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Background. The exploration of microarray data and data from other high-throughput projects for hypothesis generation has
become a vital aspect of post-genomic research. For the non-bioinformatics specialist, however, many of the currently
available tools provide overwhelming amounts of data that are presented in a non-intuitive way. Methodology/Principal

Findings. In order to facilitate the interpretation and analysis of microarray data and data from other large-scale data sets, we
have developed a tool, which we have dubbed the electronic Fluorescent Pictograph – or eFP – Browser, available at http://
www.bar.utoronto.ca/, for exploring microarray and other data for hypothesis generation. This eFP Browser engine paints data
from large-scale data sets onto pictographic representations of the experimental samples used to generate the data sets. We
give examples of using the tool to present Arabidopsis gene expression data from the AtGenExpress Consortium (Arabidopsis
eFP Browser), data for subcellular localization of Arabidopsis proteins (Cell eFP Browser), and mouse tissue atlas microarray data
(Mouse eFP Browser). Conclusions/Significance. The eFP Browser software is easily adaptable to microarray or other large-
scale data sets from any organism and thus should prove useful to a wide community for visualizing and interpreting these
data sets for hypothesis generation.
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INTRODUCTION
With the prevalence of large-scale data sets as a resource for

biological research, tools for collecting and examining microarray

and other high-throughput results are becoming increasingly

significant. Currently, several databases of Arabidopsis gene

expression data are accessible, including NASCArrays [1], GEO

[2], SMD [3] and ArrayExpress [4]. Among the various portals for

analyzing microarray data that have been developed are TAIR

[5,6], AraCyc [7], MAPMAN [8], GENEVESTIGATOR [9],

and several tools of the Bio-Array Resource [10]. In addition,

a database of predicted and documented subcellular localizations

for most Arabidopsis proteins has been published – SUBA [11].

For mouse, microarray data forming a ‘‘tissue atlas’’ have been

generated [12]. Such data sets have been or are in the process of

being generated for human and several model organisms. The

electronic Fluorescent Pictograph (eFP) Browser was developed to

aid in further interpretation of gene expression data and data from

other large-scale data sets. As an example of its utility, we have set

up this tool as the Arabidopsis eFP Browser for exploring

Arabidopsis microarray data to permit intuitive visualization of

gene expression data across approximately 22,000 genes from

Arabidopsis thaliana, as represented on the ATH1 GeneChip from

Affymetrix. In addition, we also provide examples of how we have

used it to create a Cell eFP Browser for displaying protein

subcellular localization data and a Mouse eFP Browser for

displaying gene expression data from a mouse tissue atlas.

In the case of the Arabidopsis eFP Browser, the expression

data displayed include many of the results from the AtGenExpress

initiative, as well as a tissue-specific collection, mirrored in the Bio-

Array Resource [10] for quicker access. The user is presented with

idealized images of Arabidopsis in the context of the chosen series.

The user establishes the AGI ID (Arabidopsis Genome Initiative

identifier) of a particular gene and the interpretative mode –

absolute, relative, or compare. Upon submission, the plant tissues

are coloured according to the expression level of the gene of

interest in a particular tissue under a particular treatment. The

tool is intended as a quick and easy means of identifying significant

tissues and is particularly useful when exploring gene families to

facilitate hypothesis generation. It is our goal to make this tool into

a community resource whereby researchers from around the world

can upload both data sets and diagrammatic representations of the

experiment in question, or add it to their own databases as a free-

standing tool. Users of the resource will then be able to explore high-

throughput experiments by examining compact representations of

the experiments overlaid with data. To demonstrate the value of the

Arabidopsis eFP Browser in practical genomic applications, we

offer examples of genes whose expression patterns have been

reported in the literature, and also provide examples of displaying

other large-scale data sets – in the one case the Cell eFP Browser
to display subcellular localization data for Arabidopsis proteins [11],

and in the other case, the Mouse eFP Browser to display gene

expression data from a mouse tissue atlas [12].

RESULTS AND DISCUSSION
We provide specific examples of using the Arabidopsis eFP
Browser for exploring large-scale microarray data sets. The user
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chooses the Data Source from a list. The eFP Browser engine

responds immediately by changing its display to the .png image file

with the corresponding name. After the user chooses the desired

mode, the AGI ID fields must be filled: the primary AGI ID field is

required for all modes, as is the secondary AGI ID field in the

Compare mode. When the form is submitted, the Browser engine

first converts the AGI ID or IDs to Affymetrix ATH1 GeneChip

probe set identifier or identifiers via a lookup table, a copy of

which was obtained from TAIR at www.arabidopsis.org (a probe

set identifier or identifiers may also be entered – in this case no

lookup takes place, as is currently the case with the Cell eFP and

Mouse eFP Browsers). Then, the eFP Browser engine parses

the XML file and recovers the tissues’ colour keys and sample

identification for all replicates. Utilizing a MySQL command, the

probe set and sample ID are used to retrieve the expression data

mirrored in the Bio-Array Resource [10] for each tissue. The

appropriate colour of a tissue is determined by evaluating the ratio

of the averaged replicates to the positive or negative maximum

and converting it to the equivalent place on the colour scale:

yellow to red for positive numbers and yellow to blue for negative.

We chose these colours for maximum contrast on computer

screens. For each tissue, the engine loops through every pixel of

the image and replaces all instances of the tissue’s colour key with

the calculated colour using the replaceFill function we introduced

to the Python Imaging Library (PIL, www.python.org). The final

output with a colour legend appended is saved as a temporary

image file which is returned to the user’s browser, along with other

information in HTML format. This process is pictured in Figure 1.

Features
For the user, the eFP Browser engine offers three intuitive modes.

In ‘‘Absolute,’’ the expression level for a user’s gene in each tissue

is directly compared to the highest signal recorded for the given

gene, with low levels of expression coloured yellow and high levels

coloured red. An example Arabidopsis eFP Browser output

for ABSCISIC ACID INSENSITIVE 3 (ABI3, At3g24650) in the

‘‘Absolute’’ mode is in Figure 2, demonstrating strong expression

in Stage 8–10 seeds, where its role in promoting seed dormancy

has been documented. In addition, Figure 2 highlights the various

output and input features and options of the eFP Browser

interface. The ‘‘Relative’’ mode displays the ratio of a tissue’s

expression level to appropriate control signal – typically the

median or mock treatment – for its group, as defined using the

,group. and ,control. tags in the XML control file, see

Figure 1B. (In the case of the Developmental Map and some of the

other series we have calculated the median value across all

displayed samples for each probe set and loaded these into our

database as a separate sample, which is referenced in the XML file

with the ,control. tag. In other cases, the appropriate untreated

control data set value is used to calculate the relative value for the

samples within a specified ,group.). The output has tissues

coloured with expression levels above the control signal value

between yellow and red, and expression levels below the control

signal value between yellow and blue. An example Arabidopsis
eFP Browser ‘‘relative’’ output for RGL2 (At3g03450) is shown

in Figure 3A, showing expression levels higher than the median

level of expression of RGL2 in seeds and flowers. Both areas for

RGL2 expression have been described in the literature [13,14].

The ‘‘Compare’’ mode accepts two gene identifiers as input and

compares the primary relative expression levels to the secondary in

each tissue, using the same colour scheme described for relative.

This is useful for identifying tissues in which one gene is more

abundantly expressed relative to another. An example Arabi-
dopsis eFP Browser ‘‘Compare’’ output for ERS1 (At2g40940)

compared to ETR1 (At1g66340) is show in Figure 3B, showing

strong levels of expression of ETR1 relative to ERS1 in later stage

seeds. The single etr1 mutant exhibits a phenotype in seeds [15].

The eFP Browser was designed to be user-friendly and

informative. Hence, several features have been incorporated to

increase its value as a resource. The Data Source drop-down options

are dynamically generated, based on the XML control files present

in the data directory. After the form has been submitted once, the

Browser reloads on every change of Data Source, while keeping all

the other settings constant. Altering the Mode has a similar effect.

Auxiliary options are provided to adjust the appearance of the

produced image, such as imposing a threshold on the displayed

values and ‘‘greying’’ out low values or values with a high

variability between replicate samples. Checking the Signal

Threshold checkbox adjusts the colours by scaling values to the

entered threshold instead of the maximum; all values above the

positive or negative value of this threshold are displayed as the

extreme of the colour scale, i.e. in red or blue. When the first

Mode checkbox is filled in the absolute mode, tissues whose

standard deviation is greater than 50% of the average value for

that tissue are coloured grey to mask them. Some individual gene

expression levels for replicate samples – especially those generated

by laser-capture microdissection – exhibit a high degree of

variability between replicates. The grey effect here alerts the user

to this fact. When the second Mode checkbox is filled in the

Relative mode, the Browser automatically colours grey all samples

where the values used for the ratio calculation are less than 20

expression units, the background level for the AtGenExpress data

sets. The grey effect in this case is useful for allowing the user to

ignore values that may appear significantly higher relative to their

control but are actually not likely biologically meaningful due to

their very low absolute expression levels. If filtering or thresholding

is not selected, the user is alerted to the fact that filtering or

thresholding is possible but only in applicable cases, e.g. if the scale

maximum has changed between views or if the replicate values for

a given sample in a view exhibit high variation.

Only tissues that have been coloured in the input graphic and

indexed with that specific colour in the XML control file will be

subject to colour replacement by the eFP Browser engine. In some

cases it is instructive to the user to provide additional pictographic

information, such as in the case of the Developmental Map in the

Arabidopsis eFP Browser: only the seeds from later stage

siliques were collected for analysis, and not the siliques themselves.

It is useful for the biologist, however, to be aware of the appropriate

stage of siliques from which the seeds came – this can be achieved by

including a sketch without colouration on the input file, in addition

to providing text to this effect below the illustration.

In order to decrease the number of errors thrown by the eFP

Browser, a number of checks have been added to verify the input.

To begin, the form is prevented from being submitted with an

improperly formed or absent AGI IDs (or RefSeq IDs in the case

of the Mouse eFP Browser). If an non-existent AGI ID is

entered, an error warning is returned. Furthermore, the Browser

reverts to the ‘‘No Threshold’’ setting when the one entered is not

appropriate.

After submission, the resultant image illustrates the maximal

expression level of the gene or genes of interest on a small

representative graph of the distribution of average expression

levels for each of ,22814 genes in the given data set. The

distribution is similar for all AtGenExpress data sets, with the

exception of the ‘‘Development RMA’’ data set, which was

normalized using the RMA method [16] and not the Affymetrix

MAS5.0/GCOS method with a target value of 100. This feature

allows the user to determine whether a given gene of interest is

eFP Browser
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Figure 1. Representation of eFP Browser implementation. A. Schematic of browser inputs showing from top to bottom on the left the input image
that forms the basis for the output, the XML control file, the identifier to probe set lookup, and the expression database. These are used by the eFP
Browser to generate the output image upon user input. B. Snippet of the XML control file with significant tags highlighted.
doi:10.1371/journal.pone.0000718.g001

eFP Browser
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a ‘‘high’’ or ‘‘low’’ expresser, relative to the average level of

expression of all of the genes in a selected data set.

If the user clicks on a tissue, the Browser will direct the user to

a relevant experiment link, as specified in the XML control file. In

the case of the Arabidopsis eFP Browser we link out to the

experimental description at NASCArrays [1]. As well, on mouse-

over, the tissue’s name and expression level – absolute or relative,

along with the fold-change or standard deviation – is displayed. A

similar feature allows a developer to embedded URLs – either with

or without the parameters passed to the eFP Browser – within the

image map of the output. An example of such embedded URLs with

parameters is seen in Figure 2 in the form of the small magnifying

glasses. Clicking on these allows the user to ‘‘zoom in’’ to a tissue-

specific data set. These types of embedded URLs have the same

effect as changing the Data Source manually to ‘‘Tissue Specific’’.

A link is provided underneath the image to direct the user to

a temporary page listing all the expression values, fold-changes or

standard deviation values, and samples names. Also located on the

bottom of the page are a variety of links to information on the

gene(s), other BAR tools [10], and the XML source file. Lastly,

helpful instructions and detailed average expression graphs are

available on a click of the question mark link or the miniature

distribution graphs on the final image.

Data Sources and Examples
The eFP Browser was designed with the intention that it can be easily

employed on any Data Source provided it is in the correct format. As

long as a given data set is present in one of our databases, a user

could add another data source by simply supplying three files: an

accurately formatted XML file similar to that shown in Figure 1B,

and an image in both Portable Network Graphics (.png) and Targa

(.tga) format to embody the experiment(s). Further information on

adding views to the eFP Browser is available in the Download,

Upload and Linking section. Note that the source code is also

available for local installation atop an existing database of gene

expression or other measurements. Someone with a modest amount

of Python programming experience should easily be able to adapt

the code for local use, which depends on the local database structure.

Figure 2. Expression pattern of ABI3 – ABSCISIC ACID INSENSITIVE 3. ABI3, At3g24650, is expressed strongly in Stage 8–10 seeds. Features and
control options of the Arabidopsis eFP Browser are also shown.
doi:10.1371/journal.pone.0000718.g002

eFP Browser
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Figure 3. Relative and Compare Modes of the Arabidopsis eFP Browser. A. Expression of RGL2, At3g03450, in Relative Expression mode, showing
stronger expression relative to its median expression level in imbibed seeds and flower parts, as described in the literature. B. Expression of the
ethylene receptors ERS1, At2g40940 versus ETR1, At1g66340 as visualized in the Compare Mode, showing stronger expression (yellow-green) of ERS1
in earlier stages of seed development and stronger expression (red) of ETR1 in later stages of seed development.
doi:10.1371/journal.pone.0000718.g003

eFP Browser
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Figure 4. Abiotic stress response for the cold-inducible transcription factor gene C-BOX BINDING FACTOR 1, At4g25490, as viewed with the
Arabidopsis eFP Browser.
doi:10.1371/journal.pone.0000718.g004

eFP Browser

PLoS ONE | www.plosone.org 6 August 2007 | Issue 8 | e718



Currently, there are several AtGenExpress series already

available to be accessed by the Arabidopsis eFP Browser.

The first, dubbed Developmental Map, displays a gene expression

map of Arabidopsis development [17] plus a dry and germinating

seed sample from another AtGenExpress partner. The Abiotic

Stress series demonstrates the level expression in the shoot and

root of plants under control, cold, osmotic, salt, drought,

genotoxic, oxidative, UV-B, wounding, and heat stress conditions

Figure 5. Tissue-specific expression patterns for At5g43350, AtPT1/Pht1;1. This gene encodes an inorganic phosphate transporter known to be
strongly expressed in the roots. Tissues where values from replicate samples exhibit a high standard deviation are coloured grey – the standard
deviation filtering feature of the Arabidopsis eFP Browser was activated during output generation.
doi:10.1371/journal.pone.0000718.g005

eFP Browser
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[18]. Figure 4 shows the expression of a known cold-inducible

transcription factor, CBF1, in response to cold stress [19].

Furthermore, the expression levels of leaves in plants exposed to

pathogens including Botrytis cinerea, Pseudomonas syringae, bacterial-

and oomycete-derived elicitors, Phytophtora infestans, and Erysiphe

orontii is the focus of the Biotic Stress Series. Whole seedlings and

seeds treated with typical plant hormones or chemicals, such as

hormone inhibitors, are presented in the Hormone and Chemical

Series, respectively. These data sets were produced by members of

the AtGenExpress Consortium.

In addition, the final data source provides an eclectic collection

of tissue-specific samples from a number of independent sources.

Links from the Developmental Map and the scroll-down menu

allow the user to zoom in on root layers [20], embryogenesis [21],

microgametogenesis [22], secondary thickened hypocotyls, and

other tissue types as they become available, as shown for AtPT1/

Pht1;1, an inorganic phosphate transporter involved in phosphate

uptake in the roots, in Figure 5 [23].

We believe that the Arabidopsis eFP Browser provides

a convenient overview of gene response for these experiments as

well as an improved understanding of the experimental set-up for

the data set. Light bars and circular illumination regime indicators

show the timing of treatment and sampling in the day (Figures 4, 6

and 7). For instance, plants grown for the Abiotic Stress series were

grown under a day-night light cycle (16h light), imposing in some

cases a diurnal pattern of gene expression response on top of any

stress response. This is demonstrated in the expression patterns of

two 3-deoxy-D-arabino-heptulosonate 7-phosphate synthase

(DHS, EC 2.5.1.54) isoforms. DHS catalyzes the first step in the

shikimate pathway for chorismate synthesis, an important pre-

cursor for UV protective pigments, among many other com-

pounds. In the ‘‘Absolute’’ mode both are seemingly UV-B

inducible, however, the ‘‘Relative’’ mode (Figure 6) makes it clear

that DHS2 is under diurnal control, while DHS1 is UV-B

inducible. Also, for the Abiotic Series, some stresses were applied

continuously over 24h, while others were temporarily applied.

Figure 6. Absolute and relative expression patterns of expression for DHS1, At4g39980, and DHS2, At4g33510. DHS1 is strongly induced by UV
light treatment, while DHS2 is diurnally responsive but not UV-inducible per se, see boxed timepoints.
doi:10.1371/journal.pone.0000718.g006

eFP Browser
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This is indicated in the eFP Browser output by lines extending for

the period of application of the stress, also indicated in Figures 4

and 6.

Moreover, other details of the experiments are integrated in text

boxes within the images. Among the information is the number of

replicates, age of plants, genetic background, growing conditions,

method of microarray data normalization, and the lab responsible.

The goal is to give the user an accurate impression of the

experimental setup, without having to wade through many

hyperlinks to find the information.

A ‘‘Cell eFP Browser’’ for Arabidopsis
The SUBA database [11] contains information on the computa-

tionally predicted and experimentally documented subcellular

localization of many Arabidopsis proteins. As an example of

displaying discretized data in pictographic format, we have

developed the Cell eFP Browser for showing a protein’s

predicted and documented subcellular localizations. We apply

the formula indicated in the Material and Methods section to

generate a confidence score for each distinct subcellular

compartment or region. The higher the confidence score for

Figure 7. A section of the Arabidopsis eFP Browser Biotic Stress output. Induction of a pathogen-inducible gene, PR1, At2g14610, upon
Pseudomonas syringae attack, is clearly evident 24 hours after inoculation.
doi:10.1371/journal.pone.0000718.g007

Figure 8. An exemplary Arabidopsis Cell eFP Browser output image. The subcellular localisation pattern of At3g26520, encoding Tonoplast Intrinsic
Protein 2, false coloured according to degree of support for a given location based on both measured and predicted subcellular localizations from the
SUBA database.
doi:10.1371/journal.pone.0000718.g008

eFP Browser
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a given subcellular compartment, the more intense the red colour

in the Cell eFP Browser output. An exemplary output from the

Cell eFP Browser for a vacuole-targeted protein, TONO-

PLAST INTRINSIC PROTEIN 2 (TIP2, At3g26520) is shown in

Figure 8.

An ‘‘electronic fluorescent Mouse’’
To illustrate the utility of the eFP Browser engine for displaying

expression data from 55 tissues in mouse, we have also developed

a Mouse eFP Browser, based on a data set generated by the

Hughes laboratory [12]. We have used the arcsinh-transformed,

averaged, median-subtracted and negative-values-zeroed data

set from their analysis and, as such, only offer the ‘‘Absolute’’

option for viewing. Figure 9 shows the Mouse eFP Browser

output for a muscle-specific protein, beta tropomyosin (Tpm2,

XM_124262.1).

Download, Upload and Linking
The Arabidopsis eFP Browser for exploring Arabidopsis

microarray data encompassing more than 1000 microarray data

sets produced by the AtGenExpress Consortium and from other

labs is freely available to anyone with a web-browser and an

internet connection at http://www.bar.utoronto.ca/, as is the

Cell eFP Browser and the Mouse eFP Browser. Information

on obtaining the source code under the Open Source GPL and

installation instructions, as well as information on uploading

specific data sets from Arabidopsis for public exploration, may be

obtained from http://www.bar.utoronto.ca/efp/development/.

Figure 9. An exemplary Mouse eFP Browser output image. The expression level for myosin (XM_126201.1) is strongest in skeletal muscle and
a couple of other areas, such as the trachea, as denoted by the strong red colouration there.
doi:10.1371/journal.pone.0000718.g009

eFP Browser
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Details on generating dynamic hyperlinks to the eFP Browser are

also available on the development homepage.

Summary
In conclusion, the eFP Browser is a convenient tool for

interpreting and visualizing gene expression and other data. Not

only is it valuable for its compatibility to existing resources but it

has also been loaded with several useful data sets. The various

modes and other features allow the user to extract an array of

conclusions and/or generate useful hypotheses. We hope that

many researchers will be able to use the eFP Browser both to

understand particular microarray or other experimental results, as

well as to communicate their own findings.

MATERIALS AND METHODS
The eFP Browser is implemented in Python and makes use of the

Python Imaging Library (PIL) Build 1.1.5 (www.python.org),

which we modified to provide an optimized flood pixel re-

placement function called replaceFill, and other Python modules,

as described on the eFP Browser development homepage. The

inputs for the eFP Browser are illustrated in Figure 1. A

pictographic representation of the sample collection as a Targa-

based image is required, as is an XML control file, shown in detail

in Figure 1B. Two other inputs are a database of gene identifiers

and their appropriate microarray element lookups and annota-

tions, and a database of gene expression values for the given

samples. In the case of the Arabidopsis, Cell and Mouse eFP
Browsers, we have mirrored publicly-available microarray data

from several sources – described in the Data Sources and

subsequent two sections – in our Bio-Array Resource [10]. These

inputs are used by the eFP Browser algorithm to generate an

output image for a user’s gene identifier.

The eFP Browser algorithm itself is programmed in an object-

oriented manner. The main program, efpWeb.cgi, is responsible

for the creation of the HTML code for the user interface and

presentation of the output image. It calls on four modules to

complete the task. These modules are 1) efp.py, which performs

most of the functions for the generation of the output image,

including the parsing of the XML control file, average and

standard deviation calculations, fold-change relative to control

value calculations, and image map HTML code; 2) efpDb.py,

which connects to the gene expression, microarray element and

annotation databases, and returns the appropriate values upon

being called; 3) efpImg.py, which formulates the actual colour

replace calls on the Targa input image; and 4) efpXML.py, which

identifies the XML control files that are present in the eFP

Browser’s data directory. These are displayed to the user in the

Data Source drop-down, thus obviating the need to have them

hard-coded in the main efpWeb.cgi program.

In the case of the Cell eFP Browser, data in the SUBA

database indicate the presence of a given protein in a particular

subcellular location, either based on computational methods or as

molecularly documented by mass spectrometric analysis of

subcellular fractions, GFP fusions etc. [11]. We have used a simple

heuristic to turn these data into a confidence score for a given gene

product’s presence in a given subcellular compartment:

confidence~
X

0ƒmƒ4

sDmz
X

0ƒpƒ9

s0Dp,

where

m = molecular method index of 5 possible methods

p = prediction algorithm index of 10 possible algorithms

s = weighting for molecular method = 1

s9 = weighting for prediction algorithm = 0.2

D = presence in the subcellular compartment for a given method

or algorithm (1 or 0).

The maximum value the confidence score can be for a given

compartment is 7 if all methods call a given gene product present

in that compartment. While we have arbitrarily given a weighting

to prediction algorithm calls for a particular subcellular compart-

ment one fifth that for a molecular method, it would also be

possible to incorporate the quality scores for each prediction

algorithm instead.
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