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Abstract

The prevalence of glucose-6-phosphate dehydrogenase (G6PD) deficiency is high in Asia. An ex vivo study was conducted to
elucidate the association of G6PD deficiency and dengue virus (DENV) infection when many Asian countries are hyper-
endemic. Human monocytes from peripheral mononuclear cells collected from 12 G6PD-deficient patients and 24 age-
matched controls were infected with one of two DENV serotype 2 (DENV-2) strains–the New Guinea C strain (from a case of
dengue fever) or the 16681 strain (from a case of dengue hemorrhagic fever) with a multiplicity of infection of 0.1. The
infectivity of DENV-2 in human monocytes was analyzed by flow cytometry. Experimental results indicated that the
monocytes of G6PD-deficient patients exhibited a greater levels of infection with DENV-2 New Guinea C strain than did
those in healthy controls [mean6SD:33.6%63.5 (27.2%,39.2%) vs 20.3%66.2 (8.0%,30.4%), P,0.01]. Similar observations
were made of infection with the DENV-2 16681 strain [40.9%63.9 (35.1%,48.9%) vs 27.4%67.1 (12.3%,37.1%), P,0.01].
To our knowledge, this study demonstrates for the first time higher infection of human monocytes in G6PD patients with
the dengue virus, which may be important in increasing epidemiological transmission and perhaps with the potential to
develop more severe cases pathogenically.
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Introduction

Dengue virus (DENV), a member of the Flaviviridae family, has

four serotypes of DENV-DENV-1, DENV-2, DENV-3 and

DENV-4. Clinical manifestations of DENV infection range from

asymptomatic to dengue fever (DF) and dengue hemorrhagic fever/

dengue shock syndrome (DHF/DSS). About 100 million dengue

cases occur around the world annually [1]. DF and DHF/DSS have

emerged as the most important mosquito-borne viral diseases in

tropical and subtropical countries, particularly in urban areas. DHF

has expanded concomitantly in many geographical regions [2,3].

However, the underlying mechanisms of DHF remain unknown.

The predominant target cells of DENV that are infected in

humans have been identified as mononuclear phagocytes,

monocytes, macrophage and dendritic cells [4–7]. These cells

are responsible for disseminating the virus after its initial entry

following the infection from mosquito bites. Since monocytes and

macrophages are active phagocytic cells with cytoplasmic

lysosomal components that can eliminate microorganisms [8],

the interaction of the DENV with monocytes and macrophages

may have detrimental effects on both virus and cells. Soluble

mediators that are released from dengue virus-infected mono-

cytes/macrophages strongly affect the biological characteristics of

endothelial cells and the hematopoietic cell population, indicating

that the interactions between dengue virus and monocytes/

macrophages are important in the pathogenesis of DHF/DSS.

Glucose-6-phosphate dehydrogenase (G6PD) is an enzyme in

the cytoplasm of all human cells [9]. G6PD deficiency that

involves more than 300 allelic variants is one of the most inherited

human disorders, as more than 400 million people are affected

globally [10,11]. The frequency of G6PD deficiency differs

substantially among populations. About 7.5% of the global

population carries one or two genes for G6PD deficiency. This

proportion actually ranges from a maximum of 35% in parts of

Africa, to 0.1% in Japan and parts of Europe [11]. High

frequencies (6.0,10.8%) of G6PD deficiency are also evident in

Southeast Asia [12]. The overall prevalence of this deficiency is

2.1% in Taiwan [13]. The clinical manifestations of G6PD

deficiency are neonatal jaundice, favism and acute haemolytic

anemia [11]. Infection-induced hemolysis, involving many micro-

bial agents, may be a common cause of clinically significant

hemolytic anemia [14,15] in G6PD-deficient patients, but its

mechanism is unclear. Several studies have indicated that the

abnormal function of leucocytes increases susceptibility to

infection, such as by hepatitis A, in G6PD-deficient patients,

causing more severe initial clinical presentations [9,14,16–18].

The association between G6PD deficiency and recurrent bacterial

infection in children has been described elsewhere [18,19]. A

higher percentage of G6PD-deficient patients than non-G6PD-

deficient patients has been associated with DHF/DSS (19.1%) in

Thailand [20]. Epidemics of dengue in Taiwan have occurred

frequently when imported cases have not been properly controlled

PLoS ONE | www.plosone.org 1 February 2008 | Volume 3 | Issue 2 | e1557



[21]. The goals of this ex-vivo study are to find out whether

monocytes from peripheral blood mononuclear cells (PBMC) of

G6PD-deficient patients were more likely to be infected, regardless

of the dengue virus strain. The results revealed that monocytes

from PBMC of G6PD-deficient patients were more susceptible to

DENV-2 infection with higher replication ability than those from

healthy controls

Results

Growth curve of DENV-2 in human monocytes of healthy
controls

PBMC monocytes from healthy controls obtained using the

MACS monocyte isolation kit were infected with DENV-2 (New

Guinea C or 16681 strain) at an MOI of 0.1. After those cells had

been incubated in 5% CO2 at 37uC for five days, the infected

monocytes and cell culture supernatants were harvested at various

times post-infection. The quantitative measures of DENV-2 viral

infection in monocytes were the percentage of cells to be infected,

quantified by flow cytometry and the viral yields in the

supernatant, determined by plaque assay (Figure 1). Flow

cytometry indicated that human monocytes from healthy controls

could be infected with DENV-2 and that the infections peaked on

the third day post-infection for both New Guinea C and 16681

strains of DENV-2 (16681: 32.1% vs New Guinea C: 24.2% ).

However, the percentages of human monocytes from the healthy

controls that were infected with DENV-2 16681 strain exceeded

that of those with DENV-2 New Guinea C strain from day one to

day five post-infections. The infections of monocytes with DENV

were also detected with indirect immunofluorescence stain

(Figure 2A and 2B). Such infections were further verified by the

virus yields of DENV-2 in the supernatants that are shown in

Figure 1. Again, human monocytes infected with either New

Guinea C or 16681 strains of DENV-2 exhibited similar growth

patterns. The DENV-2 viral yield in cell culture supernatants also

peaked three days post-infection and the viral yields of human

monocytes from healthy controls that were infected with DENV-2

16681 also exceeded those that were infected with New Guinea C

infection (2.16103 PFU/ml vs. 1.36103 PFU/ml). Restated, the

viral yields from the supernatants of human monocytes from the

healthy controls, measured by plaque assay, were very similar to

the percentages of cells that were infected, as measured by flow

cytometry. Based on this high correlation between the results of

the two methods, flow cytometry was used to measure DENV-2

infectivity in infected monocytes in the following experiments.

Ex vivo infection of DENV-2 in human monocytes from
G6PD-deficient patients and healthy controls

Monocytes from G6PD-deficient patients and healthy controls

were collected and separately infected with DENV-2. The infected

cells were harvested and the infection for DENV-2 in human

moncytes was analyzed by flow cytometry. Figures 3A and 3B plot

the results obtained using the monocytes from one healthy donor

infected with DENV-2 New Guinea C and 16681 strains,

respectively. The percentage of positive cells was slightly higher

in DENV-2 16681-infected cells (26.1%) than in DENV-2 New

Guinea C-infected cells (20.1%). Figures 4A and 4B plot the results

obtained using human PBMC monocytes from one G6PD-

deficient patient who was infected with both of the aforementioned

strains of DENV-2. The percentage of cells that were infected with

the 16681 strain as well as the percentage of cells that were

infected with the New Guinea C strains both exceeded the

respective percentages of cells from the healthy controls that were

infected (42.8% vs 26.1%, 32.6% vs 20.1%, respectively).

PBMC monocytes from 12 G6PD-deficient patients and 24

healthy controls were collected and infected with both strains of

DENV-2 to investigate whether the above results concerning

Figure 1. Growth of DENV-2 in human monocytes from one
healthy control. Monocytes were infected with DENV-2 New Guinea C
(NGC) and 16681 strains at an MOI of 0.1 for five days. The virus titer in
the cell culture supernatants were analyzed by plaque assay (—) and
the intracellular replication of virus in the infected cells were detected
by flow cytometry ( ---- ).
doi:10.1371/journal.pone.0001557.g001

Figure 2. Detection of DENV in infected monocytes from one healthy control by using immunofluorescence staining. (A) Mock-
infected cells. (B) DENV-2 infected monocytes. Monocytes were infected by DENV-2 New Guinea C strain at an MOI of 0.1 and then cultured for three
days. Evans blue was added as a counter-stain to differentiate non-infected cells (shown by red color) from the dengue virus-positive infected cells
(shown by green color).
doi:10.1371/journal.pone.0001557.g002

DENV-2 in Monocytes
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greater dengue viral infection in PBMC monocytes of G6PD-

deficient patients than in those of healthy controls apply various

G6PD patients. The results indicated that the mean percentage of

human monocytes that were infected with New Guinea C in

G6PD-deficient patients statistically significantly exceeded the

percentage infection of those of the healthy controls [G6PD-

deficient patients: 33.663.5% (27.2%,39.2%) versus healthy

controls: 20.366.2% (8.0%,30.4%), P,0.01]. A similarly was

obtained from cells that were infected with 16681. The mean

percentages of human monocytes in G6PD-deficient patients

and of those in healthy controls that were infected with DENV-2

16681 were 40.963.9% (35.1%,48.9%) and 27.467.1%

(12.3%,37.1%), respectively (P,0.01). All of the 12 G6PD-

deficient patients yielded similar results-with higher percentages of

infected monocytes than were found in the 24 healthy donors

(Figure 5). Comparing the infection capability of the two

DENV-2 stains clearly reveals that more infected cells were

present in 16681 than in New Guinea C-infected monocytes

(P,0.05) that were collected from either G6PD-deficient patients

or healthy controls.

Detection of anti-DENV antibodies in G6PD-deficient
patients using PRNT

Severe DENV infections have commonly observed in patients

with secondary dengue viral infection in many South East Asian

countries [1–3]. Plasma samples from all G6PD-deficient patients

and healthy controls were tested in the presence of four DENV

serotype-specific antibodies using PRNT to clarify whether the

higher infection capability of DENV-2 in the monocytes of G6PD-

deficient patients was caused by the secondary dengue viral

infection. None of the four serotype specific DENV antibodies was

detected in any of the 12 G6PD-deficient patients or 24 healthy

controls. The results revealed that the higher infection percentage

of DENV-2 in the monocytes of G6PD deficient-patients than in

healthy people was not associated with prior DENV infections.

Discussion

One of the important virological characteristics of severe

dengue hemorrhagic fever (DHF) patients is elevated viral load

[22]. The association of G6PD deficiency and microbial infections,

Figure 3. Flow cytometry analysis of DENV-2 infected human monocytes from one healthy control. New Guinea C strain (A) and 16681
strain (B) of DENV-2 were infected at an MOI of 0.1 and their infection levels on day three post-infection were measured by flow cytometry. Black:
Percent DENV-2 infected cells. White: Percent mock-infected cells (background)
doi:10.1371/journal.pone.0001557.g003

Figure 4. Flow cytometry analysis of DENV-2 infected human monocytes from one G6PD-deficient patient. Cells infected with New
Guinea C strain (A) and 16681 strain (B) at an MOI of 0.1 and observed on day three post-infection. Black: Percent DENV-2 infected cells. White:
Percent mock-infected cells (background)
doi:10.1371/journal.pone.0001557.g004
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such as acute viral hepatitis A, has been described [16]. This is the

first work to demonstrate clearly that the PBMC monocytes

obtained from G6PD-deficient patients, using an ex vivo culture

system, were more easily infected with the two DENV-2 strains-(1)

the New Guinea C strain from the DF patient or (2) the 16681

strain from the DHF patient than with those from healthy

controls. This finding suggests that the high capability for DENV

infection in human monocytes in vivo may increase viral yield,

which may create more problems in the efficient clearance of the

virus and thus increase the likelihood of a severe clinical outcome

of dengue in G6PD-deficient patients. This suggestion is consistent

with our earlier finding that DHF patients had higher viral loads

even during the defervescence stage [22]. In Taiwan, the

prevalence of G6PD deficiency in general population is about

2.1% [13]. When G6PD-deficient patients are infected with

DENV, their higher viral load may increase the probability of

transmission of the infection to others via infected mosquitoes, if

mosquito breeding sites are not properly environmentally

controlled [23]. In Thailand, the prevalence of G6PD deficiency

in the general population is approximately 11% [20], explaining

the higher prevalence of G6PD deficiency in DHF patients

(19.1%) even though the study that supported this conclusion did

not use a control group [20]. This conclusion also supports the

public health implication that more efficient prevention and

control of dengue is required in areas in which many G6PD-

deficient patients live.

The mechanism of increased infection with DENV-2 in

monocytes from G6PD-deficient patients remains unclear. The

mutation in G6PD probably leads to granulocyte dysfunction,

preventing the clearing of the infection at the first line of defense

and thereby increasing susceptibility to DENV [24]. In fact, severe

G6PD deficiency impairs respiratory burst activity and results in

the generation of the less reactive oxygen species (ROS, including

super-oxide anion, hydrogen peroxide and hydroxyl radical),

causing abnormal function of the neutrophils and monocytes, as in

HIV infection in vitro [25] and in ROS-deficient mice, which are

extremely susceptible to infection [26]. Interestingly, ROS

inhibited the RNA replication of hepatitis C virus, a member of

the same family (Flaviviridae) as DENV, in human hepatoma cells

[27]. Therefore, the greater infection of DENV in human

monocytes from G6PD-deficient patients may be associated with

the low activity of ROS in monocytes, which exhibit reduced

activity for eliminating the invaded DENV-2 in infected cells.

The importance of host factors, such as human leukocyte antigen

(HLA) and dendritic cell–specific intercellular adhesion molecule-3

grabbing nonintegrin (DC-SIGN) genes, in the pathogenesis of

DENV infections has been documented [28,29]. This study

demonstrates that more attention should be paid to another host

genetic factor (G6PD) and to co-morbidity on both individual and

community levels when DENV infection has occurred. Effort must

be made to conduct an international comparative case-control study

in DHF endemic or hyper-endemic countries/areas with a range of

prevalence of G6PD deficiency, by measuring the viral load and

immunity in G6PD-deficient patients versus controls during the

infecting process at various times following infection, as well as

associated clinical outcomes. The results provide a new direction for

elucidating the roles of host genetic factors in the pathogenesis of

DENV-related diseases.

Materials and Methods
Study subjects

Twelve male patients with G6PD deficiency and 24 (18 male

and eight female) age-matched healthy controls (with mean ages of

32.167.3 and 29.365.1 years respectively, P = 0.2), as that shown

in Table 1, participated in the study. G6PD deficiency was defined

as enzyme activity of less than the reference value (4 IU/gHb), as

measured using the ELISA method [30]. The mean G6PD activity

of the G6PD-deficient patients (0.560.9 IU/gHb) was significant-

ly less than that of the healthy controls (12.462.6 IU/gHb,

P,0.01) (Table 1). All the 12 G6PD deficient male patients were

confirmed to be G6PD deficient using the molecular-biology

method as that has been described previously [30]: seven subjects

carrying single-point mutation at nucleotide 1376 (G to T,

Arg459Leu), four at nucleotide 1388 (G to A, Arg463His), and

one at nucleotide 493 (A to G, Asn165Asp), respectively. All

participants had written informed consent before their blood

samples were withdrawn for further study. The protocol was also

passed by the Ethical Committee of the College of Public Health

at National Taiwan University. All 12 G6PD-deficient patients

and the 21 healthy controls lived in northern Taiwan, with only

sporadic dengue cases, but the three volunteers lived in southern

Taiwan, where dengue epidemics occur more often.

Viruses
Two DENV-2 strains, the New Guinea C strain, isolated from a

patient with dengue fever, and the 16681 strain, isolated from a

patient with DHF, were grown from mosquito C6/36 cells in a

growth medium of 50% Mitsumashi and Maramorsch Insect

Medium (MMIM; Sigma, Saint Louis, Missouri, United States)

Figure 5. Box plot for comparison of the ex vivo infection
percentages of DENV-2 (New Guinea C and 16681 strain) in
monocytes of PBMC obtained from 12 G6PD-deficient patients
and 24 healthy controls.
doi:10.1371/journal.pone.0001557.g005

Table 1. Gender and age distributions of study populations
including G6PD-deficient patients and healthy controls

Study
group

G6PD Enzyme
activity*

No of
Subjects

Age (Years)
(mean6SD)

Healthy controls 12.3862.63 16/8 (Males/Females) 29.365.09

G6PD deficiency
Patients

0.4560.91 12(Males) 32.167.34

*IU/g Hemoglobin (IU/gHb)
doi:10.1371/journal.pone.0001557.t001

DENV-2 in Monocytes
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plus 50% Dulbecco’s modified Eagle’s minimal essential medium

(DMEM; GIBCO, Grand Island, NY, United States) plus 2% fetal

bovine serum (FBS) at 28uC for 7 to 9 days. The viruses in the

supernatants were harvested and stored at 280uC. The titers of

the viruses were titrated in baby hamster kidney (BHK-21) cells

using plaque assay.

Isolation of human monocytes and cell culture
PBMCs from 10 ml peripheral blood samples from both G6PD-

deficient patients and healthy controls were isolated in EDTA-

containing tubes by density centrifugation with Ficoll-Hypaque.

The mononuclear leukocytes recovered from the interface were

washed twice by phosphate-buffered saline (PBS, pH 7.2) and

suspended in RPMI 1640 medium with 10% FBS and penicillin/

streptomycin [31]. Human monocytes were purified by depleting

non-monocytes using a MACSH kit system (Miltenyi Biotec GmbH,

Gladbach, Germany) by negative selection. Non-monocytes were

indirectly magnetically labeled with a cocktail of biotin-conjugated

mouse monoclonal antibodies against CD3, CD7, CD16, CD19,

CD56, CD123 and CD235a, as primary labeling reagents, and anti-

biotin monoclonal antibodies that were conjugated with MicroBe-

ads, as secondary labeling reagents. The unlabeled monocytes

passed through the column. The purity of these human monocytes

(ranged from 91.4%–99.9%). The purified human monocytes were

cultured in RPMI 1640 (GIBCO, Grand Island, NY, United States)

medium with 10% FBS and 1% penicillin-streptomycin, as well as

antimycotic (GIBCO, Grand Island, NY, United States), and

incubated at 37uC in 5% CO2 incubator.

Ex vivo infection of DENV-2
Human monocytes were each infected with one of the two

strains of DENV-2, New Guinea C (DF strain) and 16681 (DHF

strain), at a multiplicity of infection (MOI) of 0.1. Following

absorption at 37uC for 3 hours, the monocytes were washed twice

and suspended with medium. The infected monocytes were added

in equal amounts to six-well plates, incubated at 37uC 5% CO2 for

five days, and then quantified at various times post-infection by

flow cytometry. Mock-infected cells were added to another plate as

controls and were run simultaneously with the infected group to

improve gating and the precision of measurement.

Immunofluorescence stain
The infected and mock-infected monocytes were harvested and

fixed on slides using cold acetone for 10 minutes. The monoclonal

antibody (MAb) against DENV-2 (3H5) [32] was added to the

fixed cells and then incubated at 37uC for 30 minutes. After the

cells were washed, goat anti-mouse antibody conjugated with

fluorescein isothiocyanate (FITC) (Kirkegaard & Perry Laborato-

ries, United States) was added and incubated for another

30 minutes at 37uC. The results were observed under an

immunofluorescence microscope for double confirmation before

the samples were analyzed by flow cytometry.

Flow cytometry
The human monocytes that were infected with the two DENV-2

strains (New Guinea C or 16681) and the mock infected monocytes

were removed from the six-well plates, and washed twice with PBS

(pH 7.2). The harvested cells were fixed and permeabilized with 4%

paraformaldehyde and 0.2% sarponin. The permeabilized mono-

cytes were washed and incubated with CD14-PE MAb (Becton

Dickinson, San José, CA, United States) for 30 minutes at 4–8uC in

the dark. Another mouse MAb (3H5) against DENV-2 was used to

quantify the infected cells by incubating it with the tested human

monocytes for 30 minutes at 4–8uC. The cells were then washed and

incubated with FITC-labeled affinity-purified goat anti-mouse IgG

(Kirkegaard & Perry Laboratories, United States) for 30 minutes at

room temperature. Following incubation, the cells were washed twice

in PBS (pH 7.2) and then analyzed using a FACScan flow cytometer

(Becton Dickinson FACSCalibur System, United States). The mock-

infected monocytes were run in parallel and served as negative

controls. At least 10,000 cells were analyzed using a flow cytometer.

Data were analyzed using Cell Quest software (Becton Dickinson,

San José, CA, United States). The percentage of positive cells and the

average fluorescence intensities were determined from FITC

fluorescence histograms using a region that was defined based on

the analysis of the mock-infected control cells).

Plaque Reduction Neutralization Test (PRNT)
PRNT was performed to detect the serotypes of DENV

antibodies that had been infected in the past, from plasma

samples collected from G6PD-deficient patients, with reference to

healthy controls. Four prototype DENVs (DENV-1:Hawaii,

DENV-2:New Guinea C, DENV-3:H87 and DENV-4:H241, all

obtained from Dr. Duane Gubler at the U.S. Centers for Disease

Control and Prevention, Atlanta, Georgia. United States) were

used in PRNT. Briefly, the plasma was inactivated at 56uC for

30 minutes. The four-fold diluted (1:10 ,1:640) plasma and

viruses were mixed well in equal amounts in the 96-well plates and

incubated at 4uC overnight. The mixture was added to the BHK-

21 cells that had been grown in the 24-well plates and incubated at

37uC 5% CO2 for one week. After the cells were fixed with 5%

crystal violet, the plaques were counted. The serotiters of the

neutralization antibody were determined using a 75% reduction

from the number of plaques of the virus control as a cut-off point.

The virus titer was expressed as the number of plaques that formed

unit per ml (PFU/ml).

Statistical Tests
The Student’s T test was used to analyze the differences in means

of percentages of DENV-2 positive infected monocytes between the

patients with G6PD and age-matched healthy controls.
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