
rpS6P2/2 mice) were subjected to screening, according to the SHIRPA
behavioral protocol (see details in ‘‘Experimental Procedures’’). (A) Grip
strength. Mice were allowed to grip a grid and a gentle horizontal
backwards pull through their tail was applied. Higher scores indicate
greater grip strength. An unbiased observer, blinded to the genotype,
performed the experiment in a blind fashion; (B) Wire maneuver. Results
represent time in seconds required for a mouse that is hung from a wire
with its forearms to elevate its hind limbs and grip the wire. (C) Rota-rod
performance. Mice were placed on a moving cylinder, which was
gradually accelerated from an initial speed of 4 rpm to a maximum of
40 rpm. Latency to fall from the rota-rod is presented in seconds. Motor
performance was measured in three 10 min sessions (time 0, 1 h and
24 h). In each trial, the time in seconds until falling off was recorded.
*P,0.0005 for each trial versus rpS6P+/+ mice. (D) Endurance test. 5
rpS6p+/+ and 4 S6P2/2 age-matched (7–9 weeks) male mice were
allowed to run on the treadmill set with a slope of 12.5 degree and a
speed of 20 m/min. The results represent the total running time with
two attempts to pause. Results of all experiments are presented as
average6SEM, and the absence of SEM bars for some measurements
simply reflects a value close to zero that is graphically invisible.
doi:10.1371/journal.pone.0005618.g001
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Muscle fiber growth relies on rpS6 phosphorylation
We have previously noticed that compromised glucose homeo-

stasis in rpS6P2/2 mice is associated with smaller b-cell size and

reduced content of pancreatic insulin [14]. Hence, we set out to

examine the possibility that the apparent diminished muscle

strength in the knockin mice might reflect a decrease in total

muscle mass. Indeed, monitoring the total soleus weight in 2 to 3.5

month-old mice has demonstrated that the relative soleus weight is

reduced by about 25% in rpS6P2/2 mice in comparison to that of

rpS6P+/+ mice (Fig. 2A). Likewise, the weight of gastrocnemious

muscles in 2-mo-old rpS6P2/2 male mice (n = 10) is 76% of that of

their wild-type counterparts (74.563.6 [n = 10] and 98.364.2

[n = 9] mg, respectively). The optimal force of a muscle is largely

determined by its physiological cross-sectional area (CSA) [16].

This latter variable reflects, among others, the CSA and/or

number of individual fibers. Morphometrically, soleus fibers from

rpS6P2/2 and rpS6P+/+ mice contain a similar number of

myonuclei, testifying for the fusion of a similar number of

myoblasts during fiber differentiation (Fig. 2B). Moreover, soleus

muscles from both genotypes consist of a similar number of fibers

(Fig. 2C). However, soleus muscle fibers of rpS6P2/2 show a 25%

decrease in their CSA compared to that of rpS6P+/+ mice (Fig. 2D),

quite similarly to findings in S6K-deficient mice [7]. It appears,

therefore, that the decrease in the myofibers CSA can fully account

for the diminished relative weight of the soleus in rpS6P2/2 mice,

and this in turn might explain, at least partly the reduced muscle

strength.

The decrease in the CSA may stem from a smaller size of the

fusing myoblasts and/or an impaired growth of the fully

differentiated fiber. To monitor the size of newly formed

myofibers, we exploited the ability of mitotically quiescent satellite

cells in muscle to be activated in response to injury, giving rise to

proliferating myoblasts. The latter undergo multiple rounds of

division prior to terminal differentiation and fusion to form

multinucleated myofibers [17]. The differentiating myoblasts

express embryonic myosin heavy chain (eMHC) that serves as a

specific marker of regenerating myofibers in the adult animal [18].

We have selected the tibialis anterior muscle, as it is a well-

established model for muscle regeneration after cryoinjury through

exposure to subfreezing temperature [19]. Sections obtained five

days after the muscle had been injured, were subjected to

immunostaining and morphometry (Fig. 3). Apparently, the

average CSA of a newly formed rpS6P2/2 myofibers is 16%

smaller than that of a wild-type counterpart. Due to their nearly

round shape at this early stage of differentiation, the decrease in

CSA can be translated into about 23% reduction in myofiber

volume (Fig. 3C). It appears, therefore, that the diminished size of

fibers is not confined to soleus. Moreover, the decline in muscle

mass in rpS6P2/2 mice results, at least partly, from reduced size of

the fusing myoblasts.

The deficiency of rpS6 phosphorylation leads to a
decrease in the abundance of contractile proteins

The fact that rpS6 is primarily a constituent of the ribosome has

raised the possibility that its inability to undergo phosphorylation

might affect (positively or negatively) the translation of a subset of

mRNAs in the knockin mouse. In order to directly address this

issue we carried out iTRAQ (Isobaric Tag for Relative and

Absolute Quantitation)-based proteomic analysis of soleus from

both wild type and rpS6P2/2 mice. The abundance of 16 out of

449 identified proteins decreased, whereas that of four proteins

increased, by a factor of at least 1.5-fold (Table 1). It is conceivable

that the decline in ten contractile proteins can partly explain the

apparent muscle weakness. Interestingly, the abundance of both

Figure 2. Soleus relative mass and CSA of its fibers are
diminished in rpS6P2/2 mice. (A) The relative soleus weight from
male mice was monitored at different ages and presented as the
percentage of whole body weight. Each point represents mean6SEM,
(bars are smaller than the symbol’s size). * P,0.02, ** P,0.0001 versus
rpS6P+/+ mice. (n = 4 to 52 soleus samples per each time point). (B)
Number of myonuclei inside sarcolemma per fiber section. (C) Number
of fibers comprising soleus muscles. (D) Cross-sectional area (CSA) of
fibers. Muscles were excised from three 2-mo-old male mice for each
genotype and immediately frozen. 5 mm-thick transverse cross-sections
were collected along the entire length of the muscle at 100 mm
intervals with a cryostat and stained with amylase/diastase in (B) in
haematoxylin/eosin in (C) and reticulin in (D). Digital images obtained
from the sections with the largest CSA were used for analysis. Numbers
of fibers and nuclei per fiber were assessed by manual counting, and
CSA was calculated from digital images. Values are presented as a
mean6SEM. In (B) and (C) n = 3 and 4 age-matched male mice for each
genotype, respectively. In (D) n = 1000 fibers from 3 age-matched male
mice for each genotype. The SEM bars in (C) and (D) are invisible,
because they are smaller than the width of the upper line in each
column.
doi:10.1371/journal.pone.0005618.g002
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Apobec2 and carbonic anhydrase 3, two of the upregulated

proteins, has previously been shown to increase under conditions

of physiological or experimental muscle atrophy (aging or

denervation, respectively) [20,21].

Muscles with unphosphorylatable rpS6 are deficient in
readily available energy

Contracting skeletal muscle exhausts first its free ATP and then

utilizes the PCr/creatine kinase system as a means for regenerating

ATP from ADP [22]. Hence, we assumed that the weakness

displayed by rpS6P2/2 mice within a very short exercise time (in

some cases within seconds), could have reflected diminished stores

of ATP and/or PCr. Measurements of these variables have clearly

demonstrated that this is indeed the case. Thus, ATP and PCr

levels are lowered by 15% and 35%, respectively, in the hind limb

of knockin mice, relative to wild type mice (Figs. 4A and 4B).

Notably, the decreased content of PCr does not stem from

impaired activity of creatine kinase (the difference in the kinetics

between the two genotypes is statistically insignificant, Fig. 4C).

Mitochondrial content and activity are similar in rpS6P2/2

and rpS6P+/+ muscle
To examine whether the reduced ATP content in rpS6P2/2

muscle may result from mitochondrial deficiency, we measured

the activity of citrate synthase that is commonly used as an

assessment of mitochondrial content [23]. The results show

indistinguishable activity of this enzyme in muscles from both

genotypes (Figs 5A). Likewise, the activities of cytochrome C

oxidase and four complexes of the oxidative phosphorylation

system were similar in mitochondria from rpS6P2/2 and rpS6P+/+

muscles (Figs 5B to 5F). Finally, measurements of oxygen

consumption with glutamate and malate or succinate, as well as

respiratory control ratio showed no significant difference between

mitochondria from both genotypes (data not shown). These results

suggest that the relative ATP deficiency in rpS6P2/2 muscle

cannot be attributed to either a decline in mitochondrial mass or

the activity of the measured parameters. Nevertheless, our

proteomic analysis has demonstrated a decline in three mitochon-

drial proteins in the knockin soleus (Table 1) that might impair the

mitochondrial function.

Insulin induced signaling and glucose uptake is similar in
muscles from wild type and rpS62/2 mice

Glucose tolerance tests have previously shown that rpS6P2/2

mice dispose an excess of blood glucose less efficiently than wild-

type mice [14]. Glucose disposal is primarily carried out by the

muscle and the adipose tissue through translocation of Glut4

transporter to the plasma membrane, in an Akt-dependent

manner [24]. We have reasoned, therefore, that the relative

deficiency in energy in rpS6P2/2 muscle might reflect impaired

insulin signaling, and consequently diminished glucose uptake by

this tissue. Initially we compared the ability of insulin to activate

targets located downstream of Akt in soleus muscle. Fig. 6A shows

that insulin induced phosphorylation of Akt at Ser473 and its

activation, as exemplified by phosphorylation of Ser9 in GSK3-b,

an Akt direct substrate, and a further downstream target, 4E-BP1

(a direct substrate of mammalian target of rapamycin [mTOR]).

Notably, the stimulatory effect of insulin on Akt activity was at

least as high in the rpS6P2/2 mouse as in its wild type counterpart.

Next we monitored insulin-induced uptake of [3H]2-deoxyglucose,

a non-metabolized glucose, by soleus and the results show no

significant difference in this parameter between muscles from both

genotypes (Fig. 6B). Likewise, measurements of insulin-induced

uptake of [18F]2-deoxyglucose into leg muscles of a live animal,

using positron emission tomography, demonstrated a comparable

uptake by leg muscles of rpS6P+/+ and rpS6P2/2 mice (Fig. 6C).

These results indicate that impaired insulin-induced signaling or

glucose uptake cannot be considered as an explanation for the

lower steady state levels of ATP or PCr in knockin mice.

Stores of glycogen or triacylglycerol are not reduced in
the rpS6P2/2 muscles

Myofibers that undergo rapid exhaustion of ATP and PCr at

early stages of sustained exercise initiate a number of metabolic

pathways geared toward maintaining energy required for

contraction [22]. Since, breakdown of glycogen and triacylglycerol

(TG) are such metabolic means for rapid energy provision, we set

out to compare the respective deposits in the muscle. Results

presented in Fig. 7A show that not only was the glycogen storage

not impaired in rpS6P2/2 muscle, it was nearly two-fold higher

than that in the WT muscle. Moreover, this difference can be

ascribed to increased glycogen synthase activity, rather than the

impaired activity of glycogen phosphorylase (Figs. 7B and 7C) or

the 25% decrease in total muscle mass (Fig. 2A), which was used

for calculating glycogen concentration. Not surprisingly, therefore,

the abundance of glycogenin-1, an essential protein for the

formation of a glycogen granule, increased in rpS6P2/2 soleus

(Table 1), as it is known to correlate with that of glycogen [25].

The TG content is similar either in soleus or gastrocnemious of

both genotypes (Figs. 7D and E). Notably, the apparent difference

in the relative content of TG in the two examined muscles seems

to reflect their fiber types, as previous studies have shown that TG

content is several fold higher in type 1 fiber-enriched slow twitch

Figure 3. Newly formed myofibers are smaller in a rpS6P2/2

muscle. (A) Sections of tibialis anterior of 2-mo-old rpS6P+/+ and
rpS6P2/2 mice were prepared 5 days after cryoinjury, and were
immunostained for eMHC. One representative section is presented. (B)
Enlargement of the framed area in (A). (C) Digital images of the
immunostained sections were used for measurement of CSA of
individual eMHC-positive myofibers, as described in ‘‘Experimental
Procedures’’. The average CSA of rpS6P2/2 myofibers (n = 327) was
normalized to that of their wild type counterparts (n = 210), which was
arbitrarily set at 1. The results are presented as average6SEM. *,
p,0.0001.
doi:10.1371/journal.pone.0005618.g003
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muscles (soleus) than type 2 fiber-enriched fast twitch muscles

(gastrocnemious) [12]. Collectively, our biochemical analyses have

disproved a role of impaired insulin-dependent glucose uptake,

reduced mitochondrial content, diminished activity of oxidative

phosphorylation complexes, as well as decreased glycogen or TG

stores in the apparent deficiency of ATP and PCr in rpS6P2/2

muscle. However, we are currently unable to rule out downreg-

ulation of glycolytic flux, fatty acid oxidation or biosynthesis of

either adenine nucleotides or creatine, as the reason for this

deficiency.

Discussion

The present study suggests two mechanisms to account for the

compromised muscle strength in rpS6P2/2 mice: a decrease in

total muscle mass, reflecting diminished CSA of myofibers, and

reduction in readily available energy. Histological analyses suggest

that the diminution in the myofibers CSA results from fusion of

smaller size myoblasts, rather than a reduced number of fusing

myoblasts during myotube differentiation. Interestingly, the

association between the muscle weakness on the one hand, and

the decrease in both the CSA of individual muscle fiber, as well as

total muscle mass, is reminiscent of the phenotype of a mouse

model for distal myopathy with rimmed vacuoles (DMRV), a

human congenital disease, also known as hereditary inclusion body

myopathy (hIBM) [26]. The smaller size of rpS6P2/2 fiber is in

accord with our previous findings that rpS6 phosphorylation is

involved in growth control of MEFs and b-cells [14]. Furthermore,

it concords with the notion that the mammalian target of

rapamycin complex 1 (mTORC1) functions as an integrator of

cell growth signals (reviewed in [27]) through its downstream

targets, S6K1 and eukaryotic initiation factor 4E-binding protein 1

(4E-BP1) [7,28]. Thus, overexpression of S6K1 resulted in

increased cell size that reflects an enhanced cell growth, rather

than a delay in cell cycle progression [28]. Accordingly, the small

size phenotype of S6K12/2 myoblasts and rpS6P2/2 MEFs

appears to result primarily from a defect in their growth [7,14].

Many of the phenotypic manifestations of rpS6 knockin mice

are similar to those observed in S6K1 knockout mice. These

include: smaller size of b-cells, diminished insulin content in

pancreas, hypoinsulinemia, glucose intolerance [6,14], as well as

smaller CSA of myofibers and reduced content of muscle PCr

[[7,10] and this work]. It is tempting, therefore, to assume that it is

the failure to phosphorylate rpS6 that can account for these

symptoms in both genotypes. However, the small size of S6K12/2

myotubes is apparent, even though their rpS6 is still phosphor-

ylated, most probably by S6K2 [7]. Moreover, several lines of

evidence presented in this report suggest that, unlike S6K12/2

Table 1. Proteins, whose abundance was up- or down-regulated in rpS6P2/2 soleus.

Protein description (Peptide No.)a Gene Symbol Protein Accessionb Fold Change

Down-regulated proteins in rpS6P2/2 mice Contractile proteins

Myosin-8 (15) Myh8 P13535 0.56

Myosin-1 (71) Myh1 P12882 0.56

Myosin, heavy polypeptide 2, skeletal muscle, adult (33) Myh2 Q9UKX2 0.59

Myosin-3 (3) Myh3 P11055 0.60

Myosin light chain 1, skeletal muscle isoform (9) Myl1 P05976 0.64

Myosin regulatory light chain 2, skeletal muscle isoform (17) Mylpf Q96A32 0.66

Isoform 1 of Tropomyosin beta chain (6) Tpm2 P07951 0.50

Tropomyosin 4 (4) Tpm4 P67936 0.61

Isoform 1 of Tropomyosin alpha-1 chain (16) Tpm1 P09493 0.62

Troponin I, fast skeletal muscle (8) Tnni2 P48788 0.58

Mitochondrial proteins

Cytochrome b-c1 complex subunit 6 (4) Uqcrh P07919 0.63

NADH dehydrogenase [ubiquinone] iron-sulfur protein 4 (2) Ndufs4 O43181 0.64

Cytochrome c oxidase subunit 3 (2) mt-Co3 P00414 0.66

Miscellaneous

Myoglobin (10) Mb P02144 0.63

Isoform 3 of LIM domain-binding protein 3 (11) Ldb3 O75112 0.52

Hydroxysteroid dehydrogenase-like protein 2 (2) Hsdl2 Q6YN16 0.59

Up-regulated proteins in rpS6P2/2 mice

APOB mRNA editing enzyme catalytic polypeptide 2 (8) Apobec2 Q9Y235 1.72

Ventricular myosin regulatory light chain (3) Myl2 P10916 1.66

Carbonic anhydrase 3 (12) CA3 P07451 1.66

Glycogenin-1 (3) Gyg P46976 1.53

Protein samples from soleus of wild type and rpS6P2/2 mice (2 of each genotype) were subjected to ITRAQ analysis, and the fold change in mutants relative to wild type
was calculated, as described in Material and Methods. Only proteins, for which the difference between the measurements for the two samples of each genotype was
#12%, were selected for this presentation.
aIn parenthesis is the number of peptides used for identification of the protein and calculation of its relative abundance.
bBased on Protein Knowledgebase (http://www.uniprot.org/uniprot/).
doi:10.1371/journal.pone.0005618.t001
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muscle, the mechanism underlying the growth defect in rpS6P2/2

muscle does not involve AMPK activation, despite the reduced

ATP content (Fig. 4A): a) Phosphorylation of acetyl-CoA

carboxylase by AMPK lowers its activity and thereby the synthesis

of its product, malonyl-CoA, thus relieving the inhibition of fatty

acids uptake into mitochondria and thereby enabling their

oxidation [29]. This is indeed reflected in diminished lipid content

in S6K1-deficient muscle [10], but not in rpS6P2/2 muscles,

whose TG stores were similar to that of wild type muscles (Figs. 7D

and 7E). b) AMPK is known to inhibit skeletal glycogen synthase,

through its phosphorylation [30], yet both glycogen synthase

activity and glycogen storage are elevated in soleus of rpS6P2/2

mice (Figs. 7A and 7B). c) One of the mechanisms by which

AMPK induces ATP production is by upregulating mitochondrial

biogenesis [31], as evident for S6K1-deficient muscle [10], but not

for rpS6P2/2 muscle (Fig. 5). d) AMPK is known to stimulate

glucose uptake in skeletal muscle [29], yet our in vitro and in vivo

glucose uptake measurements have failed to detect upregulation of

basal or insulin-dependent glucose uptake in rpS6P2/2 muscle

(Fig. 6). e) Assessment of AMPK activity through monitoring the

phosphorylation of its direct substrate, acetyl CoA carboxylase, has

revealed that neither its basal nor its induced activity following

treatment of mice with AICAR, a prototypical AMPK activator, is

higher in rpS6P2/2 soleus (data not shown). Taken together, our

results indicate that rpS6P2/2 deficiency evokes a defect in

muscular growth through a mechanism that deviates from that

proposed for S6K1 deficient mice.

The distinction between the mechanisms operated by these two

related deficiencies suggests that S6K1 regulates cell size

predominantly through one or more of its multiple substrates

[3], rather than rpS6. Indeed, SKAR, another S6K1 substrate, has

been implicated in regulation of cell growth, as knockdown of its

expression reduced the cell size [32]. Furthermore, inhibition of

both S6K1 and S6K2 by the mTOR-specific inhibitor, rapamy-

cin, is not sufficient to achieve a complete dephosphorylation of

rpS6, as it is still phosphorylated at two of its five phosphorylatable

serine residues by RSK [13]. Hence, rpS6P2/2 recapitulates a

combined deficiency of both S6Ks and RSKs, or simultaneous

inhibition of the mTOR-S6K and extracellular signal-regulated

kinase (ERK)-RSK pathways. Conceivably, a different mechanism

is predominately operative under such extreme conditions.

Finally, this study evokes an intriguing question regarding the

mechanism(s) underlying the role of rpS6 phosphorylation in

regulating processes as diverse as cell growth and ATP/PCr

production, particularly in the face of the fact that rpS6 is

primarily a structural protein of the ribosome. Several explana-

tions can be proposed to account for these unique physiological

functions of rpS6 phosphorylation: (a) The phosphorylation of

rpS6 within, or outside, the ribosome affects the translation

efficiency of specific mRNAs, as likely to be the case for the 20

soleus proteins identified here (Table 1). (b) rpS6 might be one of

the many bifunctional ribosomal proteins, that can carry out

extraribosomal tasks often unrelated to the mechanics of protein

synthesis [33]. (c) Phosphorylated rpS6 might not affect protein

synthesis, but instead interacts with cellular protein(s), which

consequently becomes active or inactive, and thus affects the cell

physiology. Indeed several extraribosomal proteins have been

reported to be coimmunoprecipitated with rpS6, suggesting an in

vivo interaction, either directly or indirectly with these proteins.

[34,35].

Materials and Methods

Animals
rpS6P2/2 mice, previously generated by homologous recombi-

nation [14], were genotyped as described [14] and kept, similarly

to their wild-type counterparts in a hybrid background derived

from the 129Sv and ICR mouse strains. Animals were maintained

on a 12-h light/dark cycle and allowed free access to food. Animal

experiments were carried out in compliance with the Hebrew

University guidelines.

Assessment of muscle strength
Three tests from the SHIRPA protocol [15] were used to assess

abnormal phenotypes in the knockin mouse: (a) Positional passivity

test (grip strength) provides assessment of the struggle response to

sequential handling and might indicate a defect in muscle or lower

motor neuron function. (b) Wire maneuver - Mice were held above

a horizontal wire (1.5 mm diameter) by tail suspension and

lowered to allow the forelimbs to grip the wire. Grip strength was

assessed by measuring the time it took a mouse to raise its hind

limbs and grip the wire. (c) Rota-rod test is designed to assess the

mouse sensorimotor coordination and defects in motor function.

Mice were placed on a 3 cm-diameter cylinder of an accelerating

rota-rod (Rota-rod Treadmill 7650, Ugo Basile, Middlesex, UK)

apparatus. This cylinder was gradually accelerated from an initial

Figure 4. rpS6P2/2 muscles contain diminished amounts of ATP
and phosphocreatine. ATP (A) and (B) PCr were determined in
extracts from left and right hind-limb muscles. Results represent an
average6SEM (n = 6 muscle samples for each genotype [3 aged-
matched male mice each]). (C) The results for creatine kinase activity are
presented as average6SEM of nmoles PCr produced at different time
point normalized to protein content (n = 6 muscle samples for each
genotype [3 age-matched male mice each]).
doi:10.1371/journal.pone.0005618.g004
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Figure 6. Insulin-induced signaling and glucose uptake are
similar in rpS6P2/2 and rpS6p+/+ muscles. (A) Soleus muscles were
excised from rpS6P2/2 (2/2) and rpS6p+/+ (WT) 2- to 3-mo-old male
mice following 16 h starvation and intraperitoneal injection of saline
(2) or 2.5 U of insulin/kg of body weight (+) for 5 min. Cytoplasmic
extracts were subjected to Western blot analysis with the indicated
antibodies. Note the enrichment for the upper band of 4E-BP1
(hyperphosphorylated form) upon insulin treatment. (B) Insulin-induced
uptake of glucose into isolated muscle. Right and left soleus muscles
were isolated from the hind limbs of 16 h starved rpS6P2/2 (2/2) and
rpS6p+/+ (WT) male mice. 2-Deoxy glucose uptake is presented as mmol
per gram tissue per h. The data are presented as average6SEM for 5
rpS6P2/2 and 4 S6p+/+ age-matched (7–9 weeks) male mice. (C) Mice
were injected intraperitoneally with 0.25 U insulin/kg body weight and
within seconds with 10–24 ACi [18F]fluoro-2-deoxyglucose (FDG) into the
tail vein. The radioactivity concentration in hind limb muscles was
estimated at 40 to 45 min after FDG injection by positron emission
tomography. The concentration of radioactivity is presented as % injected
dose (ID) per gm body weight per ml tissue. The data are shown as
average6SEM for 5 male mice of each genotype.
doi:10.1371/journal.pone.0005618.g006

Figure 5. The amount of mitochondria and the activity of
complexes of the oxidative phosphorylation system are un-
changed in rpS6P2/2 muscle. Mitochondria were isolated from hind
limb muscle of four age-matched rpS6P+/+ (WT) and rpS6P2/2 (2/2)
male mice and were assayed for citrate synthase (A), cytochrome C
oxidase (B), as well as complexes I (C), II (D), II+III (E) and IV (F) of the
oxidative phosphorylation system. The activity of the different
complexes was normalized to that of citrate synthase and the results

are presented as relative activities. Vertical bars represent SEM (n = 4
age- matched male mice for each genotype).
doi:10.1371/journal.pone.0005618.g005
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speed of 4 rpm to a maximum of 40 rpm, and the duration of time

during which the mouse is able to remain on the rotating rod was

recorded. The fourth test was based on treadmill performance for

assessment of physical endurance. Mice were initially familiarized

with the exercise protocol by walking or running on a rodent

treadmill (built in the workshop of Technion-Israel Institute of

Technology) on consecutive days, during which they performed

20 min of exercise with 0% grade. A day later mice were

challenged with a speed of 20 m/min and 12.5% grade.

Number of fibers and nuclei in soleus and cross sectional
area of individual fibers

Soleus muscles of 7–9-week-old male mice were embedded in

OCT (Optimal Cutting Temperature freezing medium; Sakura

Finetec, Torrance CA), frozen in isopentane cooled on liquid

nitrogen and stored at 270uC. Transverse 5 mm-thick cross-

sections were collected along the entire length of the muscle at

100 mm intervals with a cryostat (Leica CM 1850). The sections

with the largest CSA were used for analysis. Reticulin staining was

used for the assessment of fiber size and number, whereas PAS

(Periodic acid-Schiff)-Diastase staining was used to quantify the

number of nuclei per fiber. Staining was performed utilizing

Ventana Special Stains kits on Nexes Special Stains Module

(Ventana Medical Systems Tucson, AZ). Digital images were

obtained using Nikon Eclipse TE-2000E microscope equipped

with Olympus DP70 camera. Image analysis for fiber CSA,

number of fibers per muscle and number of nuclei per fiber was

carried out using Image Pro Plus software (Media Cybernetics,

Silver Spring, MD).

The size of newly generated myoblast in adult mice
The tibialis anterior muscles were injured by applying a cold

metal bar (5 millimeter spatula pre-cooled in liquid nitrogen)

directly to the muscle for 10 seconds. This generated a cryoinjury

in the muscle with a discrete border between uninjured and

injured muscle, and this border remains clear and distinct during

the regeneration of the injured tissue. The skin incision was

stitched using silk sutures. Five days later, muscles were dissected,

embedded in Tissue Tek O.C.T. compound and placed on a metal

plate. The metal plate was then embedded into a bath filled with

isopentane, which was placed in a larger bath with liquid nitrogen.

The frozen muscles were kept in 270uC. Immunostaining of the

cryo sections was performed using anti-embryonic myosin heavy

chain (eMHC, a gift from Developmental Studies Hybridoma

Bank, University of Iowa). Image analysis of the CSA of myofiber

was carried out using Image-Pro Plus software that counts pixels

within a close line that overlaps the border of individual myofibers.

Protein Extraction and proteolysis
Tissues were homogenized in 8 M Urea containing 20 mM

DTT and 400 mM ammonium bicarbonate. The samples (100 mg

each) were reduced with 10 mM DTT (at 60uC for 30 min),

modified with 100 mM iodoacetamide in 10 mM ammonium

bicarbonate (room temperature for 30 min) and trypsinized in

10 mM ammonium bicarbonate containing trypsin [modified

trypsin (Promega)] at a 1:50 enzyme-to-substrate ratio, overnight

at 37uC.

Mass spectrometry analysis
The tryptic peptides were desalted using C18 tips (Harvard Inc.)

dried and resuspended in 100 mM Hepes (pH 7.3). The

iTRAQTM Reagents were mixed with ethanol and each one of

the reagents was transferred to one sample tube (30:70

Figure 7. Stores of glycogen and triacylglycerol are larger and
similar, respectively, in rpS6P2/2 muscle. (A) Soleus glycogen
content. Soleus muscles were excised from 20 rpS6P+/+ (WT) and 15 age-
matched rpS6P2/2 (2/2) male mice and their glycogen content was
measured. (B) Glycogen synthase (GS) and (C) glycogen phosphorylase
(GP) activities were assayed in the same extracts (n = 4 age-matched
male mice for each genotype). (D) and (E) TG content in soleus and
gastrocnemious, respectively. 5 soleus (left and right muscles were
pooled) and 10 individual gastrocnemious muscles were excised from 5
rpS6P+/+ (WT) and 5 age-matched rpS6P2/2 (2/2) male mice and their
TG content was measured. All results are presented as average6SEM.
doi:10.1371/journal.pone.0005618.g007
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sample:reagent ratio). Two mutant samples were labeled with 114

and 115 reagents and two wild type samples were labeled with 116

and 117 reagents. The tubes were incubated at room temperature

for 1.5 h. All four iTRAQTM Reagent-labeled samples were

combined, cleaned on C18 and resuspended in 0.1% formic acid.

50 mg of the combined labeled peptides were separated by an on-

line two-dimensional chromatography experiment (Multidimen-

sional Protein Identification Technology). First the peptides were

loaded on 15 mm of BioX-SCX column (LC Packing) and eluted

with 10 salt steps of 0, 30, 60, 80,100, 120, 160, 200, 300, 500 mM

ammonium formate in 5% acetonitrile and 0.1% formic acid,

pH 3. The eluted peptides were further resolved by capillary

reverse-phase chromatography (75 m ID, 20 cm fused silica

capillaries, J&W self-packed with 3 m Reprosil-Aqua C18). The

peptides were eluted with linear 85-minutes gradients of 5 to 45%

and 15 minutes at 95% acetonitrile with 0.1% formic acid in water

at flow rates of 0.25 ml/min. Mass spectrometry was performed by

an ion-trap mass spectrometer (OrbitrapXL, Thermo) in a positive

mode using repetitively full MS scan followed by collision induced

dissociation (CID) and Higher Energy Collision Dissociation

(HCD) of the 3 most dominant ions selected from the first MS

scan. The mass spectrometry data was analyzed and compared

using the Sequest software (Bioworks3.31, Thermo) searching the

mouse section of the NR-NCBI database. Quantitative analysis

was done using PepQuan (Thermo). The peak intensity of samples

labeled with 115, 116 and 117 reagents was normalized to that of

the sample that was labeled with the 114 reagent, which was

arbitrarily set at 1. The relative level (or fold change) of a protein

in the knockin mouse represents the ratio of the average value of

the two mutant samples ([114+115]/2) to that of the two wild type

samples ([116+117]/2).

Measurements of ATP and phosphocreatine
Hind limb muscles (composed of gastrocnemious, soleus and

plantaris) were rapidly removed and frozen in liquid nitrogen.

Metabolites were extracted with perchloric acid and the levels of

ATP, as well as phosphocreatine (PCr) were determined in

neutralized supernatant by coupled enzyme assays [36,37].

Metabolite levels were normalized to protein concentrations

measured on parallel samples [38].

Creatine kinase assay
The activity of creatine kinase was measured in extracts, freshly

prepared from hind limb muscle by a coupled enzyme assay [39].

Enzyme activity was normalized to protein concentration.

Western blot analysis
Immunoblotting was performed as described [40], using

antibodies against rpS6, 4E-BP, Akt, phospho Akt (Ser473),

phospho Akt (Thr308), (Cell Signaling Technology, Beverly, MA,

USA). Exposures were chosen so that the chemiluminescent

signals were within the linear response of the film and were

quantified by ImageMaster VDS (Amersham Pharmacia Biotech).

Mitochondrial analyses
Mitochondria were isolated from hind limb muscle by

homogenization followed by differential centrifugation in sucrose

[41]. The enzymatic activities of Citrate synthase (CS), rotenone

sensitive NADH coenzyme Q reductase (complex I), succinate

cytochrome C reductase (complex II+III), succinate dehydroge-

nase (complex II) and cytochrome C oxidase (complex IV) were

determined by standard spectrophotometric assays [42–44], using

a UVIKON XS spectrophotometer (SECOMAM, Ales France).

Oxygen consumption with glutamate and malate or succinate in

the presence of rotenone was performed on freshly isolated

mitochondria using a Clark’s type oxygen electrode (Hansatech,

Norfolk UK). The respiratory control ratio (RCR) was calculated

as the ratio of oxygen uptake in the presence and absence of ADP

[41].

In vitro muscle glucose uptake
Soleus muscles from the left hind leg were immediately isolated

and incubated for 30 min at 30uC, in Krebs-Ringer bicarbonate

buffer (KRB; 118.45 mM NaCl, 4.74 mM KCl, 1.17 mM

MgSO4/7H2O, 1.27 mM CaCl2/2H2O, 1.18 mM KH2PO4,

and 24.87 mM NaHCO3, pH 7.4) containing 2 mM sodium

pyruvate. 100 nM of Regular Insulin (Eli Lilly) was added to

identically treated contralateral muscles. Muscles were then

rapidly transferred to KRB containing 1 mM 2-Deoxy

[2,6-3H]glucose (1.5 mCi/ml; Amersham), and 7 mM [1-14C]D-

Mannitol (0.5 mCi/ml; Sigma), and incubated for 10 min at

30uC. Insulin was present in the uptake media if present during

preincubation. Both the preincubation and the uptake medium

were continuously gassed with 95% O2-5% CO2. Subsequently,

muscles were dried down briefly, frozen in liquid nitrogen,

weighed upon thawing and incubated for 60 min at 65uC in 1 M

NaOH. Following neutralization with 32% HCl, samples were

centrifuged at 13 krpm for 10 min to precipitate particulates.

Radioactivity was determined by liquid scintillation counting for

dual labels, and the net uptake into the intracellular spaces was

calculated after correction for the uptake into the extracellular

space. [45].

In vivo glucose uptake
Positron Emission Tomography (PET) with [18F]fluoro-2-

deoxyglucose (FDG) was used to study the uptake of glucose in

rpS6P2/2 and wild type mice. Prior to PET, the mice were given

free access to food, and no restriction of movement. Mice were

anaesthetized immediately prior to the study, and positioned in the

scanner. Imaging was performed on a GE Discovery ST PET/

CT. This is a clinical PET scanner, with 4-slice CT mounted on

the same gantry for automated registration of the PET and CT

scans. The PET scanner has a field of view of 50 cm diameter,

16 cm axially, and sensitivity of 8.6 kcps/kBq/cc (2D imaging

mode), spatial resolution of 6.3 mm full width at half maximum

(FWHM). A computed tomography (CT) scan was performed first

to provide an anatomic image to assist with interpretation of the

PET, and for use for attenuation correction of the PET image.

Mice were first injected intraperitoneally with 0.25 U insulin/kg

body-weight followed by an intravenous injection of 10–24 mCi of

FDG into the tail vein. Dynamic PET imaging was started at the

time of FDG injection, and continued for 45 minutes (10630 s,

561 min, 765 min). PET data was corrected for scatter, random

radioactive decay, and attenuation, and 1286128 pixel images

were reconstructed of the central 25 cm of the transaxial field of

view including the mice. Using CT images to assist in image

interpretation, regions of interest corresponding to leg muscles

were drawn on the PET images, and time activity curves were

generated for these regions from the sequence of dynamic images.

Glycogen determination
Glycogen was extracted from soleus samples by heating in 30%

KOH, 5% Na2SO4 solution at 70uC for 15 min. Glycogen was

precipitated by ethanol, and then subjected to 6N H2SO4 hydrolysis

followed by neutralization with 625 mM NAOH and 55 mM Tris-

HCl pH 8.0. The resulting concentration of free glycosyl residues

was determined spectrophotometrically using a commercially
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available hexokinase-based assay kit (Teco Diagnostics, Anaheim,

CA, USA).
Glycogen synthase activity assay. Glycogen synthase

activity was determine as previously described [46] and is

expressed as the ratio of glycogen synthase activity in the

absence to that in the presence of 6.7 mM glucose 6-phosphate.

Glycogen phosphorylase activity assay
Glycogen phosphorylase activity was determined as previously

described [47] and is expressed as the ratio of glycogen

phosphorylase activity in the absence (phosphorylase a) to that in

the presence (total phosphorylase) of 3 mM 59-AMP.

Triglyceride determination
Gastrocnemious and soleus muscles were homogenized in 1 ml

chloroform:methanol (2:1) per 100 mg tissue with Diax 100

homogenized (Heidolph, Germany) and lipids were extracted in

3 ml of the same mixture in tube rotator at 4uC. 0.04% CaCl2 was

added (1/5 of the organic phase) 18 h later and the mixture was

spun down at 2,800 rpm for 15 min. The organic (lower) phase

was transferred to another tube and evaporated under N2

streaming. The triglyceride were dissolved in isopropanol and

determined by monitoring the glycerol released using the

combination of Free Glycerol and Triglyceride Reagents (Sigma,

F6428 and T2449, respectively).
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