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Abstract

Background: Emerging evidences suggest that nucleolin expressed on the cell surface is implicated in growth of tumor cells
and angiogenesis. Nucleolin is one of the major proteins of the nucleolus, but it is also expressed on the cell surface where is
serves as a binding protein for variety of ligands implicated in cell proliferation, differentiation, adhesion, mitogenesis and
angiogenesis.

Methodology/Principal Findings: By using a specific antagonist that binds the C-terminal tail of nucleolin, the HB-19
pseudopeptide, here we show that the growth of tumor cells and angiogenesis are suppressed in various in vitro and in vivo
experimental models. HB-19 inhibited colony formation in soft agar of tumor cell lines, impaired migration of endothelial
cells and formation of capillary-like structures in collagen gel, and reduced blood vessel branching in the chick embryo
chorioallantoic membrane. In athymic nude mice, HB-19 treatment markedly suppressed the progression of established
human breast tumor cell xenografts in nude mice, and in some cases eliminated measurable tumors while displaying no
toxicity to normal tissue. This potent antitumoral effect is attributed to the direct inhibitory action of HB-19 on both tumor
and endothelial cells by blocking and down regulating surface nucleolin, but without any apparent effect on nucleolar
nucleolin.

Conclusion/Significance: Our results illustrate the dual inhibitory action of HB-19 on the tumor development and the
neovascularization process, thus validating the cell-surface expressed nucleolin as a strategic target for an effective cancer
drug. Consequently, the HB-19 pseudopeptide provides a unique candidate to consider for innovative cancer therapy.
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Introduction

Nucleolin is an abundant RNA- and protein-binding protein

ubiquitously expressed in exponentially growing eukaryotic cells. It

is found at several locations in cells: in the nucleolus, it controls

many aspects of DNA and RNA metabolism; in the cytoplasm it

shuttles proteins into the nucleus and provides a posttranscriptional

regulation of strategic mRNAs; and on the cell surface where it

serves as an attachment protein for several ligands from growth

factors to virus particles [1,2]. Nucleolin contains three main

structural domains: N-terminal region containing several long

stretches of acidic residues; central globular domain containing four

RNA binding sites; C-terminal domain containing nine repeats of

the tripeptide arginine-glycine-glycine (RGG domain). Surface and

cytoplasmic nucleolin are differentiated from nuclear nucleolin by a

slight shift in their isoelectric point, which could reflect glycosylation

of surface/cytoplasmic nucleolin [3,4].

Since the first report of surface expression of nucleolin in

hepatocarcinoma cells, enhanced expression of nucleolin was

observed on the surface of tumor and endothelial cells, and in vivo

in angiogenic endothelial cells within the tumor vasculature

[2,5,6]. By electron and confocal microscopy studies, we

confirmed surface expression of nucleolin and its indirect

association with intracellular actin cytoskeleton [3]. An actin

based motor protein, the nonmuscle myosin heavy chain 9, could

serve as a physical linker between surface nucleolin and actin [7].

Upon stimulation of cell proliferation, cytoplasmic nucleolin is

translocated to the surface through a temperature-dependent but

unconventional secretory pathway [3]. Surface nucleolin serves as

a low affinity receptor for HIV-1 and various growth factors that

interact with the RGG domain of nucleolin, such as midkine,

pleiotrophin (PTN) and lactoferrin [8–11]. Binding of these

ligands results in clustering of cell-surface nucleolin in lipid raft

membrane microdomains before endocytosis of the ligand-
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nucleolin complex by an active process [9,12]. Accordingly,

surface nucleolin could shuttle ligands between the cell surface and

the nucleus thus act as a mediator for the extracellular regulation

of nuclear events [11,13,14].

The importance of cell-surface nucleolin in cancer biology is

highlighted by many studies showing that ligands of nucleolin play

critical role in tumorigenesis and angiogenesis [15,16]. For

example, among surface nucleolin binding growth factors: midkine

and PTN can transform cells, whereas on endothelial cells they

exert both mitogenic and angiogenic effect [17]. Laminin-1 that

induces differentiation of cells binds surface nucleolin, while

urokinase that is implicated in mechanisms regulating pericellular

proteolysis, cell-surface adhesion, and mitogenesis binds and is co-

internalized with surface nucleolin [14,18,19]. Hepatocyte growth

factor that regulates angiogenesis, invasion and growth of

carcinoma cells uses surface nucleolin as an alternative receptor

[20]. The tumor homing peptide F3 that binds both endothelial

and tumor cells is internalized via surface nucleolin, while

endostatin that inhibits angiogenesis binds nucleolin on the surface

of endothelial cells before translocation to the nucleus [6,21].

Finally, expression of nucleolin is enhanced on the surface of

endothelial cells upon stimulation with the vascular endothelial

growth factor (VEGF), and functional blockade or down-

regulation of surface nucleolin in endothelial cells inhibits

migration of endothelial cells and prevents capillary-tubule

formation [7].

In addition to its function at the cell surface, nucleolin present in

the cytoplasm binds 39-untranslated region in the mRNA of matrix-

metalloproteinase-9 (MMP-9) and bcl-2 oncogene, a process that is

necessary for the stability and translational efficiency of these

mRNAs [22–24]. Nucleolin-binding to MMP-9 mRNA increases

the production of the enzyme that by degrading extracellular matrix

components promotes tumor metastasis, whereas in B-cell chronic

lymphocytic leukemia cells the increased levels of cytoplasmic

nucleolin is directly related to overexpression of the bcl-2 oncogene

that blocks apoptosis. Finally, nucleolin has been reported to reduce

the level of tumor suppressor protein p53 in breast cancer cells,

cooperate with Ras oncogene in transforming primary rat fibroblast

and associate with the tumor suppressor retinoblastoma protein to

trigger carcinogenesis in human papillomavirus 18-induced cervical

carcinoma [25–27].

These observations suggested that cell-surface nucleolin is a

potential target for the action of anticancer drugs. For this

purpose, we used the HB-19 pseudopeptide that binds the C-

terminal RGG domain of cell-surface expressed nucleolin and

blocks its function as a low affinity receptor for various ligands [8–

11,28]. HB-19 presents pentavalently the tripeptide Ky(CH2N)PR

in which the reduced peptide bond provides high stability against

serum proteases (Figure 1). HB-19 forms a stable complex with the

cell-surface expressed nucleolin and is internalized by an active

process. This leads to down regulation of surface nucleolin without

any apparent effect on nuclear nucleolin, since internalized HB-19

does not cross the nuclear membrane. Here we provide evidence

to show that HB-19 inhibits growth of tumor cells and formation

of blood vessels in variety of experimental models. Significantly,

HB-19 treatment markedly suppressed the progression of

established human breast tumor cells xenografted in athymic

nude mice, and in some cases eliminated measurable tumors while

displaying no toxicity to normal tissue. This potent antitumoral

effect appears to be the consequence of the direct dual action of

Figure 1. Molecular structure of the multivalent HB-19 pseudopeptide. HB-19 presents pentavalently the pseudo-tripeptide Lysy(CH2N)-
Pro-Arg coupled to a template (H2NLys-Lys-Lys-Gly-Pro-Lys-Glu-Lys-AhxCONH2); y(CH2N) stands for a reduced peptide bond between Lys and Pro
residues. The tripeptide is assembled on the a-NH2 of the template and the e-NH2 groups of the four lysine residues indicated in bold. No apparent
modification is observed for the HPLC profile of HB-19 after five days of incubation at 37uC in normal human serum, thus illustrating its resistance to
degradation by serum proteases.
doi:10.1371/journal.pone.0002518.g001
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HB-19 on tumor and endothelial cells resulting in the inhibition of

multiplication of tumor cells, and the inhibition of proliferation

and migration of endothelial cells. Our studies demonstrate the

unique properties of HB-19 and provide the rationale for its future

clinical evaluation in cancer therapy.

Results

The HB-19 pseudopeptide binds the cell-surface
expressed nucleolin

Cell-surface expressed nucleolin is solubilized along cytoplasmic

nucleolin during preparation of nucleus-free cell extracts using a

nonionic detergent-containing solution in the presence of MgCl2.

Consequently, nucleus-free subcellular fractions referred to as

surface/cytoplasmic extracts contain both surface and cytoplasmic

nucleolin in contrast to nuclear extracts that contain nucleolin

from the nucleoli. Surface/cytoplasmic and nuclear nucleolin have

distinct isoelectric point values [3]. The fact that HB-19 forms a

stable complex with the cell-surface expressed nucleolin, incuba-

tion of cells with biotinylated HB-19 (HB-19/Btn) followed by

purification of surface/cytoplasmic extracts using avidin-agarose

provides an efficient method for purification surface nucleolin and

monitoring its expression [8].

The interaction of HB-19 with surface nucleolin was investi-

gated using human breast cancer MDA-MB-231 tumor cells and

human umbilical vein endothelial cells (HUVECs). In both types

of cells, we showed that iodinylated HB-19 binds cells in a dose-

dependent manner reaching saturation at about 1–2 mM concen-

tration. This binding is specific as it is prevented by unlabeled HB-

19 with Kd value of 312 nM and 825 nM in MDA-MB-231 cells

and HUVECS, respectively (data not shown). Similarly, HB-19/

Btn binds and forms a stable complex with surface nucleolin in a

dose-dependent manner in both types of cells, with maximum

binding occurring at 8–12 mM concentration (Figures 2A, 3A). By

FACScan analysis, we showed that HB-19/Btn binding to

HUVECs is specific since it is prevented by the excess HB-19

but not by the basic 9Arg peptide or the F3 peptide (Figure 3B),

which is reported to bind the acidic amino acid region located at

the N-terminal part of nucleolin [6].

Following binding to surface nucleolin, HB-19 is internalized

and is concentrated in the cytoplasm without translocation into the

nucleus (Figures 2C, 3C). During this time, HB-19 exerts a

differential inhibitory effect on the expression of cytoplasmic/

surface nucleolin compared to nuclear nucleolin as shown by the

marked reduction of nucleolin in cytoplasmic extracts of cells but

without apparent modification of either level (Figure 2B) or

nucleolar localization of nuclear nucleolin (Figure 2D), even after

24–48 hours of HB-19 treatment. The fact that expression of other

cytoplasmic proteins is not affected in HB-19 treated cells indicates

that the marked drop of cytoplasmic/surface nucleolin is a specific

and a selective effect (Figure 2B).

HB-19 is internalized at 37uC but at 20uC it remains attached to

the cell surface without entering the cytoplasm, thus indicating

that it uses an active internalization process.

In vitro antitumorigenic activity of HB-19
The inhibitory action of HB-19 on tumor cell replication was

evaluated in soft-agar colony-forming assay where inhibition of

colony formation is considered a stringent test of the anticancer

activity of a compound. Both HB-19 and anti-nucleolin monoclo-

nal antibody (mAb) reduced significantly colony-forming capacity

of MDA-MB-231 cells with 50% reduction occurring at 1 mM of

HB-19 (Figure 4A). Under similar experimental conditions, 60%

reduction occurred at 10 mM bisphosphonate that induces

apoptosis. Consistently, at 5 mM of HB-19, colony formation

was reduced markedly in human carcinoma cells of different

origins, such as breast cancer (MDA-MB-231 and MDA-MB-435),

prostatic adenocarcinoma (PC3), glioblastoma (U87MG), and

murine melanoma cells (B16), thus illustrating the antitumoral

potential of HB-19 (Figure 4B).

In spite of marked inhibitory effect on tumor cell proliferation,

apoptosis was not observed in HB-19 treated cells (not shown). We

therefore investigated cell cycle perturbations induced by HB-19

treatment in MDA-MB-231 cells and compared the results with

perturbations induced by serum starvation (Figure 5A). Compared to

untreated cells, HB-19 treatment resulted a 62% decrease of cells in

the S phase with an increase of 31% and 9% in the G2/M and G1

phases, respectively. In serum starved cells, a marked reduction (70%)

of cells occurred as expected in the S phase, which was accompanied

by 25% increase of cells in the G1 phase of the cell cycle but the

proportion of cells in the G2/M phase was not modified. As the S

phase represents the period in which cells replicate their DNA, the

marked reduction in the proportion of HB-19 treated cells in the S

phase is consistent with its inhibitory effect on tumor cell

multiplication in soft agar. Recently, depletion of total cellular

nucleolin (surface/cytoplasmic+nuclear nucleolin) by siRNA was

shown to result in cell growth arrest and accumulation of cells in the

G2 phase without affecting the proportion of cells in the S phase [29],

which is in contrast to HB-19 that causes marked reduction in the S

phase. These observations suggest that surface and nuclear nucleolin

can also be differentiated by their mechanism of action on the cell

cycle. By blocking surface nucleolin, HB-19 could perturb signaling

events during induction of cell proliferation in response to various

stimuli, thus illustrating that surface nucleolin could be implicated in

mechanisms that link extracellular signals with intracellular signaling

[30]. To illustrate this, we tested the effect of HB-19 on the activation

of the extracellular signal-regulated ERK1/2, one of the well-

characterized mitogen-activated protein kinases. Figure 5B shows

that blockade of surface nucleolin by HB-19 in MDA-MB-231 cells

prevents enhanced phosphorylation of ERK1/ERK2 occurring at 5

min in response to serum stimulation of cells.

Inhibition of angiogenesis by targeting surface nucleolin
In an in vitro proliferation and migration assay of VEGF

stimulated HUVECs, HB-19 and anti-nucleolin mAb inhibited

dramatically both of these events down to levels comparable to

that of unstimulated cells (Figure 6A, 6B). In an in vitro model of

endothelial cell differentiation on a three-dimensional collagen gel,

HB-19 and anti-nucleolin mAb inhibited formation of capillary-

like branched structures induced by angiogenic growth factors

PTN and VEGF (Figure 6C). On the other hand, the inhibitory

effect of anti-nucleolin antibody was much less pronounced

compared to HB-19 on such tubular network formation when

FGF-2 was used as an inducer (Figure 6C). This difference could

be due to the inhibitory mechanism of action of HB-19 on surface

nucleolin compared to that of the anti-nucleolin mAb.

The antiangiogenic potential of HB-19 was further evaluated in

the mouse Matrigel plug assay using growth factors PTN and

FGF-2. One week after subcutaneous injection of Matrigel into the

flank of mice, angiogenesis was assessed by scoring the vascular

density into the Matrigel plug. HB-19 treatment significantly

inhibited the ex vivo angiogenesis induced by FGF-2 or PTN as

demonstrated by reduced endothelial-cell infiltration into the

Matrigel plug (Figure 6D). Finally, the antiangiogenic potency of

HB-19 was confirmed in vivo using chicken embryo chorioallantoic

membrane (CAM) angiogenesis model [31], in which HB-19

impaired significantly blood vessel branching and development in

a dose-dependent manner (Figure 7). Our results illustrate the

Cancer Therapy

PLoS ONE | www.plosone.org 3 June 2008 | Volume 3 | Issue 6 | e2518



potent antiangiogenic activity of HB-19, and consistent with

previous reports they confirm the function of surface nucleolin in

the development of the vascular network [7,15,16].

In vivo antitumorigenic activity of HB-19
Inhibitory action of HB-19 was tested against established

human breast carcinoma xenografts in the athymic nude mice.

For this purpose, mice were inoculated subcutaneously with

MDA-MB-231 or MDA-MB-435 cells that proliferate into

palpable tumors in 2 weeks. Tumor bearing mice were then

treated with HB-19 (Figure 8A, B) or control antitumoral reagents

such as tamoxifen and 5-fluouracil (5-FU). The mice were

administered 3 times per week with various drugs, during which

time tumor-volume was measured by a caliper every third or

Figure 2. HB-19 binds nucleolin expressed on the surface of tumor cells and causes reduction of cytoplasmic/surface but not
nuclear nucleolin. (A) HB-19/Btn forms a stable complex with nucleolin expressed on the surface of cells. MDA-MB-231 cells were incubated
(45 min, 20uC) with 0, 1, 2, 4, 8 and 12 mM of HB-19/Btn before preparation of surface/cytoplasmic (i.e., nucleus-free) and nuclear extracts [8,28].
Samples of surface nucleolin (purified using surface/cytoplasmic extracts from 26107 cells) and crude surface/cytoplasmic and nuclear extracts (from
26106 cells) were analyzed by immunoblotting for the detection of nucleolin using mAb D3. (B) Specific reduction of surface/cytoplasmic nucleolin in
HB-19 treated cells. MDA-MB-231 cells were cultured (at 37uC) with 10 mM of HB-19 for 4, 24 and 48 hours before preparation of cytoplasmic and
nuclear extracts. Material from 26106 cells (Untreated or HB-19 treated cells as indicated 2 or + signs, respectively) was analyzed by immunoblotting
for the detection of nucleolin. Sections of the gel at the position of the nucleolin bands are presented. The right panel shows the profile of proteins in
the Nuclear-free cell extract (Surface/Cytoplasm) of the PAGE-SDS gel stained with Brilliant Blue G-Colloidal Concentrate. Lane M shows the
electrophoretic mobility of protein markers. The intensity of nucleolin protein bands quantified by using the NIH image software indicated 75% and
93% reduction of surface/cytoplasmic nucleolin in HB-19 treated cells at 24 and 48 hours, respectively, compared to the corresponding untreated
cells. (C) HB-19 binds the cell surface and enters in the cytoplasm but not the nucleus. MDA-MB-231 cells were incubated at 20uC (for HB-19 Binding)
or 37uC (for HB-19 Entry) with 5 mM of HB-19/Btn for 1 hour before fixation in PFA or PFA-Triton, respectively. Fixed cells were successively incubated
with rabbit anti-biotin and goat Texas Red-conjugated anti-rabbit IgG and the nuclei were colored with DAPI. Scans corresponding to the cross-
section of cells are shown, each with or without the DAPI. (D) Nucleolar nucleolin is not affected in HB-19 treated cells. MDA-MB-231 cells cultured in
the absence (Control Cells) or presence of 10 mM of HB-19 for 48 hours (HB-19 Treated Cells) were fixed in PFA-Triton and processed for fluorescence
microscopy. Nucleolin was revealed by mAb D3 and FITC-conjugated goat anti-mouse IgG.
doi:10.1371/journal.pone.0002518.g002
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fourth day. At the end of experiment, tumor-bearing mice were

sacrificed, blood was collected for analysis, and the liver, lungs and

spleen were removed for histological analysis. Besides a marked

suppression of tumor development in HB-19 treated mice, autopsy

revealed no apparent effect on various tissues compared to control

mice injected with PBS alone. Similarly, HB-19 treatment had no

effect on body weight and on blood cell counts, nor induced any

evidence of toxicity such as diarrhea, infection, weakness, or

lethargy (data not shown).

In the ectopic MDA-MB-231 xenograft model, peritumoral

administration of HB-19 strongly inhibited tumor growth and in

some cases eliminated measurable tumors (Figure 8A). In addition,

the results show that the antitumoral activity of HB-19 is superior

to the conventional cancer drug tamoxifen. Indeed, in tumor

bearing mice, treatment with HB-19 (5 mg/kg) inhibited .95%

tumor growth, whereas treatment with tamoxifen (10 mg/kg)

reduced tumor mass by only 80%. In the orthotopic MDA-MB-

435 xenograft model, intraperitoneal administration of HB-19

impaired tumor growth by 57% compared to 66% by the widely

used chemotherapeutic drug 5-FU (Figure 8B). Similarly, HB-19

and 5-FU treatment significantly inhibited tumor vascularization

compared to the untreated tumors as revealed by immunohisto-

chemical analysis using antibodies against the CD31 endothelial

marker (Figure 9). On the other hand, 5-FU but not HB-19 was

toxic causing a significant degree of leucopenia with a 55%

reduction in the number of lymphocytes. HB-19 treatment had no

effect on the number of platelets, erythrocytes, and leukocytes

(Table 1).

Finally, we investigated the contribution of intraperitoneal

versus subcutaneous route of injection on the activity of HB-19.

Figure 8C shows the progression of MDA-MB-231 tumor

xenografts in the nude mice, untreated or treated with HB-19

by injections every 3 or 4 days for a period of 30 days. The

antitumoral activity of HB-19 administered by either route was

highly effective with more than 95% inhibition in tumor volume.

Figure 3. Specific binding and entry of HB-19 in endothelial
cells. (A) HB-19/Btn forms a stable complex with nucleolin expressed
on the surface of HUVECs. Cells were incubated (45 min, 20uC) with 0, 1,
2, 4, 8 and 12 mM of HB-19/Btn before preparation of surface/
cytoplasmic and nuclear extracts and recovery of surface nucleolin
from the surface/cytoplasmic extracts as in Figure 2A. Material extracted
from 26107 and 26106 cells was analyzed in panels Surface and
Surface/Cytoplasm or Nucleus, respectively. Immunoblotting was with
the anti-nucleolin mAb D3. (B) The specific binding of HB-19/Btn to
HUVECs. The binding of 1 mM HB-19/Btn was studied at 4 uC by
FACScan analysis. To show the specificity of binding, the reaction was
carried out in the absence or presence of 50 mM HB-19, F3, or 9Arg
peptides. The ordinate gives the relative cell number, whereas the
abscissa gives the relative fluorescence intensity. (C) HB-19 entry in
HUVECs. Cells were incubated with 5 mM of HB-19/Btn (1 hour, 37uC)
before fixation in PFA (for surface binding) or PFA-Triton (for entry),
respectively. Cells were then successively incubated with rabbit anti-
biotin antibodies and goat Texas Red-conjugated anti-rabbit IgG, and
processed for confocal microscopy. The scans of cells toward the
middle cell layer are presented (with the DAPI stained nuclei).
doi:10.1371/journal.pone.0002518.g003

Figure 4. HB-19 inhibits colony formation in soft agar by tumor
cell lines. (A) MDA-MB-231 cells in culture medium were seeded in
triplicate in the absence (histogram C) or presence of 0.1, 0.5 and 1 of
mM HB-19, or 0.1 mM of the anti-nucleolin mAb MS-3 or control IgG, or
10 mM bisphosphonate (BisP). (B) Various tumor cell lines (as indicated)
in culture medium were seeded in triplicate in the absence (histogram
Control) or presence of 5 mM HB-19. After 10–21 days, colonies with
diameters greater than 50 mm were scored as positive. Statistical
significance: *0.01,p,0.1, **p,0.01, ***p,0.001.
doi:10.1371/journal.pone.0002518.g004
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Complete eradication of the tumor was observed in several mice

treated intraperitoneally with HB-19 (Figure 8C and 8D).

Discussion

Several reports have suggested that cell-surface nucleolin is

implicated in growth of tumor cells and angiogenesis [2,15,16].

The results presented herein provide evidence for the first time

that the specific antagonist of surface nucleolin, the HB-19

pseudopeptide, suppresses both of these events. HB-19 inhibits

colony formation in soft agar of various tumor cells lines and

impairs several endothelial cell functions involved in angiogenesis,

such as cell proliferation and migration, tubule network formation,

and neovascularization. In the tumor bearing nude mice, HB-19

suppresses markedly progression of established human tumor

xenografts, and in some cases results complete eradication of the

tumor without any apparent toxicity. Tumor growth and

progression is dependent on neovascularization, which is orches-

trated by down regulation of antiangiogenic factors and upregu-

lated proangiogenic factors associated with carcinogenesis [32].

Moreover, several growth factors have the capacity to stimulate

concurrently tumor cell growth and endothelial cell function [33].

In spite of such complexity, targeting surface nucleolin with HB-19

is effective for inhibition of tumor cell proliferation and

impairment of angiogenesis. Therefore functional blockade of

surface nucleolin seems to result in a general inhibitory mechanism

that is not specific to a single pathway or a growth factor

implicated in carcinogenesis. Our results illustrate the dual

inhibitory action of HB-19 on tumor and endothelial cells, and

validate surface nucleolin as an important anticancer target.

The cross-linking of cell surface bound HB-19/Btn with anti-

biotin antibodies results in ligand-dependent clustering of surface

nucleolin and its colocalization with the pseudopeptide, thus

confirming that surface nucleolin is the target of HB-19 [12]. The

presence nucleolin on the cell surface is the consequence of active

translocation of cytoplasmic nucleolin to the surface upon

stimulation of cell proliferation. This latter and fluctuations in

the level of surface nucleolin occur in the absence of any apparent

effect on nuclear nucleolin. Surface and cytoplasmic nucleolin are

characterized by similar isoelectric points with pI values at about

4.5, whereas nuclear nucleolin is composed of several subspecies

with pI values between pH 4 and 6 [3,12,28]. These observations

suggest that expression of surface nucleolin should be differentially

regulated compared to its nuclear counterpart. Consistent with

this, our results demonstrate that HB-19 causes a selective

reduction of surface nucleolin without affecting the level and

nucleolar localization of nuclear nucleolin. After binding surface

nucleolin, HB-19 enters cells by an active process and accumulates

in the cytoplasm but it does not cross the nuclear membrane in

contrast to physiological ligands of surface-nucleolin [11,13,14].

Consequently, the effect of HB-19 is exerted differentially and

specifically via the cell surface expressed nucleolin, which

eventually becomes degraded causing reduction of cytoplasmic

pools of nucleolin [28].

The mechanism by which down regulation of surface nucleolin

by HB-19 results in inhibitory effects on tumor cells and

angiogenesis remains to be elucidated. HB-19 binds the RGG

domain at the C-terminal end of nucleolin, which is also the site

for binding of RNA [34,35], rDNA [36], subset of ribosomal

proteins [37], the urokinase-type plasminogen activator [14], and

several growth factors [8–11]. The irreversible binding of HB-19

to this RGG domain could then prevent the proper functioning of

surface nucleolin thereby exerting its antagonistic action. In view

of the implication in tumor growth and angiogenesis, its capacity

to bind pathogens and diverse range of ligands including low

density lipoproteins [1,2,5], it is plausible to suggest that surface

nucleolin could function as a scavenger receptor [38]. Recent

studies indicate that at the cell surface, nucleolin exists in a 500-

kDa complex containing several proteins whose identity is under

investigation (A.G.H. and B.K., unpublished results). Consequent-

ly, the binding of HB-19 to surface nucleolin could also affect the

organization of nucleolin-associated proteins in this 500-kDa

complex and thus generate more inhibitory mechanisms.

HB-19 treatment is not toxic in vitro and in vivo. The lack of

translocation of HB-19 to the nucleus and nucleolus probably

accounts for its lack of toxicity in cultured cells and in mice, since

nuclear nucleolin is involved in many aspects of gene expression

[1,2]. By using b-radio imager whole-body mapping in rats, we

have shown that systematically administered HB-19 is rapidly

cleared from blood to become distributed selectively in tissues

expressing enhanced levels of surface nucleolin, where a significant

proportion still persists even after 24 hours in its active form [39].

In spite of its pseudopeptide nature, HB-19 is eliminated gradually

by renal glomerular filtration and most of the excreted

radioactivity in the urine is in the form of HB-19 metabolites.

This could contribute to the lack of toxicity in animals that were

treated for several weeks with HB-19. Furthermore, there is a

threshold for the tissue uptake of HB-19, thus ruling out any

eventual toxic effects at increased doses [39]. A few minutes

following intravenous injection of HB-19, a significant proportion

of the peptide is recovered in the bone marrow, which harbors

endothelial progenitor cells [39,40]. Antiangiogenic activity of HB-

Figure 5. Cell cycle perturbations induced by HB-19 treatment.
(A) Analysis of cell cycle parameters in HB-19 treated cells. MDA-MB-231
cells were cultured for 48 hours in medium without FBS (starvation) or
in medium containing 10% FBS supplemented or not with 10 mM HB-
19. DNA synthesis was quantified after BrdU incorporation and staining
with anti-BrdU antibody and 7-AAD, by FACScan analysis. The
histograms indicate the relative amount of cells in G1, S and G2/M
cell phases. (B) HB-19 treatment inhibits serum-induced phosphoryla-
tion of ERK1/2. Serum starved MDA-MB-231 cells were stimulated with
10% FBS in the absence or presence of 2, 5, and 10 mM of HB-19. Five
minutes after serum stimulation, cells were lysed directly in electro-
phoresis sample buffer and processed for immunoblotting using anti-
phospho-p42/44 ERK1/2 and anti-p42/44 ERK antibodies. NS stands for
non-stimulated cells.
doi:10.1371/journal.pone.0002518.g005
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19 therefore, could be the sum of inhibitory action on endothelial

precursor cells in the bone marrow as well as endothelial cells in

the circulation and in the tumor microenvironment.

Previously, guanosine-rich phosphodiester oligonucleotides (re-

ferred to as GROs) and endostatin have been reported to exert

antitumoral and antiangiogenic activity, respectively, through

interaction with surface nucleolin [21,41,42]. Although GROs

bind solubilized nucleolin in cell extracts, surface nucleolin does

not seem to mediate their internalization into intact cells (A.G.H.

unpublished results). Indeed, GROs are internalized rapidly by a

passive process and accumulate in the nucleoli in contrast to the

active entry of HB-19 and its accumulation in the cytoplasm. At

20uC, GROs still end up in the nucleolus whereas HB-19 remains

aggregated at the plasma membrane. In contrast to GROs,

endostatin colocalizes with surface nucleolin and is translocated to

the nucleus where it inhibits phosphorylation of nuclear nucleolin

[21]. The difference between subcellular localization of HB-19

and endostatin could be accounted by the nature of interaction

with surface nucleolin, since endostatin but not HB-19 binding to

surface nucleolin requires heparan sulfate proteoglycans [21,28].

In view of these differences and the fact that HB-19 does not cross

the nuclear membrane, it appears that GROs and endostatin

function preferentially through nuclear nucleolin while HB-19 acts

directly on surface nucleolin. This could account for the

differences observed in the inhibitory mechanism of action of

GROs and endostatin compared to that of HB-19. For example,

GROs result in the accumulation of tumor cells in S phase and

induce apoptosis [42], whereas HB-19 causes a reduction of cells

in S phase without apoptosis. Similarly, endostatin does not

directly affect tumor cell growth because of a defect in its

Figure 6. Inhibition of in vitro and in vivo angiogenesis by HB-19. (A) HB-19 inhibits proliferation of HUVECs. Twenty-four hours after seeding
HUVECs in 2% FBS, cells were stimulated by 0.25 nM VEGF165, in the absence or presence of 1 mM HB-19 or 0.1 mM anti-nucleolin mAb MS-3 as
indicated. After 72 h, cell number was determined by crystal violet staining [47]. The data are reported as the mean of triplicate samples. (B) HB-19
inhibits migration of HUVECs. Cell migration was studied using a modified Boyden chamber. Cells were incubated (4 h at 37uC) with VEGF165, HB-19,
or anti-nucleolin mAb MS-3 as above. Cells that migrated through the pore to the lower filter surface were counted and are shown as number per
microscopic field at 6100 magnification. The data are the mean of three independent high-power fields/well performed in duplicate in two
independent experiments. (C) HB-19 inhibits tubular network structure formation in collagen. Aortic endothelial (ABAE) cells in the absence or
presence of 3 nM PTN, 0.5 nM VEGF165, and 3 nM FGF-2 were seeded on a three-dimensional collagen gel in complete medium. Treatment with HB-
19 or anti-nucleolin mAb MS-3 was for 3 days after cell plating. Tubular network structures were quantified using phase contrast microscopy (6100).
The ordinate gives the number of pseudocapillaries corresponding to the means of three randomly chosen fields/well from three wells. (D) HB-19
inhibits ex vivo angiogenic activity of growth factors in a Matrigel plug model. Liquid Matrigel was subcutaneously injected into the flank of Swiss
mice in the absence or presence of 5 nM PTN, 10 nM FGF-2, and 1 mM HB-19. Quantification of endothelial cell invasion into the Matrigel was
determined and is expressed as a mean of five fields per section from 3 Matrigel-plug sections per mouse. The results are expressed as the mean of
five mice per group. Statistical significance: *p,0.05, **p,0.01, ***p,0.001.
doi:10.1371/journal.pone.0002518.g006
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internalization [21]. Therefore, the target of anti-nucleolin

reagents needs to be characterized in respect to the specificity of

their action on surface or nuclear nucleolin.

The dual and direct action of HB-19 on tumor and endothelial

cells fulfills the criteria for an efficient anticancer drug, since

combination therapy targeting both of these two distinct cell types is

considered an efficient strategy in cancer management [43]. HB-19

could also provide a nontoxic drug for the prevention of cancer

recurrence and/or metastasis. Moreover, HB-19 could be used as

an alternative therapy in cancer patients that develop resistance to

chemotherapy [44]. Another advantage of HB-19 over traditional

anti-cancer drugs is its capacity to bind surface nucleolin in an

irreversible manner under physiological conditions [8] [39], making

the half-life of tissue associated HB-19 much longer compared to

that of any other cancer drug. Finally, its reproducible synthesis,

stability in serum and in vivo lack of toxicity make HB-19 a unique

drug against tumor growth and angiogenesis, thus providing novel

therapeutic opportunities in cancer therapy.

Materials and Methods

Peptide constructs and anti-peptide antibodies
HB-19, biotinylated HB-19 (HB-19/Btn: H2NLys-Lys-Lys-Gly-

Pro-Lys-Glu-Lys-bAla-Lys(Btn)-bAlaCONH2; for recovery surface

nucleolin) and Tyrosine-coupled HB-19 (HB-19/Tyr: H2NLys-Lys-

Lys-Gly-Pro-Lys-Glu-Lys-bAla-Tyr-bAlaCONH2; for iodination) were

synthesized as described previously using solid phase peptide

methodology [8,28]. HB-19/Btn and HB-19/Tyr, [125I]HB-19

peptides manifested similar inhibitory activity as HB-19. All peptides

were obtained at a high purity (.95%). The control peptides, 9R

(composed of nine D-Arg residues) and F3 were as reported [6,9].

Reagents
Culture medium and fetal bovine serum (FBS) were supplied by

Invitrogen (Cergy Pontoise, France). EBM-2 Bullekit medium was

from Biowhittaker (Emerain-ville, France). MatrigelTM was from

BD PharMingen (Le Pont de Calais, France). C23 (MS-3) anti-

nucleolin mAb was from Santa Cruz biotechnology (France).

Mouse control IgG and phosphatase alkaline-conjugated goat anti-

rat immunoglobulin G were purchased from Jackson ImmunoR-

esearch (France). Rat anti-mouse CD31 monoclonal antibody

(PECAM) was from BD Pharmingen Biosciences (France). Anti-

phospho-p42/44 ERK1/2 (Thr202/Tyr204) and anti-p42/44

ERK MAP kinase antibodies were purchased from Santa Cruz

Biotechnology, U.S.A. Bisphosphonate, tamoxifen and 5-FU were

from Sigma Diagnostics (France). BrdU kit was from (BD

Pharmingen Bioscience, France).

Cell lines and cell culture
The PC3 human prostatic carcinoma cell line, MDA-MB-231

and MDA-MB-435 human breast carcinoma cell lines, U87MG

human glioblastoma cell line, and B16 mouse melanoma cells were

purchased from ATCC (American Type Culture Collection,

Rockville, MD). PC-3 cells were grown in RPMI 1640 supple-

mented with 10% FBS. MDA-MB-231, MDA-MB-435, U87MG,

and B16 cell lines were grown in DMEM 4.5 g/l glucose

supplemented with 10% FBS. Human umbilical vein endothelial

cells (HUVECs) were provided by Clonetics (Biowhittaker,

Emerain-ville, France) and cultured between passages 2 and 5 in

EBM-2 Bullekit supplemented medium with 2% FBS. Aortic bovine

endothelial cells (ABAE) were cultured in DMEM 1 g/l glucose

supplemented with 10% decomplemented FBS. All cultures were

grown at 37uC in a humidified atmosphere of 5% CO2.

Figure 7. Inhibition of in vivo angiogenesis by HB-19 in chick embryo chorioallantoic membrane (CAM) assay. Macroscopic observation
of the angiogenic response induced by gelatin sponges (1 cm2), soaked with 40 ml of PBS (Control) or 40 ml PBS containing HB-19 at concentrations
of 10, 20 and 50 mM (corresponding to 0.4, 0.8 and 2 nmols of HB-19, respectively). After 48 h, CAMs were fixed and excised from the eggs .
Photographs were taken and the total length of the vessels was measured using the Image PC image-analysis software (Scion Corporation, USA)[48].
Each sample was tested three times using 15–20 eggs for each data point. The relative percent inhibition (P,0.001) of angiogenesis compared to the
control was 27, 36 and 51% in the presence of 0.4, 0.8 and 2 nmols of HB-19, respectively.
doi:10.1371/journal.pone.0002518.g007
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Preparation of cytoplasmic and nuclear extracts
Cells washed in phosphate-buffered saline (PBS) were lysed in

buffer E (20 mM Tris–HCl, pH 7.6, 150 mM NaCl, 5 mM

MgCl2, 0.2 mM phenylmethylsulfonyl fluoride (PMSF), 5 mM b-

mercaptoethanol, aprotinin (1000 U/ml) and 0.5% Triton X-100)

and the nuclei were pelleted by centrifugation (1000g for 5 min).

For the preparation of nuclear extracts, the nuclear pellet was

disrupted in buffer I (20 mM Tris–HCl, pH 7.6, 50 mM KCl,

400 mM NaCl, 1 mM EDTA, 0.2 mM PMSF, 5 mM b-

mercaptoethanol, aprotinin (1000 U/ml), 1% Triton X-100, and

20% glycerol). The nucleus-free supernatants and the nuclear

extracts were then centrifuged at 12,000g for 10 min, and the

supernatants were stored at 220uC. Aliquots of crude cell extracts

were diluted in 2 fold concentrated electrophoresis sample buffer

containing SDS, heated and analyzed by SDS- polyacrylamide gel

electrophoresis (PAGE). Gels were stained with Brilliant Blue G-

Colloidal Concentrate from Sigma.

Purification of the cell-surface-expressed nucleolin
Cells were passaged in DMEM culture medium containing 10%

FCS in 75 cm2 flasks. After 2 days, subconfluent cells (about

36106 cells/flask) were incubated (45 min, 20uC) with 5 mM of

HB-19/Btn. After washing extensively in PBS containing 1 mM

EDTA (PBS-EDTA), nucleus-free cell extracts were prepared in

lysis buffer E. The complex formed between cell-surface expressed

nucleolin and HB-19/Btn was isolated by purification of the extracts

using NeutrAvidin agarose (100 ml; Pierce Biotechnology) in PBS-

EDTA. After 3 hours at 6uC, the avidin-agarose samples were

washed extensively with PBS-EDTA. The purified surface nucleolin

was eluted in the electrophoresis sample buffer containing SDS and

analyzed by SDS–polyacrylamide gel electrophoresis (PAGE). The

presence of nucleolin was then revealed by immunoblotting using

mAb D3 against nucleolin as described before [8,28].

Immunofluorescence and confocal microscopy
Cells were plated 24 hours before the experiment in eight-well

glass slides (Lab-Tek Brand; Nalge Nunc International, Naperville,

IL). Cells were fixed with either paraformaldehyde (PFA; 3.7%) for

membrane staining or PFA/Triton X-100 solution (PFA/Triton)

for staining intracellular HB-19/Btn or nucleolar nucleolin [3,28].

The secondary antibodies were the following: FITC-conjugated

goat anti-mouse IgG (Sigma), Rabbit anti-biotin concentrate (IgG

fraction; Enzo Dioagnostics, Inc., New York), Texas Red dye-

conjugated goat anti-rabbit IgG (Jackson ImmunoResearch

Laboratories). In some experiments, the nuclei were colored with

49,6-diamidino-2-phenylindole (DAPI).

Figure 8. HB-19 inhibits tumor growth in the nude mice. (A) HB-19 inhibits the growth of MDA-MB-231 tumor-cell xenografts. Cells (26106)
were injected subcutaneously into the right flank of female nude mice. Two weeks later, mice with a palpable tumor of approximately 40 mm3 in
volume were randomly separated into three groups (n = 5) and were given peritumoral injections 3 times/week of 0.1 ml PBS alone (Control), HB-19
(5 mg/kg), or Tamoxifen (Tmx) 10 mg/kg) for 6 weeks. (B) HB-19 inhibits the growth of MDA-MB-435 tumor-cell xenografts. Cells (16106) were
injected in the mammary fat pad of female nude mice. Two weeks later, mice with a palpable tumor were randomly separated into three groups
(n = 10) and were given intraperitoneal injections 3 times/week of 0.1 ml PBS alone (Control), HB-19 (5 mg/kg), or 5-fluouracil (5-FU, 40 mg/kg) for 8
weeks. At the end of each experiment (in A and B), mice were sacrificed and the tumors were excised and weighed. The results are presented as the
mean weight 6standard deviation (6S.D.) obtained from the number of mice in each group. (C, D) Inhibition of tumor development in mice treated
by intraperitoneal (i.p.) and subcutaneous (s.c.) administration of HB-19. MDA-MB-231 tumor bearing mice in three groups (n = 10) were treated with
HB-19 (10 mg/kg) by i.p. or s.c. injections, 3 times/week for 28 days. The arrow at day 0 shows initiation of HB-19 treatment. Panel D shows MDA-MB-
231 tumor bearing mice, untreated control and HB-19 treated (i.p. injection). Statistical significance: *p,0.05, **p,0.01, ***p,0.001.
doi:10.1371/journal.pone.0002518.g008
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Colony formation in soft agar
Carcinoma cells (26104) were mixed in 0.35% top agar, diluted

in complete medium (DMEM containing 10% FBS) in the absence

or presence of HB-19, and plated onto 0.8% bottom agar into 12-

well plates. Cells were treated twice a week during 10 to 21 days.

Colonies with diameters greater than 50 mm were scored as

positive using a phase contrast microscope equipped with a

measuring grid at magnification 1006 [45]. The number of

colonies was determined by analyzing 5 fields/well from 3 wells

and the test was repeated at least twice.

BrdU incorporation and cell cycle analysis
Cell cycle analysis was performed using the FITC-BrdU flow kit

(#559619) kit from BD Bioscience Pharmingen, according to the

manufacturer’s instructions. Briefly, MDA-MB-231 cells (16105)

were seeded in 12-multiwell and incubated 24 hours for adhesion.

Cells were treated with HB-19 for 48 hours and labeled with BrdU

(10 mM, 1 hour, 37uC), then they were trypsinized, fixed and

treated with DNase (300 mg/ml, 1 hour, 37uC) before staining

with anti-BrdU-FITC antibody and 7-AAD reagent. Cells were

analyzed on a Becton Dickinson FACScan (fluorescence activated

cell sorter), on FL1-H and FL3-H parameters for FITC and 7-

AAD fluorescent dye respectively.

HUVEC endothelial cell chemotactic migration assay
HUVEC migration assays were performed using a 24-well

chemotaxis chamber (Transwell, Corning Costar, France). Poly-

carbonate filters with 8 mm pore size were coated with 10 mg/ml

type I collagen R (Serva, Heidelberg, Germany) for 1 hour and

dried under sterile air. The EBM-2 medium supplemented with

1% FBS was then placed in the lower chamber and served as

chemo-attractant. Cells (105/well) suspended in EBM-2/1% FBS

were seeded in the upper compartment in the absence or presence

of HB-19 or mAb MS-3. Transwells were incubated for 4 hours at

37uC, after which cells on the upper surface of the filter were

removed by wiping with a cotton tip. The filters were then fixed

with methanol and stained with May Grünwald Giemsa solution.

Figure 9. Reduced density of blood vessels in HB-19 treated tumor-bearing mice. Sections of tumors recovered from mice, untreated
control and treated with either HB-19 or 5-FU (experiment described in Figure 8B) were stained with antibodies against the CD31 endothelial marker
and analyzed by fluorescence microscopy. Representative macroscopic image (magnification 2006) from each group of mice shows the marked
reduction of blood vessels in the tumors recovered from HB-19 or 5-FU treated animals. Angiogenesis was quantified by image analysis of CD31-
labeled endothelial cells. The graph shows the mean areas 6standard deviation obtained from control and treated mice. ***p,0.001.
doi:10.1371/journal.pone.0002518.g009

Table 1. HB-19 treatment has no effect on blood cell number.

Cells
Untreated
mice

5-FU treated
mice

HB-19 treated
mice

Platelets1 1041691 1042659 10376 225

Erythrocytes2 8.7360.26 7.6060.30*** 8.3161.05

Leukocytes1 3.0561.29 1.7360.37 * 3.3661.28

Lymphocytes1 1.8460.78 0.8360.22 ** 1.9861.01

Monocytes1 0.2060.09 0.2260.09 0.2360.07

Neutrophils1 0.8960.39 0.5360.15 * 1.0360.44

Eosinophils1 0.0160.02 0.0560.04 0.0360.04

Basophils1 0.1060.06 0.1060.04 0.0960.04

MDA-MB-231 tumor bearing mice untreated, and treated with 5-FU or HB-19
were as described in Figure 8B for 8 weeks. Blood samples collected in EDTA
were processed using an automated flow cytometric blood cell counter (1

6103/ml; 2 6106/ml). The results are presented as the mean areas 6standard
deviation for each mice group (n = 10). Data from untreated and treated group
were compared and analyzed using the paired t-test to obtain p value: *

p,0.05, ** p,0.01, *** p,0.0001.
doi:10.1371/journal.pone.0002518.t001
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The cells that had migrated through the pores to the lower filter

surface were counted in three random high power fields in each

well (magnification 1006). Results are presented as the mean of

two independent experiments.

Angiogenesis tube formation assay
Three-dimensional collagen gels were prepared following the

procedure of Montesano with minor modifications [46]. Briefly,

105 aortic endothelial cells (ABAE) per well in 24-well culture plate

were seeded on a three-dimensional collagen gel in complete

medium. After 24 hours, HB-19 was added daily for three

consecutive days. Tubular network structures were then quantified

using phase contrast microscopy at 1006magnification [45]. Data

are the means of 3 randomly chosen fields/well from 3 wells and

the experiment was repeated twice.

In vivo mouse angiogenesis assay using MatrigelTM plug
model

Liquid MatrigelTM (0.3 ml) at 4uC was subcutaneously injected

into Swiss mice (n = 5 mice/sample; Janvier, Le Genest St Isle,

France) alone or supplemented with PTN (5 nM) or FGF-2

(10 nM), and in the absence or presence of HB-19 (1 mM). The

MatrigelTM rapidly formed a single solid gel plug. Mice were

sacrificed after 8 days, the skins were pulled back and the intact the

plugs were excised and frozen in liquid nitrogen. Sections of 8 mm

thickness were cut using a cryostat (Leica), fixed with acetone, and

stained with Gomori-Trichrome. Histological slides were analyzed

by microscopic observation at 2006 magnification to determine

the MatrigelTM plug area infiltrated by endothelial cells.

Quantification of endothelial cell invasion into the MatrigelTM

was determined as a mean of 5 fields per section from 3 plug

sections per mouse using NIH Image software [47].

Chicken embryo chorioallantoic membrane (CAM) assay
Leghorn fertilized eggs (Pindos, Greece) were incubated for 4

days at 37uC. A window was then opened on the eggshell,

exposing the CAM. The window was covered with sterile tape,

and the eggs were returned to the incubator. On day 9 of embryo

development, 20 ml of distilled water alone as a control or

containing HB-19 was applied on a 1-cm2 area of the CAM inside

a silicon ring. After 48 hours of incubation at 37uC, CAMs were

fixed in situ with saline-buffered formalin, excised from the eggs,

placed on slides, and left to dry in air. Photographs were taken and

the total length of the vessels was measured as described [47].

Tumor cell inoculation in nude mice
All in vivo experiments were carried out with ethical committee

approval and under the conditions established by the European

Community. 4-week old female athymic nude Mice (Janvier, Le

Genest St Isle, France) were injected subcutaneously in the right

flank (MDA-MB-231) or in the mammary fat pad (MDA-MB-435)

in 0.1 ml PBS. When the tumor reached about 40 mm3, the mice

were separated randomly in several groups. Administration of HB-

19 in PBS (5 mg/kg body weight) was either by intraperitoneal,

subcutaneous or peritumoral injections three times per week.

Tumor volume was measured along two major axes with calipers.

Tumor volume (mm3) was calculated as follows: V = 4/

36p6R1
26R2, where R1 is radius 1, R2 is radius 2 and R1,R2.

Tissue preparation, immunohistochemical staining and
image analysis

Immediately after surgical resection, tumors, were frozen in

liquid nitrogen and fixed for 20 min in acetone at 4uC or fixed

with 4% PFA for paraffin inclusion. The sections of 8 mm were re-

hydrated and saturated in PBS containing 1% BSA and 2%

normal goat serum. To visualize tumor endothelial cells, sections

were incubated with a Rat anti-mouse CD31 monoclonal antibody

(1:50) in saturation buffer 1 hour at room temperature. After two

washes in PBS, sections were incubated for 1 hour at room

temperature with biotinylated goat anti-Rat IgG (1:1000 dilution;

Chemicon International Inc., Temecula, CA) in saturation buffer,

followed by three washes in PBS and incubation with the avidin-

biotinylated-alkaline phosphatase complex (Vector Laboratories).

Alkaline phosphatase activity was revealed using the Vector red

substrate (Vector Laboratories). Finally, sections were counter-

stained with hematoxylin, followed by water wash and cover

slipped with Thermo Shandon mounting medium (Pittsburg,

USA). For each CD31-labeled section of control and treated

tumors, five microscopic fields (2006 magnification) containing

exclusively viable tumor cells as indicated by hematoxylin staining

were selected randomly for analysis. Angiogenesis was quantified

by Image analysis of CD31-labeled endothelial cells. The EC

density in each field was expressed as the ratio of EC area/total

area examined 6100 (%). These values were then averaged for

untreated (control) and treated tumors.

Blood cell count
Blood samples were collected by cardiac puncture. Hematocrit

level, white blood cells and platelets count were determined

individually in whole blood anticoagulated with EDTA (1 mM) at

room temperature. Blood cell count was analyzed with an

automated flow cytometric blood cell counter (Cell-Dyn 3500,

Abbott Laboratories, Rungis, France).

Statistical analysis
The significance of variability between the results of each group

and its corresponding control was determined by unpaired t-test

and Mann-Witney Anova. All results are expressed as mean6-

standard errors of the means from at least two independent

experiments.
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